Publications

×

Citation

2025

Taiki W. Nishihara, Fritz Gerald P. Kalaw, Adelle Engmann, Aya Motoyoshi, Paapa Mensah-Kane, Deepa Gupta, Victoria Patronilo, Linda M. Zangwill, Shahin Hallaj, Amirhossein Panahi, Garrison W. Cottrell, Bradley Voytek, Virginia R. de Sa, Sally L. Baxter. Fostering Multidisciplinary Collaboration in Artificial Intelligence and Machine Learning Education: Tutorial Based on the AI-READI Bootcamp. JMIR Med Educ 2025.
PDF

Abhinav Uppal, Dillan Cellier, Min Lee, Sean Bauersfeld, Yuchen Xu, Shihab Shamma, Gert Cauwenberghs, Virginia R. de Sa. EEG Blink Artifacts Can Identify Read Music in Listening and Imagery. IEEE NER 2025.
PDF

Isuru Gunasekara, Virginia R. de Sa. Efficient Calibration in Motor Imagery BCIs Under Data Constraints via Subject Transfer. NeurIPS Workshop 2025.
PDF

Sriram Ravishankar, Virginia R. de Sa. Handwriting decoding as a challenging Motor Imagery task for EEG Foundation Models. NeurIPS Workshop 2025.
PDF

Ian Jackson, Raunit Kohli, Eric Leonardis, Andrea A. Chiba, Virginia R. de Sa. Explore-Exploit Behaviors During Rat-Robot Interactions Optimize Social and Spatial Security. IEEE ICDL 2025.
PDF

Publications

Alessandro D'Amico, Virginia R. de Sa. Are Low-Cost EEG Systems Viable for Cognitive Neuroscience Research?. PsyArXiv 2025.
PDF

Publications

Abhinav Uppal, Min Suk Lee, Teng Fei, Adyant Balaji, Zhaoyi Liu, Tzyy-Ping Jung, Lara M. Rangel, Virginia R. de Sa, Rahul Parhi, Akshay Paul, Yuchen Xu, Gert Cauwenberghs. Brain-Body Coupling in Listening to Metronomic Sounds and Music. IEEE EMBC 2025.
PDF

Publications

Srinivas Ravishankar, Nathan Zajzon, Virginia R. de Sa. Decoding Imagined Handwriting from EEG. arXiv 2025.
PDF

Publications

Shuangquan Feng, Junhua Ma, Virginia R. de Sa. FERGI: Automatic Scoring of User Preferences for Text-to-Image Generation from Spontaneous Facial Expression Reaction. IEEE FG 2025.
PDF

Amy Eguchi, Garrison W. Cottrell, Taylor Berg-Kirkpatrick, Virginia R. de Sa. Research Experience for Teachers in the Interdisciplinary AI – Report from the Summer AI Research Experience 2024. 2025.

2024

AI-READI Consortium. AI-READI: rethinking AI data collection, preparation and sharing in diabetes research and beyond. Nature Metabolism 2024.
PDF

Publications

Christina Rizq, Alessandro D'Amico, Arya Turel, Julia Faybishenko, Min Suk Lee, Jin-Hong Kim, Gert Cauwenberghs, Virginia R. de Sa. Development and Characterization of Zinc Dry Electrodes for Wearable Electrophysiology. IEEE EMBC 2024.
PDF

Publications

Shuangquan Feng, Virginia R. de Sa. One-Frame Calibration with Siamese Network in Facial Action Unit Recognition. arXiv:2409.00240 2024.
PDF

Publications

Teng Fei, Srinivas Ravishankar, Zhining Chen, Abhinav Uppal, Ian Jackson, Virginia R. de Sa. Perceptogram: Reconstructing Visual Percepts and Presumptive Electrode Preference from EEG. arXiv 2024.
PDF

2023

Publications

Vijay Veerabadran, Srinivas Ravishankar, Yunhao Tang, Raghav Raina, Virginia R. de Sa. Adaptive recurrent vision performs zero-shot computation scaling to unseen difficulty levels. NeurIPS 2023.
PDF

Publications

Miguel J. Monares, Yuan Tang, Ritik Raina, Virginia R. de Sa. Analyzing Biases in AU Activation Estimation Toward Fairer Facial Expression Recognition. KDD HILDA 2023.
PDF

2022

Publications

Ritik Raina, Miguel Monares, Mingze Xu, Xiaojing Xu, Lehan Li, William Sumerfield, Jin Gan, Virginia R. de Sa. Exploring Biases in Facial Expression Analysis using Synthetic Faces. NeurIPS SyntheticData 2022.
PDF

Publications

Sarah Fabi, Xiaojing Xu, Virginia R. de Sa. Exploring the Racial Bias in Pain Detection with a Computer Vision Model. UCSD URC 2022.
PDF

Publications

Zhining Chen, Mahta Mousavi, Virginia R. de Sa. Multi-subject unsupervised transfer with weighted subspace alignment for common spatial patterns. BCI 2022.
PDF

Publications

Alessandro D'Amico, Virginia R. de Sa. Set Size Effects on the P3b in a BCI Speller. CogSci 2022.
PDF

Mahta Mousavi, Eric Lybrand, Shuangquan Feng, Shuai Tang, Rayan Saab, Virginia R. de Sa. Spectrally Adaptive Common Spatial Patterns. arXiv:2202.04542 2022.
PDF

2021

Publications

Busra Susam, Nathan Riek, Murat Akcakaya, Xiaojing Xu, Virginia R. de Sa, Hooman Nezamfar, Damaris Diaz, Kenneth Craig, Matthew Goodwin, Jeannie Huang. Automated Pain Assessment in Children Using Electrodermal Activity and Video Data Fusion via Machine Learning. IEEE TBME 2021.
PDF

Vijay Veerabadran, Raghav Raina, Virginia R. de Sa. Bio-inspired learnable divisive normalization for ANNs. NeurIPS SVRHM 2021.
PDF

Publications

Kuei-da Liao, Matthew V. Mollison, Tim Curran, Virginia R. de Sa. EEG Reveals Familiarity by Controlling Confidence in Memory Retrieval. IEEE TCDS 2021.
PDF

Publications

Mahta Mousavi, Eric Lybrand, Shuangquan Feng, Shuai Tang, Rayan Saab, Virginia R. de Sa. Improving Robustness in Motor Imagery Brain-Computer Interfaces. NeurIPS DistShift 2021.
PDF

Publications

Mahta Mousavi, Virginia R. de Sa. Motor imagery performance from calibration to online control in EEG-based brain-computer interfaces. IEEE NER 2021.
PDF

Publications

Xiaojing Xu, Virginia R. de Sa. Personalized Pain Detection in Facial Video with Uncertainty Estimation. NeurIPS ML4H 2021.
PDF

2020

Publications

Shuai Tang, Virginia R. de Sa. Deep Transfer Learning with Ridge Regression. arXiv 2020.
PDF

Xiaojing Xu, Virginia R. de Sa. Exploring Multidimensional Measurements for Pain Evaluation using Facial Action Units. IEEE BigData 2020.
PDF

Mahta Mousavi, Laurens Krol, Virginia R. de Sa. Hybrid brain-computer interface with motor imagery and error-related brain activity. J Neural Eng 2020.
PDF

Publications

Vijay Veerabadran, Virginia R. de Sa. Learning compact generalizable neural representations supporting perceptual grouping. arXiv 2020.
PDF

2019

Shuai Tang, Virginia R. de Sa. Exploiting Invertible Decoders for Unsupervised Sentence Representation Learning. ACL 2019.
PDF

Publications

Xiaojing Xu, Jeannie S. Huang, Virginia R. de Sa. Pain Evaluation in Video using Extended Multitask Learning from Multidimensional Measurements. MLHC 2019.
PDF

Mahta Mousavi, Virginia R. de Sa. Spatio-temporal analysis of error-related brain activity in active and passive brain-computer interfaces. J. Neural Eng. 2019.
PDF

Publications

Mahta Mousavi, Virginia R. de Sa. Temporally Adaptive Common Spatial Patterns with Deep Convolutional Neural Networks. IEEE SMC 2019.
PDF

Kara Hawley, Jeannie S. Huang, Matthew Goodwin, Damaris Diaz, Virginia R. de Sa, Kathryn A. Birnie, Christine T. Chambers, Kenneth D. Craig. Youth and Parent Appraisals of Participation in a Study of Spontaneous and Induced Pediatric Clinical Pain. Ethics & Behavior 2019.
PDF

2018

Publications

Yi-Ming Jin, Mahta Mousavi, Virginia R. de Sa. Adaptive CSP with subspace alignment for subject-to-subject transfer in motor imagery brain-computer interfaces. IEEE BCI 2018.
PDF

Busra T. Susam, Murat Akcakaya, Hooman Nezamfar, Damaris Diaz, Virginia R. de Sa, Kenneth D. Craig, Xiaojing Xu, Jeannie S. Huang, Matthew S. Goodwin. Automated Pain Assessment using Electrodermal Activity Data and Machine Learning. IEEE EMBC 2018.
PDF

Xiaojing Xu, Kenneth D. Craig, Damaris Diaz, Matthew Goodwin, Murat Akcakaya, Busra Susam, Jeannie S. Huang, Virginia R. de Sa. Automated Pain Detection in Facial Videos of Children using Human-Assisted Transfer Learning. IVA 2018.
PDF

Shuai Tang, Virginia R. de Sa. Improving Sentence Representations with Multi-view Frameworks. NeurIPS IRASL 2018.
PDF

Shuai Tang, Paul Smolensky, Virginia R. de Sa. Learning Distributed Representations of Symbolic Structure Using Binding and Unbinding Operations. NeurIPS IRASL 2018.
PDF

Eunho Noh, Kuei-da Liao, Matthew V. Mollison, Tim Curran, Virginia R. de Sa. Single-trial EEG analysis predicts memory retrieval and reveals source-dependent differences. Front. Hum. Neurosci. 2018.
PDF

Publications

Kuei-da Liao, Matthew V. Mollison, Tim Curran, Virginia R. de Sa. Single-Trial EEG Predicts Memory Retrieval Using Leave-One-Subject-Out Classification. IEEE BIBM 2018.
PDF

Publications

Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang, Virginia R. de Sa. Speeding up Context-based Sentence Representation Learning with Non-autoregressive Convolutional Decoding. RepL4NLP 2018.
PDF

Publications

Laurens Krol, Mahta Mousavi, Virginia R. de Sa, Thorsten Zander. Towards Classifier Visualization in 3D Source Space. IEEE SMC 2018.
PDF

2017

Daniel Maryanovsky, Mahta Mousavi, Nathanial Moreno, Virginia R. de Sa. CSP-NN: A convolutional neural network implementation of common spatial patterns. BCI Graz 2017.
PDF

Ramesh Krishna Maddula, Joshua Stivers, Mahta Mousavi, Sriram Ravindran, Virginia R. de Sa. Deep recurrent convolutional neural networks for classifying P300 BCI signals. BCI Graz 2017.
PDF

Publications

Shuai Tang, Hao Jin, Chen Fang, Zheng Wang, Virginia R. de Sa. Exploring Asymmetric Encoder-Decoder Structure for Context-based Sentence Representation Learning. arXiv:1710:10380) 2017.
PDF

Mahta Mousavi, Adam Koerner, Qiong Zhang, Eunho Noh, Virginia R. de Sa. Improving motor imagery BCI with user response to feedback. Brain-Computer Interfaces 2017.
PDF

Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang, Virginia R. de Sa. Rethinking skip-thought: A neighborhood based approach. RepL4NLP 2017.
PDF

Joshua M. Stivers, Virginia R. de Sa. Spelling in parallel: Towards a rapid, spatially independent BCI. GBCIC 2017.
PDF

Mahta Mousavi, Virginia R. de Sa. Towards elaborated feedback for training motor imagery brain computer interfaces. GBCIC 2017.
PDF

Publications

Shuai Tang, Hao Jin, Chen Fang, Zheng Wang, Virginia R. de Sa. Trimming and improving skip-thought vectors. arXiv:1706.03148 2017.
PDF

2014

Eunho Noh, Virginia R. de Sa. Discriminative Dimensionality Reduction for Analyzing EEG Data. CogSci 2014.
PDF

Eunho Noh, Matthew V. Mollison, Tim Curran, Virginia R. de Sa. Single-trial identification of failed memory retrieval. ACSSC 2014.
PDF IEEE

David Tingley, Andrew S. Alexander, Sean Kolbu, Virginia R. de Sa, Andrea A. Chiba, Douglas A. Nitz. Task-phase-specific dynamics of basal forebrain neuronal ensembles. Frontiers in Systems Neuroscience 2014.
PDF

Eunho Noh, Matthew V. Mollison, Grit Herzmann, Tim Curran, Virginia R. de Sa. Towards a passive brain computer interface for improving memory. BCI Graz 2014.
PDF

Eunho Noh, Grit Herzmann, Tim Curran, Virginia R. de Sa. Using Single-trial EEG to Predict and Analyze Subsequent Memory. NeuroImage 2014.
PDF

2013

Publications

Eunho Noh, Virginia R. de Sa. Canonical Correlation Approach to Common Spatial Patterns. IEEE NER 2013.
PDF

Publications

Joshua M. Lewis, Laurens van der Maaten, Virginia R. de Sa. Divvy: Fast and Intuitive Exploratory Data Analysis. JMLR 2013.
PDF

Priya D. Velu, Tim Mullen, Eunho Noh, Matthew C. Valdivia, Howard Poizner, Yoram Baram, Virginia R. de Sa. Effect of visual feedback on the occipital-parietal-motor network in Parkinson's disease with freezing of gait. Front. Neurol..
PDF

Adam Koerner, Qiong Zhang, Virginia R. de Sa. The Effect of Real-Time Positive and Negative Feedback on Motor Imagery Performance. BCI Meeting 2013.
PDF

2012

Joshua M. Lewis, Laurens van der Maaten, Virginia R. de Sa. A Behavioral Investigation of Dimensionality Reduction. CogSci 2012.
PDF

Virginia R. de Sa. An interactive control strategy is more robust to non-optimal classification boundaries. ICMI'12 2012.
PDF

Joshua M. Lewis, Maya Ackerman, Virginia R. de Sa. Human Cluster Evaluation and Formal Quality Measures; A Comparative Study. CogSci 2012.
PDF

Publications

Joshua M. Lewis, Virginia R. de Sa. Learning Cluster Analysis through Experience. CogSci 2012.
PDF

Alan E. Robinson, Virginia R. de Sa. Spatial properties of flicker adaptation. Vision Research.
PDF

2011

Walter Talbott, Ian Fasel, Javier R. Molina, Virginia R. de Sa, Javier Movellan. Coordinating Touch and Vision to Learn What Objects Look Like. Proceedings of the 33rd Annual Conference of the Cognitive Science Society 2011.
PDF

2010

Joshua M. Lewis, Adam S. Fouse, Virginia R. de Sa. Cross-Modal Influence on Binocular Rivalry. CogSci 2010.
PDF

2008

Alan E. Robinson, Virginia R. de Sa. Brief presentations reveal the temporal dynamics of brightness induction and White's illusion. Vision Research 2008.
PDF

Ayse Pinar Saygin, Jon Driver, Virginia R. de Sa. In the footsteps of biological motion and multisensory perception: Judgements of audio-visual temporal relations are enhanced for upright walkers. Psychological Science 2008.
PDF

Paul S. Hammon, Scott Makeig, Howard Poizner, Emanuel Todorov, Virginia R. de Sa. Predicting Reaching Targets from Human EEG. IEEE SPM 2008.
PDF

Thomas J. Sullivan, Virginia R. de Sa. Sleeping Our Way to Weight Normalization and Stable Learning. Neural Computation 2008.
PDF

2007

Leo Trottier, Virginia R. de Sa. A Multimodal Paradigm for Investigating the Perisaccadic Temporal Inversion Effect in Vision. CogSci 2007.
PDF

Alan E. Robinson, Paul S. Hammon, Virginia R. de Sa. Explaining brightness illusions using spatial filtering and local response normalization. Vision Research.
PDF

Paul S. Hammon, Virginia R. de Sa. Pre-processing and meta-classification for brain-computer interfaces. IEEE TBME 2007.
PDF

2006

Thomas J. Sullivan, Virginia R. de Sa. A model of surround suppression through cortical feedback. Neural Networks 2006.
PDF

Thomas J. Sullivan, Virginia R. de Sa. A self-organizing map with homeostatic synaptic scaling. Neurocomputing 2006.
PDF

Thomas J. Sullivan, Virginia R. de Sa. Homeostatic synaptic scaling in self-organizing maps. Neural Networks 2006.
PDF

Paul S. Hammon, Jaime A. Pineda, Virginia R. de Sa. Viewing motion animations during motor imagery: effects on motor imagery. Viewing motion animations during motor 2006.
PDF

2005

Virginia R. de Sa. Spectral Clustering with Two Views. ICML Workshop 2005.
PDF

2004

Thomas J. Sullivan, Virginia R. de Sa. A Temporal Trace and SOM-based Model of Complex Cell Development. Neurocomputing 2004.
PDF

Hsin-Hao Yu, Virginia R. de Sa. Nonlinear reverse-correlation with synthesized naturalistic noise. Neurocomputing 2004.
PDF

Virginia R. de Sa. Sensory Modality Segregation. Advances in Neural Information Processing Systems 16 2004.
PDF

2003

Cathy L. Zheng, Virginia R. de Sa, Michael Gribskov, Thidapat M. Nair. On Selecting Features from Splice Junctions: An Analysis Using Information Theoretic and Machine Learning Approaches. Genome Informatics 2003.
PDF

2001

Virginia R. de Sa, David J.C. MacKay. Model fitting as an Aid to Bridge Balancing in Neuronal Recording. Neurocomputing 2001.
PDF

1999

Virginia R. de Sa. Combining Uni-Modal Classifiers to Improve Learning. Prerational Intelligence: Adaptive Behavior and Intelligent Systems without Symbols and Logic 1999.
PDF

Ken McRae, George S. Cree, Robyn Westmacott, Virginia R. de Sa. Further Evidence for Feature Correlations in Semantic Memory. Can. J. Exp. Psych. 1999.
PDF

1998

Virginia R. de Sa, Geoffrey E. Hinton. Cascaded Redundancy Reduction. Network 1998.
PDF

Virginia R. de Sa, Dana H. Ballard. Category Learning through Multimodality Sensing. Neural Computation 1998.
PDF

Rich Caruana, Virginia R. de Sa. Using Feature Selection to Find Inputs that Work Better as Outputs. Proceedings of the 8th International Conference on Artificial Neural Networks (ICANN 98) 1998.
PDF

Virginia R. de Sa, R. Christopher deCharms, Michael M. Merzenich. Using Helmholtz Machines to analyze multi-channel neuronal recordings. Advances in Neural Information Processing Systems 10 1998.
PDF

1997

Ken McRae, Virginia R. de Sa, Mark S. Seidenberg. On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology: General 1997.
PDF

Virginia R. de Sa, Dana H. Ballard. Perceptual Learning from Cross-Modal Feedback. Psychology of Learning and Motivation 1997.
PDF

Rich Caruana, Virginia R. de Sa. Promoting Poor Features to Supervisors: Some Inputs Work Better as Outputs. Advances in Neural Information Processing Systems 9 1997.
PDF

1994

Virginia R. de Sa. Learning Classification with Unlabeled Data. NIPS 1994.
PDF

Virginia R. de Sa. Minimizing Disagreement for Self-Supervised Classification. Proceedings of the 1993 Connectionist Models Summer School 1994.
PDF

Virginia R. de Sa. Unsupervised Classification Learning from Cross-Modal Environmental Structure. PhD Dissertation.
PDF

1993

Virginia R. de Sa, Dana H. Ballard. A Note on Learning Vector Quantization. Advances in Neural Information Processing Systems 5 1993.
PDF

Ken McRae, Virginia R. de Sa, Mark S. Seidenberg. Modeling Property Intercorrelations in Conceptual Memory. CogSci 1993.
PDF

Virginia R. de Sa, Dana H. Ballard. Self-teaching through correlated input. Computation and Neural Systems 1993.
PDF

1992

Virginia R. de Sa, Dana H. Ballard. Top-down teaching enables task-relevant classification with competitive learning. IJCNN International Joint Conference on Neural Networks 1992.
PDF