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Abstract

When recording intracellularly, the resistance across the cell membrane must be monitored.
However the resistance seen by the recording amplifier consists of the access resistance (between
the electrode and the cell) in series with the cell resistance. When the stray capacitance is low,
the time constant of the cell and that associated with the recording setup are different and the
two resistance values can be easily determined visually. We describe a model-fitting method
which can automatically infer the electrode and cell capacitances and resistances in more
difficult cases. © 2001 Published by Elsevier Science B.V.
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1. The problem

In current clamp (or Bridge) mode of intracellular or patch clamp recording, the
electrode ruptures a neuron’s cell membrane with the goal of recording the potential
across this membrane. This is measured with electronic circuitry connected between
the contents of the electrode and the extracellular bath [2,1]. A simplified version of
the circuit is shown in Fig. 1 where R, and C,, are the resistance and capacitance of
the cell membrane, R, is the resistance at the electrode-cell interface, C; is the
capacitance at the amplifier input and is due to the capacitance between the electrode

* Corresponding author.
E-mail address: desa@phy.ucsf.edu (V. R. de Sa).

0925-2312/01/$ - see front matter © 2001 Published by Elsevier Science B.V.
PII: S0925-2312(01)00525-2



1652 V. R. de Sa, D. J.C. MacKay | Neurocomputing 38-40 (2001) 1651-1656

0 5 10 15 20 25 30 35
time(msec)

Fig. 2. Example data V(¢).

and ground as well as the capacitance to ground at the input of the amplifier circuit.
E is the membrane potential of the cell.

In order to correctly interpret total resistance drifts and to compensate appro-
priately for any injected current, it is crucial to distinguish the resistance of the cell
from that of the electrode. The user usually determines the electrode resistance by
injecting a current step of height i into the electrode and observing the resulting
voltage V(t) (see Fig. 2 for an example). If we assume that the unknowns
R,., Cy, R., C; and E are constant during this step then the resulting voltage V(¢) is
a sum of a step response and two decaying exponentials. The height of the voltage step
is

AV =i(R,, + R,).

For configurations that afford low stray capacitance, C;, and access resistance R., the
time constants of the two exponential decays are vastly different (the slower time
constant can be associated with the voltage drop across the cell and the faster one with
the drop across the electrode) allowing for clear determination of the electrode
resistance (obtained by dialing the “Bridge Balance” knob until the steep part of the
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curve just disappears). With the “visualized patch” technique, shallower electrode
entry angles are required which greatly increases the capacitance across the electrode.
Also more myelinated tissue can partially clog electrode tips resulting in higher access
resistances. Together, these effects can lead to curves where the separation between
voltage drop across the electrode and that across the cell are not so obvious.

2. The method

We describe a procedure to automatically determine the values of the resistances
and capacitances with error estimates assuming that the system fits the model shown
in Fig. 1. The fit can be visually assessed as a measure of confidence in the model.

Advantages of this approach include:

(1) It removes the qualitative nature of bridge balancing allowing more accurate
determination of R, in difficult cases.

(2) It uses all the data from the curve not just points near the “knee”, allowing
determination of the parameters under higher noise conditions (with correspondingly
larger error estimates).

(3) It does not require capacitance compensation (which may cause instability if
conditions drift).

(4) It gives the values of C; and C,, as well as the resistances.

A physical model corresponding to the circuit in Fig. 1 is fitted by maximum
likelihood [3] to the entire voltage trace V(t). The equation for the voltage is

V(1) = ifae™ "7 4 be 70 4 €] + V1),

where
(CiRe + CiRm + CmRm)
= 2
f 2CR.CoR, + /2
(CiRe + CiRm + CmRm)
Ha = - S/2a

2C;R.C,R,,

_ J/CIR? +2CIR.R,, — 2C;R.CR,, + CIRZ + 2C;REC,, + CLRZ,
B CiRe CmRm ’

S

a=(u2c — 1.0/Cy)/s,
b= ( — U1 C + IO/CI)/S
c=R. + R,.

Note that when R,, > R, and C,,, > C; the time constants tend towards 1/(R.C;) and
1/(R»Cyy), but in general both time constants involve all terms.

The inputs to the model-fitting method are the initial voltage V(t,), the size of the
current step i, and the trace V(t) for t >t,. The software infers the values of
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Fig. 3. Example fit. Current pulse size was — 0.05 nA. The two dotted curves show the two exponential
decays.

R.., R., C; and C,,, along with value of the step onset time t,. These five variables
are reported with error bars. More information about the code can be found in
Appendix A.

If some parts of the voltage trace V(t) are missing or corrupted, the fitting method
can be applied to whatever data are available and will still give reliable results, but
with appropriately larger error bars on the inferred parameters.

Fig. 3 shows the fit found for the dataset of Fig. 2. Also shown are the two
exponential decays.

3. Current limitations

The model currently assumes that the data are corrupted by additive Gaussian
independent noise. This assumption is clearly not true (since correlations in the noise
are visible to the eye) and leads to smaller error bars than appropriate. This problem
can be addressed with more accurate noise models (perhaps specifically including
a 60 Hz component).

Fig. 4 shows the results when the method is applied to data from an artificial cell
with known parameters. The inferred parameters are close to the true values but, as
anticipated, the error bars are overly confident because the noise is correlated.
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Fig. 4. Example fit 2. Current pulse size was — 1 nA. This trace was obtained from a model cell with
specified parameters R, = 50 MQ, R, = 50 MQ, and C,, =470 pF.

Appendix. A

Software and further information can be obtained from
http://www.keck.ucsf.edu/  desa/RCfit.html
doit.p is a perl program that invokes gnuplot’s gnufit utility. It requires GNUP-
LOT 3.5 or better and has been tested with
GNUPLOT
Unix version 3.5 (pre 3.6)
patchlevel beta 340
last modified Tue Nov 25 22:57:44 GMT 1997
and
GNUPLOT
unix version 3.5
patchlevel 3.50.1.17, 27 Aug 93
last modified Fri Aug 87 05:21:33 GMT 1993
report.p is called by doit.p to present the results.
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