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Abstract—We show that it is possible to distinguish un-
successful from successful retrieval of study items based on
single-trial EEG recorded during the test phase of 3 separate
recognition memory experiments. The overall classification
accuracy across all 34 classification problems was 58.4 %.
The classification accuracy monotonically increased to 68.03 %
by only classifying trials with high classifier confidence levels.
The likelihood of remembering a study item for trials with
the 10% highest and lowest classifier outputs were 0.80 and
0.45 respectively. This suggests that the classifier outputs are
reflecting the level of retrieval during the test phase. These
findings combined with previous single-trial results predicting
subsequent memory from EEG recorded during and prior to
memory encoding will provide a basis for a passive brain-
computer interface (BCI) system for improving memory.

I. INTRODUCTION
Brain computer interfaces (BCIs) are devices that allow

interaction between humans and computers using the brain
signals of the user. There are three types of BCI system based
on what kind of control signal the system utilizes. In active
BCI systems, the system outputs are obtained by interpreting
the brain activity which is directly and consciously controlled
by the user. In reactive BCI systems, the system outputs
are obtained by interpreting the brain activity which results
from a reaction to external stimulation. The brain activity
is indirectly modulated by the user with the objective of
intentionally controlling an application. In a passive BCI
system, outputs are derived by interpreting brain activity
where there is no voluntary control, to enrich the user’s
interaction with the system.
In [9], we proposed a passive BCI system on deciphering

neural correlates of memory from single-trial EEG. This
system had three major components: 1) encoding prepared-
ness: the system monitors the brain activity of a user and
predicts the user’s preparedness for learning to present study
items at estimated optimal times, 2) encoding success: the
system utilizes the brain activity during encoding to predict
the success of the encoding process, and 3) confidence
at retrieval: the system extracts information related to the
level of reinstatement from the brain activity during re-
presentation (or test) of an item.
Single-trial classification results for the first two aspects of

the system has been previously published in [7]. In [7], pat-
tern classifiers were trained to learn the temporal and spectral
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differences in the brain activity during memory encoding
between the subsequently remembered vs. forgotten trials.
By combining the pre- and during-stimulus predictions, Noh
and colleagues were able to predict whether a given study
item would be remembered in the test phase with 59.64 %
accuracy. In [8], the temporal information in EEG activity
during memory retrieval was used to predict correctly iden-
tified old vs. correctly rejected new trials. The authors were
able to distinguish whether the subject identified the studied
or foil items correctly with an average accuracy of 61 %
using data from 3 separate recognition memory experiments.
It was found that the classifier outputs (or classifier scores)
reflected the amount of information retrieved from the study
episode. In this paper, we use data and classification methods
used in [8] to predict unsuccessful from successful retrieval
of study items based on single-trial EEG during memory
retrieval. This classification problem corresponds to the third
and final component of the passive BCI system proposed in
[9].

II. THE DATASET

EEG for the analysis was previously recorded in 3 separate
visual memory task experiments [6]. In a typical recognition
memory experiment subjects are given a list of study items in
the study phase. In the test phase, the studied items are given
with unstudied foil items and the subjects are instructed to
distinguish the studied items from the foil items using some
sort of response. There are four basic behavioral categories
corresponding to the test trials for a recognition memory
experiment.
1) Hit: correctly identified old (studied) items.
2) Correct rejection: correctly rejected new (foil) items.
3) False alarm: new (foil) items with old responses.
4) Miss: old (studied) items with new responses.

A. Experimental paradigm

In the current experiments, the study items (color images
of physical objects, animals, and people) were given with
extrinsic source information. In addition to memorizing the
given study items, the subjects were told to associate the
specific extrinsic source given with each study item. Two
types of sources were considered for the experiments. In
experiment 1, study items were given on either the left
or right side of the computer screen. In experiment 2, the
study items were given in color frames out of 8 possible
colors. In experiment 3, the two source types were considered
separately in different blocks. Experiment 3 was conducted
in two separate sessions on different days where the two
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(b)
Fig. 1: The experimental paradigm for (a) the location source
experiments and (b) the color source experiments. For each
figure, the timings of the study phase and recognition (or
test) phase are given on the left and an illustration of the
study and test tasks are given on the right hand side.

source conditions were given on both days. An illustration
of the experimental paradigm is given in Figure 1.
In the study phase, the subjects learned the pictures

and their associated source information. In the test phase,
they had to distinguish the studied pictures from random
distractors with the appropriate location or color using two
consecutive responses. The subjects gave an source 1/source
2/new decision in the first response and a subjective rating
of the decision in the second response. The following breaks
down the test phase procedure for a given test item:

• The item is recognized as old.
– First response
The source information corresponding to the item is
selected: L/R (left/right) for location source; color
of the frame for color source.

– Second response: A subjective rating on the source
judgment is given with one of the following op-
tions.
∗ Remember source (RS): The subject believes
he/she correctly remembers the source informa-
tion.

∗ Remember other (RO): The subject remembers
something other than the given source informa-
tion.

∗ Familiar (F): The item looks familiar.
• The item is recognized as new.

– First response: A new (N) response is given.
– Second response: A subjective rating on the new
judgment is given with either maybe (M) or sure
(S).

Based on the correctness of the source/item judgments and
subjective ratings, the test trials can be divided into 13

Fig. 2: Categorization of the trials based on the subjects’
source judgments (SC: source correct, SI: source incorrect,
CR: correct rejection) and subjective ratings (RS: remember
source, RO: remember other, F: familiar, MN: maybe new,
SN: sure new).

conditions as illustrated in Figure 2. More details on the
experimental paradigm can be found in [6]. In this paper,
we were only interested in the correct source retrieval (SC)
and miss (M) trials.

B. EEG acquisition and pre-processing
EEG was recorded with a Geodesic Sensor NetTM (Hy-

droCel GSN 200, v. 2.1; [12]) (250 Hz sampling rate for
Experiments 1 and 2, 500 Hz sampling rate for Experiment
3 and subsequently downsampled to 250 Hz) using an AC-
coupled 128-channel, high-input impedance amplifier (300
MΩ, Net AmpsTM; Electrical Geodesics Inc., Eugene, OR).
Initial common reference was the vertex channel (Cz) and
the individual electorates were adjusted until impedance
measurements were lower than 40 kΩ. EEG epochs from
the recognition phase of each experiment were extracted and
recalculated to average reference. Each epoch was filtered
between 0.1 and 50 Hz using a 40 tap FIR filter and baseline
corrected using data from -200-0 ms.

III. CLASSIFICATION
There are two well known ERP (event-related potential)

effects related to memory retrieval where correctly identified
old trials show significantly different ERPs from the correctly
rejected new trials. This difference in ERP is commonly
referred to as the old/new effect. The parietal old/new effect
is a positive going ERP observed between 500-800 ms in
the parietal electrodes. It shows greater amplitude for the
correctly recognized old compared to the correctly rejected
new items [15], [14], [3], [11]. It has been found that this
effect correlates with the amount of information retrieved
from the study episode [13]. The frontal old/new effect is
a negative-going ERP observed between 300-500 ms in the
frontal electrodes (hence often referred to as the FN400).
This ERP typically shows a more negative peak for less
familiar items while it shows no difference for different
amounts of episodic information.
For the current analysis only the test trials given in the

study list were considered (in other words, the trials where
foil items were given were not considered). The classifiers
were trained to find the projection function onto the vector



Fig. 3: The GSN electrode locations used to record the
EEG and the six channel groups on which classification
analysis was conducted. LAS left anterior superior, RAS
right anterior superior, CM central medial, LPS left posterior
superior, RPS right posterior superior, and PM posterior
medial.

perpendicular to the decision boundary which represents the
amount of information retrieved from the study episode. A
two-class binary classifier with probability outputs (0 ≤ p ≤

1) was trained to discriminate between correctly identified
old trials with correct source retrieval (class 1: SC-RS, SC-
RO) and incorrectly rejected old trials (class 2: M) for each
subject (as illustrated in Figure 2). In order to maximize the
difference in retrieved information between the two classes,
the SC-F (correct source retrieval with familiar judgments)
trials were not included in class 1 since they were likely to
include many guesses on the source decision. The individual
classifier performances were evaluated on class 1 vs. class 2
classification using a balanced cross-validation procedure1.
As done in [8], the features for the classifier were selected

based on previous findings on the old/new effect. The EEG
data between 300 and 800 ms from six channel groups were
selected (LAS, RAS, CM, LPS, RPS, and PM as given in
Figure 3) in order to include the electrode locations and time
segments where the two old/new effect would be expected.
The 30-dimensional feature vector for a given trial was
computed from the selected data by averaging over 100
ms length non-overlapping windows (5 time windows × 6
channel groups = 30 features). A LDA (linear discriminant
analysis) classifier was trained to distinguish these feature
vectors. The classifier was calibrated to give probability
outputs (or classifier scores) based on a permutation test
[4]. These values correspond to the likelihood of a given
trial being retrieved with the correct source information. For
initial classification, a given trial was classified as correctly

1In a balanced leave-two-out cross-validation procedure, two trials (one
from each class) are randomly selected as the validation set and left out of
any training procedure and used as the validation set. This procedure is done
for each fold until all trials are used for validation. Classifier performance
is evaluated by averaging over the accuracies across all folds.

retrieved if the classifier score was larger than 0.5 and
classified as incorrectly rejected otherwise.
Classifier training and evaluation were conducted sepa-

rately on each subject. Data from Experiment 3 were divided
into the location source blocks (denoted as Exp 3-loc),
and color source blocks (denoted as Exp 3-col) based on
results which found different characteristics in the brain
activity related to memory retrieval between location and
color source retrieval [8]. Subjects who had less than 50
trials within each class after artifact trial rejection were not
included in the classification analysis. This resulted in 34
individual classification problems (11 from Experiment 1, 2
from Experiment 2, 12 from Exp 3-loc, and 9 from Exp 3-
col). Note that Exp 3-loc and Exp 3-col datasets were multi-
session datasets as described in Section II-A.
In order to verify whether the classification accuracy

was significantly over chance (50 %), the 95 % confidence
interval for chance level performance was computed for
each subject based on the number of trials in classes 1
and 2. This was done by using Wald intervals with small
sample size adjustments [1]. The results were considered to
be significantly over chance only when the accuracy was over
this threshold.

IV. RESULTS
A. Classification accuracy
The overall classification accuracy across the 34 clas-

sification problems (calculated for all trials from all the
available subjects) was 58.40 % and the individual accuracies
were significantly over chance (significantly over 50 % with
p < 0.05) for 20 out of the 34 results with none going
significantly below 50 %. The overall accuracy for the single
session datasets and multi-session datasets were 58.92 % and
57.99 % respectively. These values were not significantly
different based on a one-sided rank sum test. The individual
classification results are given in Figure 4 (a).

B. Classification accuracy based on the classifier scores
Additional analysis was conducted to investigate whether

the classification accuracy increased by ignoring the trials
with ambiguous classifier scores (trials with classifier scores
close to 0.5). This was done by sorting the trials by classifier
score given by the retrieved vs. miss classifier and only
selecting the top/bottom trials for classification. Note that
the classifier scores were not recomputed for this analysis.
The trials with classifier scores close to 0.5 were excluded
from classification. Selection ratios of 10, 20, 30, 40, and 50
% were chosen (a selection ratio of 50 % means all available
trials were considered for classification and a selection ratio
of 40 % means the top and bottom 40% were considered,
etc). The overall accuracy increased monotonically as less of
the ambiguous trials were considered for classification (see
Figure 5). The overall accuracy for the top/bottom 10 % of
the trials was 68.03 % (68.9 % for the single session datasets
and 67.3 % for the multi-session datasets). The individual
classification results when the top/bottom 10 % of the trials
were considered for classification are given in Figure 4 (b).



Fig. 4: The individual classification accuracies (a) when all
trials are considered for classification and (b) the 10 % of the
trials with the highest/lowest classifier scores are considered
for classification.
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Fig. 5: The change in classification accuracy as less trials
with classifier scores close to 0.5 are considered for classi-
fication.

The likelihood of correctly retrieving a study item for trials
with the 10 % highest and lowest classifier scores were 0.8
and 0.45 respectively.

C. Visualization of the ERP components

The ERP components for the two classes were computed
to visualize the information utilized by the classifier. Due
to the space limit, we only give the ERPs from the two
multi-session datasets (Exp 3-loc and Exp 3-col). However,
the single-session ERPs showed similar effects with a larger
difference between the two classes. The amplitude difference
between the two classes were evident in both the frontal
(LAS and RAS) and posterior channel groups (LPS and
RPS). However the average amplitude difference in the two
frontal channel groups was significantly larger than the two
posterior channel groups between 300-800 ms (p < 0.005).
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Fig. 6: The ERPs waveforms from the 6 channel groups
used for classification. (a): Exp 3-loc; (b): Exp 3-col (class
1: source correct (SC) trials with remember source (RS) or
remember other (RO) judgments; class 2: Misses (M)).

V. DISCUSSION

These results show that it is possible to successfully
predict successful vs. failed memory retrieval from single-
trial scalp EEG activity recorded during memory retrieval
with 58.4 % accuracy. Classification was fairly successful
even when the dataset was collected from multiple sessions.
The prediction rate improved to 68.03 % (a 16 % improve-
ment), by only considering the top/bottom 10 % of the
trials for classification. Single-trial classification of episodic
retrieval has been investigated using fMRI (functional MRI)
[10]. Multi-voxel pattern analysis (MVPA) on 80 distinct
anatomical ROIs (regions of interest) revealed that it is
possible to discriminate between hits vs. misses with approx-
imately 70 % accuracy. The classification accuracy increased
monotonically to 90 % when the top 10 % most confidently
classified trials were used to evaluate the classifier. Although
the classification accuracy of the EEG-based classifier is
lower than the fMRI results, the monotonic increase in
classification accuracy (as illustrated in Figure 5) shows that
the confidence of the classifier is representative of how well
a given trial would be successfully retrieved.
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Fig. 7: The estimated means and the approximate 95 %
confidence intervals of the classifier scores [5] for the 5
different behavioral conditions.

In order to investigate this matter further, we compared the
classifier scores across the 5 different subjective rating con-
ditions given to the trials in classes 1 and 2. The behavioral
conditions for the trials in class 1 were remember source
(RS), remember other (RO), and familiar (F). We denote
these conditions as SC-RS, SC-RO, and SC-F. Note that
the SC-F trials were not included in class 1. The behavioral
conditions for the trials in class 2 were maybe new (MN)
and sure new (SN). We denote these conditions as M-MN,
M-SN. All conditions showed significantly different means
based on a repeated measure ANOVA (p < 0.003) except
for the comparison between Miss-M and Miss-S (p = 0.72).
The classifier scores followed the subjects’ subjective ratings
of the amount of information they were retrieving from the
study episodes as illustrated in Figure 7 suggesting that the
classifier scores reflect the subjects’ subjective rating on their
memory retrieval performance.
Based on these findings we may be able to develop

a classifier which can extract information related to the
user’s confidence during re-presentation of a study item
to assess the level of reinstatement without requiring any
explicit input (on their confidence) from the user. The
items with insufficient reinstatement can be given again
for a third time to ensure encoding. to ensure encoding
[2]. This classifier can be combined with other classifiers
which predict optimal brain states for memory encoding and
successful/unsuccessful memory encoding as a passive BCI
system for assisting memory formation and retention of the
user.
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