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ABSTRACT

Previouswork has shown that competitive learning coupled with atop-down teaching signal can
produce compact invariant representations. In this paper we show that such a teaching signal
can be derived internally from correlations between input patterns to two or more converging
processing streamswith feedback. Such correlations arise naturally from the structure present in
natural environments. We demonstrate this process on two small but computationally difficult
problems. We hypothesizethat the correlations between and within sensory systems enable the
learning of invariant properties.

66.1 INTRODUCTION

Unsupervised neura network learning algorithms, which are limited to classifying
patterns based only on the similarity of their input representations, are unableto form
position invariant and other image invariant representations. Previous work [3] has
shown, using the architecturein Figure 66.2a), that competitive learning coupled with
a top-down teaching signal can learn these task-relevant representations of the input
patterns as shown for the XOR problem in Figure 66.1.

For this problem the network must learn to separate the two sets of input patterns,
{(-1,+1),(+1,-1)} and {(-1,-1),(+1,+1)}. Figure 66.18) shows graphically the weights
of neuronsin the first layer of an unsupervised competitive network. One weight is
shared between two of the closest patterns, but as these patterns are from different
classes, future layers cannot separate the classes. Figure 66.1b) shows the effect of
adding another weight from a teaching signal. The feedback signal adds an extra
dimension to the weight space and influences the relative distances between patterns
in the new augmented space allowing an appropriate representation (see Figure 66.1c).
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Figure 66.1 Input patterns are represented by the small dark dots, weights are repre-
sented by the larger open circles, and the dashed lines represent the partition of the input
space among the neurons.

a) The patterns and weights for the XOR problem with 3 hidden-layer neuronsand no teach
input. The solution has allocated one weight to be shared between two of the closest pat-
terns. The other two weights are allocated to the other patterns.

b) The patterns and weights for the XOR problem with 3 hidden-layer neurons and a teach
input. The third dimension comes from the feedback from the output layer. The solution
has allocated one weight to be shared between two neurons with the same feedback. The
other two weights are allocated to the other patterns.

¢) The result of removing the Teach input after training asin b).

The algorithm’s dependence on an externally derived teaching signal, however, is
unsatisfactory from a biologica perspective. In this paper we demonstrate that an
internal teaching signa can be derived from correlations between input patterns to
severa networks. That is, a collection of semantically correlated input patterns can
collectively teach themselves *.

Consider an infant learning to recognize his parents. The infant receives many vi-
sualy dissimilar views of his mother and father as well as many voice samples of
different words in different tones from both parents, yet he must learn to recognize
his parents faces and voices. We assume that he cannot simply memorize every vi-
sual and auditory instance (corresponding for example to one hidden layer neuron per
pattern) and that heisnot born with appropriate“mother’sface’ typefeature detectors
but instead must devel op appropriate invariant representations. 1n addition he has no
external teaching signal classifying each instance of visual and auditory data.

What he can use is a benevolent environment in which the sensations of the two (and
more) modalities are correlated. An image of his mother’s face usually appears with
an instance of his mother’s voice and likewise for his father’s face and voice 2. We
hypothesize that these correlations between and within sensory systems can drive the
development of appropriate representations in each modality®.

1Thisis similar to [5] and [2] except that we do not have one modality train the others—all modalities
cooperateto train themselves.

2There are also temporal correlationswithin modalities, but our algorithm currently does not make use
of thisinformation.

SThisideais put forth in [6], however as in [3] the simultaneous development of the sensory represen-
tation and association is not demonstrated.
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66.2 ARCHITECTURE AND ALGORITHM
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Figure66.2 a) Thearchitecture usedin [3]. The hidden and output layers are compet-
itive networks. The arrows represent full connectionsin the directions shown

b) The modified self-teaching architecture. Theteaching input hasbeen replaced by another
sub-network. Together the networks train each other according to the correlations in their
patterns

We demonstrate these ideas using the architecture shown in Figure 66.2b). Incoming
sensations to each sensory modality are represented as activation in an input layer.
They project (through separate hidden layers) to a common output layer. This com-
mon output layer projects back to al hidden layers and serves as the shared extra
dimensions just as the externally taught output layer doesin Figure 66.2a).

The network operates exactly as that in [3] # except that the output activation is de-
termined by the activations of the hidden layers. Weight updates are similar except
that the weights of the hidden layer neurons active on the upward pass (with no active
feedback) are moved away from the input patterns®.

These updates allow neurons responding to temporally correlated patterns to devel op
similar connectionsto and from the output neuronswhile at the same time encouraging
neurons to respond to patterns receiving the same feedback. The key to the agorithm
isthat al patternswithin one classinin each modality occur with auniquedistribution
of patternsin the other modalities, and these distributionsserve as atype of stochastic
teaching signal for each other. Thisproblemisnon-trivial though, aswe are not smply

4Each layer within each modality net performs a competitive winner-take-all calculation, meaning that
only one neuron is active in each layer at each time. In the output layer the winning neuron is given
activation Tval (all other winning neurons are given activation 1).

5This is similar to LVQ[4] and can be seen as an abstracted form of the BCM [1] weight update rule
in that during the upward pass (where activations are not as strong due to lack of input on the descending
connections) weight updates are anti-Hebbian and during the downward pass they are Hebbian.
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learning a mapping from static hidden layer representationsto the output neurons, but
this mapping is changing the hidden layer representations themselves. The correct
representations must develop in concert with the correct connections from the hidden
to the output layers.

66.3 RESULTS

This approach solves two small but computationaly difficult problems. The XOR
problem was tested for networks of two, three, four and five “sensory modalities’. At
random one of the four input patterns from the two sets of patterns {(-1,+1),(+1,-1)}
and {(-1,-1),(+1,+1)} was presented to the first network. For the origina tests, the
other networks received, with equal probability, either the same pattern or the other
pattern from the same set (Note that in this case all modalities receive inputsfrom the
same pattern space).

The networkswere ableto learn the correct representation strictly through correlations
between the two inputs. Figure 66.3a) shows the performance for different combina-
tions of output activation strength (Tval ) and number of modalities. For these graphs
correct performance was defined as the development of a correct mapping for each
input modality, thus higher modality nets start at a disadvantage in that there are more
input nets to develop correctly. The figure shows that as the value of Tval becomes
more useful © the nets with more modalities perform better. That is, more networks
provide a more reliable output and when this output is allowed to be effective more
modalities can offset their more stringent requirements ’.

Subsequent trial stested the effect of rel axing the correlations on the two-modality net-
work. For thesetria sthe second network received apattern from the correct classwith
various probabilities. Figure 66.3b) shows the graceful degradation in performance
for correct correlation probabilities between 100 and 50%.

We al so tested the a gorithm on the task of distinguishing horizontal and vertical lines.
Again both “modalities” were given inputs from the same pattern class (There were
8 possiblelinesin a4x4 pixd array.) and the goa was to learn to activate a different
output neuron for horizontal and vertica lines. A network of two modalities was
consistently able to learn the lines problem with 6 hidden layer neurons in both sub-
nets. A more efficient, with only 4 neurons per sub-net hidden layer, encoding was
achieved by adding a third sub-net.

66.4 SUMMARY

In summary, experiments show that association between different input streams can

Shigher values result in hidden neurons ignoring the input and lower values are not strong enough to
counteract the input similarities

"These figures were made for simulations of 400 time steps. For longer simulations all the plots migrate
up — given sufficient time all the tested combinations gave 100% correct performance over 400 trials.

8This correspondsto occasionally hearing father’s voice while seeing mother’s face.
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Figure 66.3 &) The effect of output activation strength Tval on convergence accuracy
(percent correct performance as calculated from 400 random trials) for different numbers
of modalities in the XOR problem.

b) The effect of correlation accuracy on convergence accuracy for a 2-modality net. X% of
the time the second modality received a pattern from the same class and 100-X % a pattern
from the other class.

influence the representations of al the streams. This problem is hard in that the net-
work must detect correlations and simultaneously change its encoding which looks
for the correlations. Thus, the whole system must bootstrap itself to achieve both the
right representations and the right association.
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