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Abstract

An activity-dependent model of complex cell development is described. The learning rules are
a combination of a temporal trace rule, a Hebbian rule, and a self-organizing map (SOM). They
are local, unsupervised, and biologically realistic. The only input that is assumed is spontaneous
retinal wave activity. The results show complex cells with phase invariance and orientation tuning
that form an organized map.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Complex cell; V1; Trace rule; Self-organizing map

1. Introduction

Complex cells are an integral part of visual object recognition within the brain.
Understanding how complex cells develop is important for several reasons. V1 is a
crucial part of the stream of visual processing that recognizes visual objects. Also,
visual object recognition in the cortex is arranged in a hierarchical fashion with each
block within the hierarchy having a similar organization. For this reason, the study of
the development of one of these pieces of the system is in many ways the study of
the entire system.
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2. The model

The model described in this paper is inspired by FBoldiCak’s complex cell model [6].
Like FBoldiCak’s model, there are two layers of neurons that are fully connected. The
Grst layer contains simple cells, while the other contains the neurons that will develop
into complex cells. The network is fully connected so that each neuron in the second
layer receives a weighted input from each neuron in the Grst layer. The simple cells
are arranged in a two-dimensional grid. Each grid location contains several neurons (16
is a common example) which all respond to stimuli within the same receptive Geld.
The neurons corresponding to one grid location each respond to lines of a particular
orientation. The complex cells are arranged on a similar two-dimensional grid, but have
only one neuron per location. All the complex cells are presumed to respond to the
same receptive Geld (this is a bit unrealistic since simple cells and complex cells have
receptive Gelds of similar size).
The simple cells in this model are essentially line detectors. If a line of the preferred

orientation is located in the neuron’s receptive Geld, the neuron will respond maximally.
Like real simple cells, the virtual neurons will respond to lines of various orientations.
Each simple cell has an associated orientation tuning curve. It is created with an
equation which is based on the behavior of real simple cells [3] (see Fig. 5).
The learning rule is a combination of three learning paradigms: Hebbian learning [8],

a temporal trace rule [6], and self-organizing maps (SOM) [9,10]. Hebbian learning
was chosen because various studies [2] have found that the weight changes between
neurons are a result, at least in part, of correlations in their activations. This idea is
expressed in this model by the following equation:

Jwij = � Ly i(xj − wij);
where Jwij represents the change to a weight at a particular time step. � is a parameter
that controls the rate of learning. Ly i is the magnitude of activation of the complex cell
i. xj is the magnitude of activation of the simple cell j. wij is the absolute magnitude
of the weight before the update. In the equation the input activation multiplied by
the output activation gives a measure of the correlation between the two neurons.
Subtracting the absolute weight value keeps the weight from increasing without bound.
The temporal trace rule is described in FBoldiCak’s work [6]. The motivation is that

visual stimuli that are seen close together in time are likely generated by the same
object. For example, if we are looking at a book at time=0 s, it is quite likely that the
object we see at time=30 ms is that same book. The trace rule models this by slowing
down the response time of the neurons in the complex cell layer. If a complex cell has
the biggest response within the layer and wins a competition, it is slow in turning oM.
This neuron will therefore have an increased chance of winning the next competition.
In this way, input stimuli that are grouped close together in time will have a good
chance of being grouped together in the complex cell layer representation.
Physiologically, the temporal trace could arise from the dynamics of feedback loops.

A system whose output feeds back to its inputs will have temporal dynamics that are
slower than that of its internal components. Consider, for example, the loop formed
by feedback connections from V2. The complex cells of V1 feed into the input layer
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neurons (layer IV) of V2. The output layers of V2 (layers VI and II/III) have con-
nections back to the complex cells. This kind of feedback loop could be responsible
for a temporal trace on the V1 output, and therefore responsible for the learning of
spatio-temporal correlations in V1. The Elman net is an example of how a feedback
loop can lead to temporal sequence learning [4].
The equation that implements the temporal trace rule in this model is

Ly(t)i = (1− 	) Ly(t−1)
i + 	y(t)i ;

where Ly(t)i is the trace value for complex cell i. It is the sum of the previous trace value,
Ly(t−1)
i , for this neuron, and an instantaneous activation based on the visual stimuli, y(t)i .
	 is a parameter with a value between 0 and 1 that controls how much memory to
retain. According to this equation if a complex cell has a large activation in one time
step, that increases its trace value for the next time step (thus increasing its chance of
winning the next competition). This will lead to the temporal grouping as discussed
above.
The calculation of the instantaneous activation, y(t)i , comes from the SOM part of

the learning rule. When each input stimulus pattern is presented, activity is propa-
gated to the complex cell layer through the weights using a dot-product calculation.
A competition then takes place on the complex cell layer. The complex cell that is
the most activated is called the winner. The competition is not winner-take-all, though.
The winning neuron will have the highest instantaneous activation, but its neighbors
will also be activated. The equation for the instantaneous activation of a second-layer
neuron, i, is

y(t)i = 
e(−‖rc−ri‖2)=2�2 ;

where ‖rc − ri‖2 is the physical distance between the winning neuron c and neuron i.
� controls how many neighbors a winning neuron inPuences. 
 is the magnitude of the
instantaneous activation for the winning neuron. This SOM part of the learning rule is
intended to model the eMects of lateral connections on activity-dependent development.
For examples of SOM’s used in modelling lateral connections, see the excellent review
by Erwin et al. [5]. Also, it has shown how the SOM activities can be implemented
with lateral connections [12].
The model is initialized with small random weights between the two layers of neu-

rons. A series of activity wave line stimuli are then swept, one at a time, across the
neurons of the Grst layer (see Fig. 1). In the simulations, time was discretized. At
each time step the activity wave front was advanced perpendicular to its orientation by
a constant distance (in our simulations, this was 1.2 times the distance between two
grid locations). The neurons that were passed over by the activity wave front would
become active for one time step if the simple cell’s orientation matched that of the
activity wave stimulus. This method eMectively integrates the responses of a subset of
neurons over a small amount of time. After the activity wave sweeps across the entire
neural Geld, a new wave of a random orientation begins.
This input activity is used as a model of pre-eye-opening retinal waves [7]. These are

waves of activity that sweep across the retina in random directions. It is presumed that
these waves of retinal activation are the input that the visual system uses to develop
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Fig. 1. Illustration of advancing activity front.

the simple and complex cell behaviors. In this model, the simple cells have already
developed. (While the physiology literature is unclear on whether complex cells in layer
V develop before simple cells, it is clear that in the cat simple cells are orientation
selective before input reaches the complex cells in layers II/III [1].) It is assumed that
this network operates on inputs that correspond to a small area of the retina. The wave
will therefore always look as if it has no curvature and is travelling perpendicular to
its orientation.

3. Results

The proposed model is complete enough to produce neuron behavior that is similar to
complex cells. One of the most important properties that is captured is phase invariance.
After training, the cells on the second layer become responsive to a line of a particular
orientation that is placed anywhere in the simple cell layer. This is unlike the simple
cells, which are responsive to a line in only one particular place, as well as one
particular orientation.
To show the phases and orientations of maximal response, diagrams in FBoldiCak’s

style [6] are used (see Fig. 2). On the left are lines in the orientation of maximal
response of the second layer neurons. This is produced by presenting the input layer
with lines of various orientations centered about the middle and for every second layer
neuron recording the orientation that caused the largest activation. For the system in
Fig. 2, for example, the line orientation that the top-left neuron is most activated by is
about 80◦ (0◦ is horizontal and clockwise rotations are measured as positive numbered
degrees.) This example is taken from a network that has not been trained. The cells
of the second layer appear to prefer random orientations. The grid of lines on the
right of the Ggure is a representation of the weights between the simple cells and
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Fig. 2. Example of second-layer responses before training.

Fig. 3. Complex cells and their input weights after training.

one neuron on the second layer. In this example, there are eight simple cells per grid
location, each with a preferred orientation. In the Ggure, the orientation of a drawn line
corresponds to the orientation that the simple cell responds to maximally. The length
of a drawn line indicates the strength of the weight between the simple cell which that
line represents and one neuron of the second layer. The line lengths are normalized
such that the largest weight from a grid location has a standard length. The other
line lengths from that grid location are computed as the standard length multiplied
by the ratio of the corresponding weight to the largest weight. In this way we can
see the relative strengths of the weights within the grid locations. For the example
in Fig. 2, the drawn lines within the grid on the right represent the weights that are
connected from all the simple cells to the second-layer neuron in the top-left corner.
It is obvious now why the second layer neurons are arranged randomly—the weights
from the simple cells are completely random. Even though the orientation of maximal
response is shown, there really is no strong preference for any direction.
Fig. 3 shows the same type of diagram for the model after training. The input

weights corresponding to two diMerent second-layer neurons are shown. It is obvious
that the weights have similar values for each grid location. This means that all the
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Fig. 4. Examples of complex cell organization after learning.

Fig. 5. Example of complex cell orientation tuning curves. Normalized response (on the y-axis) versus
orientation (in degrees on the x-axis). The solid curve corresponds to the sum of the feedforward input to
the cell. The curve with long dashes is the response after competition on complex cell layer. The curve with
Gne dashes is a simple cell response included for comparison.

grid locations respond to the same type of input. These second-layer cells will respond
maximally to a line of a particular orientation located anywhere in the simple cell
layer. Thus, phase invariance has developed.
This model of complex cell development also accounts for another key aspect of

cortical neurons. In Fig. 3 we see that the maximal response orientations of the complex
cells are arranged in an orderly fashion. This is consistent with how complex cells
(and simple cells for that matter) are arranged in V1. The exact pattern that is formed
depends on the random weights and random line orientations that are swept across the
network. A few examples of complex cell maps resulting from various simulations are
shown in Fig. 4. In all cases it appears that an orderly arrangement has resulted from
the learning process.
A good way to see the preferred orientation of a developed complex cell is to plot

its orientation tuning curve. This is done by presenting the simple cell layer with lines
of various orientations and recording the responses of a complex cell. In Fig. 5, a
typical example of a complex cell orientation tuning curve is shown. The solid curve
corresponds to the sum of the feedforward input to the cell. The curve with long dashes
is the response after competition on complex cell layer. The curve with Gne dashes is
a simple cell response included for comparison.
It is informative to see the inPuence of feed-forward activation on the complex

cell behavior, but this is not what is measured in physiology experiments. Output



T.J. Sullivan, V.R. de Sa /Neurocomputing 58–60 (2004) 827–833 833

behavior is measured in those experiments, which is inPuenced by both complex cell
competition and feed-forward activation. Lateral inhibition sharpens the tuning curve,
since the complex cells which win the output competition suppress the response of the
others. This idea of lateral inhibition aMecting the shape of the tuning curve [11] can
be seen in Fig. 5.
Our model predicts that interfering with the retinal waves during development will

impair the development of complex cell receptive Gelds. This experiment has not yet
been done, but if performed the results would either support or disprove this model of
development.
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