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Abstract

The field of machine learning is constantly developing useful
new techniques for data analysis, but they are often ignored by
researchers outside the field due to unfamiliarity and the dif-
ficulty of keeping up with a large body of work. We propose
a methodology for training researchers how algorithms work
through experience, such that they gain an implicit, rather than
explicit, understanding of their function. Thus we combine
theory from discovery learning with advanced software and a
more educated target population to foster such understanding.
We have developed an open source application for exploratory
data analysis called Divvy that lets users quickly and visually
interact with a range of data analysis techniques. Using a sim-
plified version of Divvy, we find that undergraduate subjects
are generally able to learn machine learning concepts through
experience, though they have only partial success in applying
them.
Keywords: unsupervised machine learning; clustering; dis-
covery learning; human computer interfaces

Machine learning has a PR problem. The field has de-
veloped many techniques that cluster, classify, or reduce the
dimensionality of data, and most techniques could be prof-
itably applied to scientific data sets. Researchers that are not
machine learning experts face a daunting question, however–
which techniques should I use to analyze my data? Authors
proposing a new technique will focus on its strengths over its
weaknesses, and most researchers do not want to spend a year
reading math papers and becoming a machine learning expert
in order to best analyze their data. So too often the analysis
technique used is the convenient one (freely available online
or as part of a software package), or the traditional one. Re-
searchers miss out on the advances in machine learning, and
the machine learning field is not as valuable as it could be to
the broader scientific community.

There are two fundamental problems: expertise and access.
Gaining expertise is difficult–if a researcher wants to find the
right technique for the job, but is unwilling to engage in the
time-consuming process of learning the details of every tech-
nique, how can they be trained to apply the best one? With
the right tools, we believe discovery learning has substantial
potential for training researchers. Software that provides di-
rect and intuitive access to the behavior of machine learning
algorithms can support the development of a pragmatic (not
mathematical) understanding of the algorithms.

As an analogy, baseball players have an excellent idea of
how baseballs behave. A baseball’s behavior is, of course,
governed by the laws of physics and an explicit description
of that behavior might be quite complex when spin, defor-
mation, wind and field texture are taken into account. Nev-
ertheless, through extensive experience baseball players ac-
quire an excellent pragmatic understanding of how baseballs

behave, an understanding that one might guess is founded on
an implicit learned model of baseball behavior rather than the
explicit model a physicist would give. We believe that inter-
active experience with machine learning techniques can give
rise to a similar sort of practical and implicit model of algo-
rithm behavior, and that researchers can use such a model to
make informed decisions during data analysis.

Discovery learning is particularly compelling in this con-
text because researchers often do not have the time or incli-
nation to seek out traditional forms of instruction while an-
alyzing data. Tools that support learning on the job are thus
necessary and expedient. In this paper we test our hypothesis
using a data analysis platform called Divvy that we’ve de-
veloped to provide such an experience that emphasizes speed
and visualization.

Gaining access to a wide variety of data analysis tech-
niques is also tricky–it might require technical knowledge
(e.g. basic programming skills in whichever languages the
techniques are in), or owning proprietary software like Mat-
lab and formatting one’s data for it. To that end Divvy is
a free, open source project designed around a plugin archi-
tecture where machine learning researchers can package their
algorithms with intuitive custom UIs that require no program-
ming expertise from users.

In our experiment we give undergraduate subjects in-
teractive experience with two clustering techniques, k-
means (MacQueen, 1967) and single linkage (Johnson,
1967), labeled simply as method A and method B and with-
out any explicit instruction as to their differences. We find
that after training almost every subject learns a few relevant
facts about A or B or their parameters, and that some subjects
appear to be able to apply this knowledge to new analysis
contexts.

Divvy
Data analysis is often a laborious process. A researcher col-
lects data, and then loads it into a software package such as
Matlab or R. To apply an algorithm to his or her data, the
researcher has to write a command or fill out a dialog box
and then wait for processing to finish. Finally, the researcher
will use other commands to visualize the algorithm’s output.
To change a parameter and see the impact it has, this process
must be repeated. Some researchers might write a script that
runs a set of different parameters and visualizations, and then
go out for a coffee and come back to see if the whole endeavor
bore any fruit.

This is a tenuous kind of interaction. A baseball, by virtue
of being in the real world, provides critical instantaneous



Figure 1: The full Divvy UI. Each visualization represents a different view of the same dataset (generated by combining a
dimensionality reduction technique, a clustering technique and a dataset visualizer) and users can set the properties of each
view using the tools to the right. A list of datasets resides in the bottom right, allowing the user to switch between them at any
time, even while results are computing in the background.

feedback to those interacting with it. In the above process
the algorithm does not, and the goal of the Divvy project is
to close that gap and provide an interface where visualization
happens instantaneously and researchers can tweak parame-
ters and see their effect in real time. In a way, Divvy is provid-
ing the human analog to active learning (Cohn, Ghahramani,
& Jordan, 1996), where learning algorithms choose which
training samples to get based on what they predict to be the
most informative. Divvy is similar in spirit to a tool called
GGobi (Ggobi data visualization system, n.d.), which brings
cutting edge methods in high-dimensional data visualization
to a user friendly graphical interface but without the strong
machine learning component Divvy provides.

Divvy supports four types of plugin: clusterers, reduc-
ers, point visualizers and dataset visualizers. Clusterers and
reducers represent clustering and dimensionality reduction
algorithms, respectively. Point visualizers represent single
points in the dataset with visualizations, such as the image
of a handwritten digit, and dataset visualizers represent the
entire dataset, for example with a scatter plot. Each view of
the dataset (of which a user can have a practically unlimited
number) represents a combination of these four plugin types,
so a user can compare, e.g., k-means in the first two PCA
dimensions with spectral clustering in the same embedding.

Divvy achieves real time responsiveness on many datasets

through parallel computing. Many personal computers (and
all Macs) ship with multi-core processors (CPUs), as well
as graphics processors (GPUs) that can be used for gen-
eral purpose computation. High performance computing re-
search has so far focused on how these hardware resources
can make very large problems tractable (Raina, Madhavan,
& Ng, 2009). With Divvy, we are using these technologies
to make medium problems very fast–fast enough to feel real
time, and to invite the exploratory interaction that we believe
leads to learning. Even if an algorithm takes a while to run,
users can continue to use Divvy to perform other analyses on
the same dataset or even on others while they wait. Our UI de-
sign puts a focus on visualization, allowing users to simulta-
neously visualize many perspectives on their data. Algorithm
parameters are controlled with standard UI elements (such as
sliders or check boxes) rather than having to be specified with
code. See Figure 1 for the full Divvy UI and Figure 2 for the
simplified version of the UI we used in this experiment.

Divvy does not attempt to replace a user’s data analy-
sis workflow, but rather to be a part of it. It can ex-
port data and visualizations in standard formats and import
from other popular tools. Divvy, its source code, sample
datasets, and R/Matlab data importers are freely available
from http://divvy.ucsd.edu and on the Mac App Store.



Discovery Learning
Our study represents a form of discovery learning (Bruner,
1961), also known as constructivist, inquiry or experiential
learning. In discovery learning students learn material inde-
pendently of explicit instruction by exploring environments,
solving problems, or performing experiments. Several re-
searchers have called into question the effectiveness of pure
discovery learning, suggesting that active guidance from an
instructor (Mayer, 2004), or a sufficient foundation of domain
knowledge (Kirschner, Sweller, & Clark, 2006) are required
for constructivist approaches to be successful.

Our target audience for Divvy differs from the traditional
subjects used in studies of discovery learning. We intend for
Divvy to be used by researchers such as faculty and gradu-
ate students who have a highly sophisticated understanding
of their problem domain. Further, they are accustomed to
self-directed learning. In this sense, though they do not have
a detailed understanding of machine learning, they do have a
foundation of domain knowledge with which they can deter-
mine whether the output of a machine learning algorithm is
appropriate or not. In addition, Divvy provides some forms
of active guidance. Divvy plugin UIs default to reasonable
ranges for parameter settings and every plugin can specify
a help link that takes users to a relevant resource on the web,
such as a paper describing the method or a relevant Wikipedia
article.

For these reasons we believe Divvy to be more likely to
succeed than other examples of discovery learning that focus
on elementary-, middle-, and high-school populations with
less active guidance. In this study we use an undergraduate
population that is generally less knowledgeable than our tar-
get population, representing a more challenging domain than
that which Divvy will have in the wild. If undergraduates
are able to learn machine learning concepts with Divvy then
graduate students, postdocs, and faculty likely can as well.

As outlined above, we believe that guided learning is not
necessarily practical or expedient for our target population.
So while explicit instruction would certainly allow subjects to
learn machine learning concepts, we do not compare Divvy
to that form of learning in this paper. Here we focus on what,
if anything, subjects are able to learn from a version of our
more pragmatic approach to solving machine learning’s PR
problem.

Methods
We recruited 22 undergraduate subjects for this experiment.
Subjects received course credit for participation. One subject
was excluded from the study after he indicated at the end dur-
ing the interview segment that he must not have understood
the instructions, and so we analyzed the data from a grand
total of 21 subjects.

Each subject performed 36 trials, which were split into two
18 trial blocks, a training block and a testing block. In both
blocks, subjects use the sliders to change the number of clus-
ters, k, and the relative weighting of the horizontal and verti-

Figure 2: The Divvy UI used in this experiment. The tabs at
the top right select method A (k-means) or B (single linkage),
and the sliders below control the number of clusters and the
relative weighting of the horizontal and vertical axes. Sub-
jects indicate their satisfaction with a particular partitioning
using the dropdown menu above the next trial button at the
bottom right.

cal axes in order to best group the points in each stimulus (one
stimulus per trial) and then indicate their satisfaction with the
result (ranging from 1, not satisfied, to 7, very satisfied). In
the training block, subjects use both A and B (k-means and
single linkage, respectively) to group the points, and are re-
quired to arrive at a solution for each method. In the test-
ing block, neither A nor B are initially selected and subjects
must choose which method they want to use for that trial.
Once the choice is made they cannot switch. We divided sub-
jects into two groups of 10 and 11. One group’s training set
was the other’s testing set, and vice versa. At the end of the
two blocks, subjects filled out an interview form that assessed
their knowledge. The eight interview questions were as fol-
lows (where circles means the individual data points):

1. What did you feel like method A was doing?

2. What organizations of circles was method A good for
grouping?

3. What did you feel like method B was doing?

4. What organizations of circles was method B good for
grouping?

5. Did you have a preference between A and B?

6. Why or why not?

7. What did the first (top) slider do?

8. What did the second (bottom) slider do?



We instructed subjects to do their best to learn what A, B
and the sliders were doing in the first half of the experiment,
as they would need to use that knowledge during the sec-
ond half. We also made clear that not every stimulus could
be ideally grouped with both A and B, and that if they did
not like a solution they could just indicate dissatisfaction us-
ing the dropdown above the next trial button. We provided
two helper images along with the instructions. One showed
a well-separated mixture of Gaussians where each Gaussian
had its own color. This was held up as a positive example.
The second showed two circular groups split in half with
color, which was considered a negative example. Beyond
these very simple prompts (show in Figure 3) we did not bias
the subjects as to what a group should be.

Figure 3: Sample images to give subjects basic guidance on
good groups (top) versus bad groups (bottom).

The 36 stimuli fall into three categories, those where A is
most effective (14), those where B is most effective (15), and

those where A and B are similarly effective (7). We created
all 36 stimuli by hand in order to ensure that the first two
categories had sufficient membership. Stimuli ranged from
complex collections of lines, rings and spirals to connected
and disconnected blobs to uniform noise. While these are not
real data, so to speak, they provide us with a solid foundation
on which to train and judge our subjects that real data would
not necessarily provide. Additionally, most meaningful real
data are more than two dimensional, and while the full ver-
sion of Divvy uses dimensionality reduction techniques and
multiple views to visualize such data, those techniques are
not relevant to our core question in this experiment concern-
ing cluster analysis.

Divvy records every method and parameter combination
subjects try over the course of the experiment, including their
final grouping and satisfaction. We use these data in con-
cert with interview responses to determine what subjects were
able to learn from their experience. From the Divvy records
we extract two variables per subject, the total number of dif-
ferent algorithm and parameter settings queried in the training
period (the number of “moves”), and the percent of correct
method (A or B) choices (with any parameter choice) in the
testing period, out of the stimuli for which there is a preferred
method. From the interviews we code for understanding of
seven possible concepts. The seven possible concepts are as
follows:

1. The first slider controls the number of colors (i.e. clusters).

2. The second slider controls the orientation of the boundary
between clusters.

3. k-means works well on blobs of points (compact regions).

4. Single linkage works well on extended shapes like lines or
rings (non-compact regions).

5. k-means can work when there is no space separating clus-
ters.

6. Single linkage works best when there is lots of space be-
tween clusters.

7. k-means tends to divide the points into evenly sized groups,
whereas single linkage can make large and small groups.

We hypothesize that there will be a positive correlation be-
tween understanding a greater number of concepts and select-
ing the correct method. We also report correlations between
these measures and the number of moves subjects take. To
gain an understanding of the relative difficulty of learning the
concepts we report in detail the concepts learned on a per-
subject basis. Finally, we compare subject satisfaction when
using the correct method on a stimulus versus the incorrect
method. This test indicates whether subjects recognize when
the partitions are not ideal. If the subjects cannot distinguish
good partitions from bad given their intuition and the instruc-
tive samples, then there is not an opportunity for learning.



Results
In Table 1 we summarize the contents of each subject’s in-
terview, using the seven concepts described above. Nineteen
of 21 of the subjects learned at least one concept, and 15 of
the subjects learned at least one concept excluding the sim-
plest one (the function of the first slider). On average subjects
learned 2.4 concepts over the course of the study.

Table 1: A summary of the concepts subjects learned. Sub-
jects in bold chose the correct method for over 70% of stimuli
in the test block.
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1 0
2 0
3 X X X X 4
4 X X X 3
5 X X 2
6 X X X 3
7 X X X 3
8 X X X 3
9 X 1

10 X X 2
11 X 1

; 12 X X X 3
13 X X X 3
14 X 1
15 X X 2
16 X X X X 4
17 X 1
18 X X X X X 5
19 X X X X 4
20 X X 2
21 X X X 3

Sum 17 3 5 9 5 4 7

The number of concepts learned correlates positively, but
only as a trend, with both percent correct (ρ = .29, p < .10)
and number of moves (ρ = .34, p < .07). Percent correct and
number of moves are not correlated (ρ = −.22, p < .84). In
Figure 4 we show scatter plots of the pairwise comparisons
between these variables.

For stimuli with a correct answer where the subject used
the correct method, we had 470 satisfaction ratings with
µ = 5.88,σ = 1.37. For stimuli with a correct answer where
the subject used the incorrect method, we had 444 satisfac-
tion ratings with µ = 4.94,σ = 1.77. A t-test indicated a sig-

nificant p < .01 effect of correct versus incorrect method on
satisfaction, indicating that subjects were in general able to
judge some difference between good and bad partitions.

Discussion
Almost every subject learned about cluster analysis through
their experience–over half learned three concepts or more.
Giving researchers expertise and access through tools like
Divvy promises to encourage and improve the application of
machine learning techniques in other fields.

Nevertheless, some subjects had difficulty using the knowl-
edge they acquired to make good data analysis decisions.
Though subjects explored quite a bit during the training phase
(an activity that showed a trending correlation with concept
learning) they did not necessarily parlay that experience into
better performance. So while we are pleased that subjects
demonstrated concept learning in the interviews, we would
like to investigate why they had trouble applying it. The
subjects were overall less satisfied when using the incorrect
method, which indicates that evaluative confusion was not the
primary culprit.

Given that the core audience for Divvy is composed of
graduate students, postdocs, and faculty, we would like to
perform a follow-up study with that audience. While under-
graduates serve as a useful lower bound, so to speak, for test-
ing learning with Divvy, our target population is likely more
motivated, more familiar with data analysis tasks, and in pos-
session of greater domain knowledge.

The process of crystallizing the implicit knowledge gained
during the experiment in the interview might help subjects
make better decisions. To test this, a future experiment could
place the interview between the training and test blocks. If
this results in better performance, it would indicate that hav-
ing to articulate knowledge assists concept crystallization and
application, and that the subjects are in a sense still learning
when they fill out the interview.

We do not think a comparison to traditional guided learning
is useful since our target population will rarely have the time
or inclination to seek out explicit instruction. However, we
would be interested in comparing our results to other forms
of discovery learning where the interaction between subject
and sofware is modified. We believe that self-directed explo-
ration with instantaneous feedback is valuable and we would
like to compare our results with, e.g., simply showing sub-
jects a set of partitions and their associated methods and pa-
rameter values without allowing them to choose parameters,
or putting a delay between parameter changes and result vi-
sualization. These modifications would move the experimen-
tal context closer to traditional machine learning approaches
where the training data are fixed (as opposed to the active
learning paradigm mentioned earlier). It would also corre-
spond to writing a script to run through a set of parameter
settings and visualizations while one goes out for coffee, and
then interpreting when one returns.

Our results provide compelling evidence that undergradu-



Figure 4: Scatter plots of the three main variables. The points are colored from dark blue to dark red based on percent correct.

ate subjects can learn useful concepts about machine learn-
ing algorithms just by interacting with them. This leads one
to suspect that the target population for this work, practicing
researchers, will be able to do so as well. Subjects do not re-
liably apply these concepts when tested, and additional study
is required to determine why this is, and how to better support
the discovery and application of machine learning concepts.
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