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Abstract

When recording intracellularly, the resistance across the cell membrane must be monitored.
However the resistance seen by the recording ampli"er consists of the access resistance (between
the electrode and the cell) in series with the cell resistance. When the stray capacitance is low,
the time constant of the cell and that associated with the recording setup are di!erent and the
two resistance values can be easily determined visually. We describe a model-"tting method
which can automatically infer the electrode and cell capacitances and resistances in more
di$cult cases. � 2001 Published by Elsevier Science B.V.

Keywords: Bridge balancing; Intracellular; Model "tting; Patch clamp

1. The problem

In current clamp (or Bridge) mode of intracellular or patch clamp recording, the
electrode ruptures a neuron's cell membrane with the goal of recording the potential
across this membrane. This is measured with electronic circuitry connected between
the contents of the electrode and the extracellular bath [2,1]. A simpli"ed version of
the circuit is shown in Fig. 1 where R

�
and C

�
are the resistance and capacitance of

the cell membrane, R
�
is the resistance at the electrode-cell interface, C

�
is the

capacitance at the ampli"er input and is due to the capacitance between the electrode
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Fig. 1. Assumed circuit.

Fig. 2. Example data <(t).

and ground as well as the capacitance to ground at the input of the ampli"er circuit.
E is the membrane potential of the cell.
In order to correctly interpret total resistance drifts and to compensate appro-

priately for any injected current, it is crucial to distinguish the resistance of the cell
from that of the electrode. The user usually determines the electrode resistance by
injecting a current step of height i into the electrode and observing the resulting
voltage <(t) (see Fig. 2 for an example). If we assume that the unknowns
R

�
, C

�
, R

�
, C

�
and E are constant during this step then the resulting voltage <(t) is

a sum of a step response and two decaying exponentials. The height of the voltage step
is

�<"i(R
�

#R
�
).

For con"gurations that a!ord low stray capacitance, C
�
, and access resistance R

�
, the

time constants of the two exponential decays are vastly di!erent (the slower time
constant can be associated with the voltage drop across the cell and the faster one with
the drop across the electrode) allowing for clear determination of the electrode
resistance (obtained by dialing the `Bridge Balancea knob until the steep part of the
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curve just disappears). With the `visualized patcha technique, shallower electrode
entry angles are required which greatly increases the capacitance across the electrode.
Also more myelinated tissue can partially clog electrode tips resulting in higher access
resistances. Together, these e!ects can lead to curves where the separation between
voltage drop across the electrode and that across the cell are not so obvious.

2. The method

We describe a procedure to automatically determine the values of the resistances
and capacitances with error estimates assuming that the system "ts the model shown
in Fig. 1. The "t can be visually assessed as a measure of con"dence in the model.
Advantages of this approach include:
(1) It removes the qualitative nature of bridge balancing allowing more accurate

determination of R
�
in di$cult cases.

(2) It uses all the data from the curve not just points near the `kneea, allowing
determination of the parameters under higher noise conditions (with correspondingly
larger error estimates).
(3) It does not require capacitance compensation (which may cause instability if

conditions drift).
(4) It gives the values of C

�
and C

�
as well as the resistances.

A physical model corresponding to the circuit in Fig. 1 is "tted by maximum
likelihood [3] to the entire voltage trace <(t). The equation for the voltage is

<(t)"i[ae��� ����� �#be��� ������#c]#<(t
�
),
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Note that when R
�

<R
�
and C

�
<C

�
the time constants tend towards 1/(R

�
C

�
) and

1/(R
�
C

�
), but in general both time constants involve all terms.

The inputs to the model-"tting method are the initial voltage <(t
�
), the size of the

current step i, and the trace <(t) for t't
�
. The software infers the values of
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Fig. 3. Example "t. Current pulse size was !0.05 nA. The two dotted curves show the two exponential
decays.

R
�
, R

�
, C

�
and C

�
, along with value of the step onset time t

�
. These "ve variables

are reported with error bars. More information about the code can be found in
Appendix A.
If some parts of the voltage trace <(t) are missing or corrupted, the "tting method

can be applied to whatever data are available and will still give reliable results, but
with appropriately larger error bars on the inferred parameters.
Fig. 3 shows the "t found for the dataset of Fig. 2. Also shown are the two

exponential decays.

3. Current limitations

The model currently assumes that the data are corrupted by additive Gaussian
independent noise. This assumption is clearly not true (since correlations in the noise
are visible to the eye) and leads to smaller error bars than appropriate. This problem
can be addressed with more accurate noise models (perhaps speci"cally including
a 60 Hz component).
Fig. 4 shows the results when the method is applied to data from an arti"cial cell

with known parameters. The inferred parameters are close to the true values but, as
anticipated, the error bars are overly con"dent because the noise is correlated.
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Fig. 4. Example "t 2. Current pulse size was !1 nA. This trace was obtained from a model cell with
speci"ed parameters R

�
"50 M�, R

�
"50 M�, and C

�
"470 pF.

Appendix. A

Software and further information can be obtained from
http://www.keck.ucsf.edu/&desa/RC"t.html
doit.p is a perl program that invokes gnuplot's gnu"t utility. It requires GNUP-

LOT 3.5 or better and has been tested with
GNUPLOT

Unix version 3.5 (pre 3.6)

patchlevel beta 340

last modified Tue Nov 25 22:57:44 GMT 1997

and
GNUPLOT

unix version 3.5

patchlevel 3.50.1.17, 27 Aug 93

last modified Fri Aug 27 05:21:33 GMT 1993

report.p is called by doit.p to present the results.

References

[1] A. Finkel, Axoclamp-2AMicroelectrode Clamp Theory and Operation, Axon Instruments, Inc., Foster
City, CA, 1989.

[2] R. Sherman-Gold (Ed.), The Axon Guide for Electrophysiology & Biophysics Laboratory Techniques.
Axon Instruments, Inc., Foster City, CA, 1993.

[3] D.S. Sivia, Data Analysis, A Bayesian Tutorial, Oxford University Press, Oxford, 1996.

V. R. de Sa, D. J.C. MacKay / Neurocomputing 38}40 (2001) 1651}1656 1655



Virginia R. de Sa received her B.Sc. Engineering in Mathematics and Engineering
from Queen's University in 1988 and her Ph.D. in Computer Science from the
University of Rochester in 1994. She is currently a Sloan postdoctoral fellow in the
Keck Center for Integrative Neuroscience at the University of California, San
Francisco. Her research interests include neural coding, cortical plasticity and
unsupervised neural network learning algorithms.

DavidMacKay is a Reader in the Department of Physics at CambridgeUniversity.
He obtained his B.A. in Natural Sciences at the University of Cambridge in 1988
and completed his Ph.D. in Computation and Neural Systems at the California
Institute of Technology in 1991. His interests include construction and implemen-
tation of hierarchical Bayesian models that discover patterns in data, development
of probabilistic methods for neural networks, and the design and decoding of error
correcting codes.

1656 V. R. de Sa, D. J.C. MacKay / Neurocomputing 38}40 (2001) 1651}1656


