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Abstract

Surround suppression occurs when a visual stimulus outside a neuron’s classical receptive field causes a reduction in firing rate. It has become
clear that several mechanisms are working together to induce center—surround effects such as surround suppression. While several models exist
that rely on lateral connections within V1 to explain surround suppression, few have been proposed that show how cortical feedback might play a
role. In this work, we propose a theory in which reductions in excitatory feedback contribute to a neuron’s suppressed firing rate. We also provide a

computational model that incorporates this idea.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A visual stimulus can excite a neuron in the primary visual
cortex if the stimulus is within the neuron’s receptive field.
Stimuli presented outside a neuron’s receptive field would not
by themselves excite the neuron, but these stimuli can
modulate the response of a neuron that is already firing.
These modulatory visual stimuli presented in the area outside
the receptive field, called the surround, typically suppress the
response of an active neuron (Cavanaugh, Bair, & Movshon,
2002a,b). Thus, this effect is called surround suppression.

Besides this suppressive effect, several other related
experimental results have been reported (for reviews, see the
papers by Seriés, Lorenceau and Frégnac (2003), Shapley
(2004), Angelucci and Bullier (2003)). Under some conditions,
the surround may cause facilitation as opposed to suppression
(Polat, Mizobe, Pettet, Kasamatsu, & Norcia, 1998). The data
suggest that this happens much more when the stimuli have low
contrast as opposed to high contrast. An experiment by Polat et
al. (1998) used localized Gabor patches in the surround of the
same contrast as a center Gabor patch. They were able to show
examples of neurons that were facilitated by the surround at
low stimulus contrast, but suppressed by the same stimulus at
higher contrast. Also, it seems that the very size of a neuron’s
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receptive field can change. If the stimuli are low contrast, the
neuron’s receptive field will be larger than if the stimuli are
high contrast (Cavanaugh et al., 2002a; Kapadia, Westheimer,
& Gilbert, 1999; Sceniak, Ringach, Hawken, & Shapley,
1999). (This result seems to hold for the various ways of
measuring receptive field size (Cavanaugh et al., 2002a)).
Why is this surround influence on neuronal response
important to investigate? One reason is that these effects may
tell us something about the underlying cortical microcircuitry
of primary visual cortex. The most straight-forward models of
the primary visual cortex involve feedforward connections to
linear Gabor-like filters. This type of model cannot describe
these surround suppression findings. Understanding how
various mechanisms contribute to these surround suppression
effects will reveal what other mechanisms are at work,
including lateral interactions and feedback from higher cortical
areas. Also, center—surround interactions may play important
functional roles in visual processing. It has been suggested that
center—surround effects may be related to the perceptual
integration of contours. In support of this idea many
psychophysics studies have shown directly that surround
stimuli can have an influence on how we perceive a visual
input (Bakin, Nakayama, & Gilbert, 2000; Polat & Sagi, 1993).
Cavanaugh et al. (2002a) and Sceniak et al. (1999) proposed
a model that largely reproduces the suppressive effects. This
model is based on Gaussian center and surround components.
The response from the center component is divided or
subtracted by the response from the surround component.
This is similar to the model proposed by Schwartz and
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Simoncelli (2001). In this case, a filter’s feedforward excitation
is divided by a quantity that depends on the outputs of the
nearby filter responses. These models show suppression as a
response to surround stimuli.

None of these high-level models propose underlying neural
mechanisms. Creating a realistic neural model will allow us to
gain a deeper understanding and make more detailed
predictions. Several compelling neuron-level models have
been proposed that reproduce some of the center—surround
effects (Dragoi & Sur, 2000; Somers et al., 1998; Stemmler,
Usher, & Niebur, 1995; Ursino & Cara, 2004). These models
propose that lateral connections connecting the neurons
responding to the center and surround stimuli can play a
major role in creating center—surround effects. This seems
logical and is backed up by evidence matching the scale of
facilitation in psychophysics studies to the distribution of
lateral connections in V1 (Stettler, Das, Bennett, & Gilbert,
2002).

There is evidence that another mechanism plays a role in
surround suppression: ‘“the suppressive surrounds of V1
neurons are derived in part from feedback signals. It is a
challenge for theorists to understand what is the function of this
feedback in visual perception” (Shapley, 2004). This view is
supported by the anatomical findings that the lateral
connections within a layer do not extend far enough to account
for all surround suppression effects (Angelucci et al., 2002;
Cavanaugh et al., 2002a). Furthermore, it was shown in a
separate study that lateral connections would not be fast
enough to account for the time course of the suppression (Bair,
Cavanaugh, & Movshon, 2003).

It is not obvious how feedback from higher cortical areas
can contribute to surround suppression and the other center—
surround effects. One clue comes from the finding in rat
physiology that the feedback pathway is balanced more toward
excitation than feedforward pathways (Johnson & Burkhalter,
1996; Johnson & Burkhalter, 1997; Shao & Burkhalter, 1996).
In these results, excitation dominated inhibition in the cortical
feedback pathway, much more so than in the feedforward
pathway. This is consistent with the monkey MT and V2 results
of Hupé et al. (1998), Hupé, James, Girard, and Bullier (2001),
and Mignard and Malpeli (1991). They showed that many
neurons showed a significant decrease in response when MT
and V2 were inactivated. Of interest here is how is it possible
that excitatory feedback can be responsible for a suppression of
V1 response?

Motivated by the findings of Johnson and Burkhalter (1996),
Johnson, Shao, and Burkhalter (1997), Shao and Burkhalter
(1996), the theory proposed here begins by assuming that
higher cortical areas like V2 feed back mostly excitation to V1.
Groups of neurons in V1 and V2 that have been activated
together often in the past facilitate each other’s firing rate.
What appears to be neuronal suppression is actually a decrease
in this feedback excitation. A surround stimulus can trigger this
decrease by causing a competition for representation among
V2 neurons. With no surround stimulus, a center stimulus
representation in V2 wins easily and feeds back excitation to
the center neurons in V1. When a surround stimulus is present,

that stimulus fights for representation in V2 through lateral
inhibition. The resulting competition decreases the excitation
given to the original neurons.

A computational model incorporating these ideas is
presented in the following sections. It is intended to test
whether cortical feedback can play a role in suppression in the
way just described. It is different from the feedback model
offered by Grossberg and Raizada (2000). In that model, a
folded feedback mechanism is proposed in which excitatory
feedback from higher areas is directed through layer 6 and
subsequently fed through excitatory and inhibitory connections
to layer 4. The result is a modulatory pathway that has
excitation in the center and inhibition in the surround. In our
model, V2 neurons feedback directly with excitation into the
feedforward V1 pathway (layer 4, effectively). Only center
excitation is present. It is also different from the work of Rao
and Ballard (1999). Their V2 neurons also learn associations
between V1 outputs, but those neurons feed back inhibition to
cancel out the responses of the V1 neurons. An important note
to keep in mind is that it seems that multiple mechanisms are at
work producing center—surround effects. The purpose for this
model is to examine the role of excitatory cortical feedback.
Future work should investigate the relative roles and
interaction of all involved mechanisms.

2. Model

The model consists of six small regions of neurons (see
Fig. 1). Five of the regions represent V1 hypercolumns and the
other represents a hypercolumn in V2. Each of the five V1
regions receive feedforward input from limited, non-overlap-
ping receptive fields in the visual input space. The V1 regions
have no direct lateral interaction with each other since this
model is limited to the investigation of the potential role of
feedback in surround suppression. The V1 regions can only
interact with each other indirectly through feedforward and
feedback connections between them and the V2 region.

Each V1 region contains a grid of 16X 16 rate-based
neurons. All of the neurons within a region share the same
receptive field. The receptive fields contain a 15X 15 grid of
pixels, so each neuron has 225 (15X 15) incoming weights.
The activity of one excitatory neuron is computed as a dot
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Fig. 1. The center—surround model. Five V1 hypercolumn-sized neuron regions
are simulated along with one V2 region. For visual clarity the model is shown
twice: on the left with only the feedforward connections shown and on the right
with only feedback connections shown. The feedforward connections are
excitatory and inhibitory, while the feedback connections are only excitatory.
The V1 regions influence each other only indirectly through interaction with the
V2 region.
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Fig. 2. Example input images for V1 training. The 15X 15 pixel images are sine-wave gratings of random orientation and phase offset.

product modified by a logistic function, given by:

Ay =f lewkj ,
7

where I; is one of the J pixels in the receptive field, and there
are J incoming weights, wy;, into the kth neuron. f{x) is the
logistic function given by:

fmax
fo = 1+ Ce™™’

C and b are parameters that control the shape of the logistic
function. C sets the offset and b sets the steepness of the curve.
Their values are discussed later.

Before running the model the incoming weights of the V1
neurons of each region were trained using a standard self-
organizing map (SOM) algorithm (Kohonen, 2001). This was
done in order to create realistic patterns of activation in V1.
The SOM Toolbox for Matlab (Alhoniemi, Himberg,
Parhankangas, & Vesanto, 1999) was used for training. The
input training images are sine-wave gratings of random
orientation and phase offset, such as in Fig. 2. The network
was trained on five runs through the data set, which included
2000 grating images. The topology of the network was set to a
toroid with an initial learning rate, «, of 1.5 (decreasing toward
0 throughout the training). One set of weights was generated
for the center V1 region. A separate set of weights was
generated with the same type of inputs but a different random
assignment of initial weights. This second set of weights is
used by all four surround V1 regions for computational
efficiency. The resulting trained weights give an indication of
the stimuli that excite the V1 neurons. Fig. 3 shows the
generated weights of the center V1 region and the surround V1
regions.

It is proposed that lateral inhibition in the higher cortical
area plays a key role in surround suppression. It is therefore
necessary to include more detail in the V2 region model. The
V2 region is constructed with a grid of 16X 16 excitatory
neurons, superimposed on a grid of 8 X 8 inhibitory neurons, all
of which are rate-based. This gives a ratio of 4:1 excitatory to
inhibitory neurons, which is consistent with physiology
(Braitenberg & Schuz, 1998). Each neuron is connected to its
neighbors with weights that drop off with distance in a
Gaussian fashion (close neighbors have stronger connections
than far-away neighbors). There are connections from
excitatory neurons to excitatory neurons, excitatory to
inhibitory, and inhibitory to excitatory. In all cases the weights
drop off with distance, but the height and width of the Gaussian

shape are set to different values for each set of connections. The
dimensions of these Gaussians are discussed later in Section 3.
The neuron region is connected as a torus in order to avoid edge
effects.

The activity of one excitatory neuron in V2 is calculated by
summing the contributions of the feedforward connections, the
lateral excitatory connections, and the lateral inhibitory
connections, as in:

A, = f(z FE+ > LATg - LATIE)

More precisely, if there are L excitatory neurons and M
inhibitory neurons in the V2 region and K neurons in each of
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Fig. 3. Incoming weights of V1 center and surround regions after training. The
top map shows the incoming weights of the V1 center region after training.
Each square corresponds to the weights of one of the V1 neurons. The bottom
map shows the incoming weights of one of the V1 surround regions. These
weights are used for all the surround regions for computational efficiency.
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the V1 regions, then

Z ZAkwek + ZAIWEI _ZAmwem >
M

Sreg K L

A, =f

where s, indicates the summing of the contributions of all
five V1 regions. In this equation, A, A;, and A,,, are the neuron
activities from the V1 regions, excitatory neurons in V2, and
inhibitory neurons in V2, respectively. The w’s are the
associated weights. Similarly, the activity of the inhibitory
neurons is given by:

Z ZAkWik + ZAIWH

Sreg K L

A =f

fix) is the same logistic function given above. However, the
excitatory and inhibitory populations have different offset,
gain, and maximum firing rate values obtained from the
literature, as discussed below.

All five V1 regions send feedforward projections to the V2
region. The feedforward projections originate from the V1
neurons and terminate on both excitatory and inhibitory
neurons within the V2 region. The output weights extending
from one V1 neuron take on a Gaussian pattern, which is
identical for all the V1 neurons (except for a shift in location).
The V2 contributions from all five V1 regions are summed
together to form the feedforward input to the V2 region.

The feedback projections originate from the excitatory
neurons of the V2 neurons. This feedback uses a similar
Gaussian weight pattern with all positive weights. Since
inhibitory neurons are not modelled explicitly in the V1
regions, the feedback is exclusively excitatory in nature. This is
an exaggeration of the known anatomy discussed in the
introduction. Using exclusively excitatory feedback serves to
highlight one of the main themes of this model: that feedback
can cause surround suppression by reducing the amount of
excitatory feedback excitation produced. The results would be
the same if the feedback were mostly excitatory, as opposed to
exclusively excitatory.

With both the V1-to-V2 projections, as well as the V2-to-V1
projections, a more realistic model would include the learning
of associations between groups of neurons. When a group of
neurons is activated in one of the V1 regions, which neurons in
the V2 region will be driven to excitation? In the cortex, this
may be a matter decided by the learning process. Groups of
neurons in V1 will converge onto V2 neurons to form V2
receptive field properties. These connections likely reflect the
statistics of the inputs used during training (natural visual
stimuli, in the case of the human visual system). For example,
if certain neuronal activations in the V1 regions coincided
often, we predict they would come to be strongly connected to
the same V2 neurons and that this arrangement would lead to
firing rate facilitation of V2 neurons. Center and surround
stimuli that were not seen together during development would
not converge onto the same V2 neurons. In this case, lateral
inhibition in V2 would result. Measuring or deriving the
connectivity patterns of V2 neurons is currently a big open

question. We will leave this problem for future study in order to
concentrate on surround suppression mediated by cortical
feedback.

In this model, the problem of learning connections between
V1 and V2 (both feedforward and feedback) is avoided. The
connections are created topographically such that each neuron
in the V1 regions sends out a Gaussian weight pattern to the V2
region, and vice-versa. Since, the V1 center region and the V2
surround region are trained separately with an SOM, the
topographical connections result in random orientation pairs
(from center and surround) converging in V2 neurons.

The activity equations of the individual neurons are highly
coupled within the V2 region and between V2 and V1 regions.
To compute the overall activity, an iterative algorithm is used.
Using the equations described above, an old set of neuron
activations leads to a new set of activations. The simulation
errors are set such that forcing the simulator to converge to
lower error values made no significant difference in the
population’s activity.

3. Parameter assignment

The parameters that were built into the model, and the
values used in the simulations, are specified in Table 1. Within
the V2 region, we use a Gaussian distribution of weights
leaving an excitatory neuron that terminate on the other
excitatory neurons. Each excitatory neuron in the V2 region
uses the same distribution of lateral output weights. The
prototype for this distribution is:

Wgg = SFgg Lze_(dzmﬁ

210

where SFgg is a unit-less scale factor, d is the distance between
the two neurons which share the weight, and ¢ is the weight
distribution width. The same equation was used for the
excitatory-to-inhibitory weights and the inhibitory-to-excit-
atory weights, but with different ¢ and scale factor values. The
weight distribution widths are taken from anatomical studies
(Douglas, Koch, Mahowald, Martin, & Suarez, 1995; Hirsch,
Alonso, Reid, & Martinez, 1998; Stettler et al., 2002). For the
scale factors on the other hand, it is difficult to find values from
experimental work. These were set such that there is
competition between neurons through lateral inhibition. To
be sure that we did not just happen across a perfect set of model
parameters, these scale factors were varied over substantial
ranges with similar results. Those parameter range simulations
and results are described in Appendix A.

Individual neuron behavior is governed by a logistic
function with three parameters: the maximum firing rate,
gain, and offset. In physiology experiments the maximum
firing rate of the excitatory neurons and inhibitory neurons are
hard to estimate and vary considerably from neuron to neuron.
The maximum firing rates chosen from the reported distri-
butions (Ringach, Shapley, & Hawken, 2002; Stemmler et al.,
1995) are set at 50 Hz for excitatory neurons and 100 Hz for
inhibitory neurons. The gains were obtained by McCormick,
Connors, Lighthall and Prince (1985) and are set in the model
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Table 1

Model parameters and their values

Model parameter Value Reference

Hypercolumn width 900 pm Stettler et al. (2002)
E-to-E weight distribution (1 o) 110 pm Hirsch et al. (1998)
E-to-I weight distribution (1 o) 110 pm Hirsch et al. (1998)
I-to-E weight distribution (1 o) 500 pm Stettler et al. (2002)
E-to-E efficacy scale factor 1.0 Range: 0.25-1.75

E-to-I efficacy scale factor 0.55 Range: 0.30-1.10

I-to-E efficacy scale factor 85 Range: 40-130
Maximum gain of E neurons 241 Hz/nA McCormick et al. (1985)
Maximum gain of I neurons 549 Hz/nA McCormick et al. (1985)
Spontaneous rate of E neurons (fp) 2 Hz Ringach et al. (2002)
Maximum firing rate of E (fi,ax) 50 Hz Ringach et al. (2002)
Spontaneous rate of I neurons (fo) 1Hz Stemmler et al. (1995)
Maximum firing rate of I (fi,ax) 100 Hz McCormick et al. (1985)
V2-to-V1 feedback scale factor 3.75 Range: 2.40-6.00

These values used in the model simulations were taken or derived from the references given in the right-hand column. The function of the model parameters are
described in the text. For model parameters without references, ranges for valid behavior are given. This is discussed further in Appendix A.

as 241 Hz/nA for excitatory neurons and 549 Hz/nA for
inhibitory neurons. These gains are used to set the maximum
slope of the logistic function by noting that

(df/dx) max
= 4 max
fmax

where b is the logistic equation parameter, (df/dx),.x is the
maximum neuron gain obtained from the literature, and f;,.x is
the neuron’s maximum firing rate. The logistic parameter C, on
the other hand, determines how much input drive is required to
excite the neuron. To make an appropriate choice, the firing
rate with no input was examined. This was compared to typical
spontaneous firing rates and again this was chosen to be
something reasonable from the distributions reported (Ringach
etal., 2002; Stemmler et al., 1995): 2 Hz for excitatory neurons
and 1Hz for inhibitory neurons. The logistic function
parameter, C, was set by noting that

:fmax
Jo

where f; is the firing rate with no input current.

The gains of the neuron types are reported in units of Hertz
per nanoAmphere. Neurons can be thought to take a current
(with units of nanoAmphere) as input and output a firing rate

b
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Fig. 4. Diagram showing the units used in the model. The incoming synapses of
the neurons convert neuron firing rates (in Hertz) into current (in
nanoAmperes). This current is summed in the dendrites and converted into a
firing rate near the beginning of the axon. The output of the neuron is a firing
rate (measured in Hertz).

(in Hertz). The weights in this model represent synapses with
units nanoAmphere per Hertz. Therefore, an output firing rate
multiplied by a weight will result in a current (the units are
shown graphically in Fig. 4).

The V2-to-V1 scale factor is used to scale the weights leaving
the V2 excitatory neurons and terminating on the V1 neurons.
This model proposes that surround suppression is a result of
lower feedback excitation. Thus, the feedback excitation sent
from V2 to V1 should be roughly equivalent to the amount of
suppression. The V2-to-V1 scale factor was set to a number that
shows a reasonable suppression. As discussed in the Appendix,
any value within a wide range works.

4. Results

Computer simulations were performed with the model.
Fig. 5 shows a typical visual input used during the testing.

Fig. 5. Typical input test image. A sine-wave grating of varying contrast is
place in the center with a surround sine-wave grating.
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Fig. 6. Suppression mechanism in model. With no surround, the V1 center
region neurons and the V2 region neurons facilitated each others firing rates.
With a surround, lateral inhibition in the V2 region causes a decrease in
excitatory feedback.

There is a sine-wave grating in the center surrounded by
other sine-wave gratings of an independently chosen
orientation. As described in Section 2, the receptive field of
the center V1 neurons encompasses only the center area of the
visual field. The surround V1 neurons have their receptive
fields surrounding the center receptive field (see Fig. 1).

A two-dimensional cartoon drawing of typical neuron
suppression is shown in Fig. 6. With only a center stimulus,
a group of neurons in the V1 center region becomes active.
This excites a group of neurons in the V2 region. These active
neurons further enhance each others firing rates through the
feedforward and excitatory feedback connections. When a
surround stimulus is added, groups of neurons from the
surround regions (only one surround region is shown) become
active. They, too, excite some neurons in V2, but if these V2
neurons are different, competition through lateral inhibition
takes place. This lateral inhibition diminishes the firing rate of
all the V2 neurons, and the amount of excitatory feedback is
reduced. This reduction in V1 activity is the suppression
caused by the surround.

A typical example is shown in Fig. 7. A neuron’s response to
its optimal stimulus is shown with increasing stimulus contrast.

50 T —
no surround e
- — —surround /

40 1
~N
T
[0}
2 30 .
o
o
7]
[0)
o
c 20 |
o
2
[0)
=z

-
o

0
1072 10! 100
Center Contrast

Fig. 7. Typical suppression by surround stimulus. (Solid line). A model
neuron’s response to its optimal stimulus is shown with changing contrast.
(Dashed line). When a surround is present, the neuron’s response is suppressed.
In this case, the activity of the neurons in the center V1 region and surround V1
regions produced V2 activity in separate locations (about eight neuron grid
spacings apart).
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Fig. 8. Surround suppression in experiments with Macaque V1 (after
Cavanaugh et al., 2002b). A neuron’s response with changing contrast is
typically suppressed when a surround stimulus is introduced.

The top curve shows the response with no surround stimulus.
The bottom curve shows the response of the same neuron after
a surround is added. The neuron’s response is indeed
suppressed. This is similar in nature to the experimental
findings of Cavanaugh et al. (2002b) shown in Fig. 8.

In this case, the neurons in V2 inhibit each other and result
in surround suppression. When activities from the center and
surround V1 regions converge onto one group of neurons in
V2, we would expect that facilitation could occur. Fig. 9 shows
that this is indeed the case. In this figure, the response with no
surround stimulus and changing center contrast is plotted. The
neuron response is facilitated when a surround stimulus is
present. While we have not seen a graph exactly like this in the
literature, facilitation at low contrasts is consistent with
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Fig. 9. Facilitation by surround stimulus. (Solid line). A model neuron’s
response to its optimal stimulus is shown with changing contrast. (Dashed line).
When a surround is present, the neuron’s response is facilitated. In this case, the
activity of the neurons in the center V1 region and surround V1 regions
converged onto the same location in V2.



570 T.J. Sullivan, V.R. de Sa / Neural Networks 19 (2006) 564-572

2.0
S-714, cell 30
O 1.5
w
c
8 Suppression
w
o Fccilitation
Q) ].O'
=
5
[0}
o
0.5
noise Flonks cdlone
_]:_0.17 +01 { 0.01 =0.02
OO T T T T T I_T_ T T T
6 10 20 40
Target contrast (%)
50 T =
no surround
— =—surround /

Neuron Response (Hz)

1072 107 10°
Center Contrast

Fig. 10. Facilitation and suppression with changing contrast. (Top). Facilitation
recorded in experiments on cats (taken from (Polat & Sagi, 1993) with
permission). Facilitation and suppression both occur with the same surround
stimulus (in this case small, collinear patches in the surround). (Solid line). A
model neuron’s response to its optimal stimulus is shown with changing
contrast. (Dashed line). When a surround is present, the neuron’s response is
facilitated at low contrasts and suppressed at high contrasts. In this case, the
activity of the neurons in the center VI region and surround V1 regions
converged onto the V2 region in locations being separated by five neurons.

previous experimental findings (Polat & Sagi, 1993). Our
model predicts that some neurons could have contrast response
functions like that shown in Fig. 9.

Fig. 10 shows an example of something in between
facilitation and suppression. When the active neurons in the
V1 center and surround regions do not converge exactly, but
are slightly offset (with mean activities five neurons apart in
V2, for example), the center-induced response in V2 will be
facilitated at low contrasts but suppressed at higher contrasts.
This is because at low contrasts, the inhibitory neurons in V2
are not sufficiently excited to produce appreciable inhibition,
allowing facilitation through short-range excitatory connec-
tions. At higher contrasts, the inhibitory neurons (with their
higher gains) overwhelm the facilitation that takes place. This

facilitation and suppression in the center-induced response of
V2 is reflected back to V1 through the excitatory connections.
The effect is similar to the results reported by Polat et al.
(1998).

5. Discussion

It seems likely from experimental findings that feedback
from higher cortical areas contributes to surround suppression.
This model shows a plausible way in which this feedback can
play a role. The model assumes that groups of neurons in V1
and V2 are linked through learning. A visual stimulus that has
been seen before during training excites these linked neurons
through feedforward and feedback connections. In the case of a
stimulus that does not match with previous experience, lateral
inhibition in V2 reduces activity and leads to less excitatory
feedback. A reduction in excitatory feedback will give the
appearance that V1 neuron firing rates have been suppressed.
While at first glance, it is difficult to imagine how excitatory
feedback from higher cortical areas can contribute to
suppression in V1, this reduction in excitatory drive is an
interesting candidate.

The linking together of groups of neurons through learning
seems to be supported by findings of facilitation for iso-
oriented, co-linear flanking stimuli (Polat et al., 1998). This is
because long contours are a key component of natural scenes.
While this effect is strongly influenced by lateral connections,
it is not hard to imagine similar connections forming from
groups of neurons in V1 to neurons in V2. At first glance, it is
difficult to reconcile these facilitation findings with suppression
caused by iso-oriented surround (Cavanaugh et al., 2002b).
This could be explained by noting that a stimulus completely
surrounding the center has both a component in line with the
center and a component forming lines in parallel, but to the
side, of the center. These parallel lines to the side of the center
might create enough inhibition to counteract any facilitation
that occurs. The facilitation would be consistent with being
exposed to extended lines during visual development, while the
inhibition from the sides would be consistent with not being
exposed to many gratings during development.

Facilitation by orthogonal surround (Jones, Wang, & Sillito,
2002) is a trickier problem to reconcile with our model. Our
model proposes that frequently observed stimuli should be
facilitated and seldom observed stimuli suppressed. Develop-
mental stimuli probably do not look much like the orthogonal
surround stimuli (with the possible exception of corners). This
may be due to a separate explanation. Indeed, Dragoi and Sur
(2000) propose a lateral disinhibition mechanism to account for
orthogonal surround facilitation. In any case, the idea that there
is always suppression by iso-linear surrounds and facilitation
by orthogonal surrounds is an overly simplified view. In reality,
there are a wide variety of modulation patterns (see Levitt &
Lund, 1997, for example).

The work of Hupé et al. (2001) was unable to report any
influence of V2 on surround suppression effects and so does not
support this model. This negative result, though, focuses only
on near surround effects. Since far surround effects could be
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dominated by cortical feedback (Angelucci et al., 2002), it
would be interesting to see similar experiments using only far
surrounds. This work certainly does not propose that cortical
feedback is the only mechanism involved in surround
suppression. It appears that several different mechanisms
contribute simultaneously. Certainly, lateral connections have
a strong influence on center—surround interactions, especially
in the near surround. The role of feedforward connections from
LGN has not yet been completely explored. Also, cortical
feedback comes from several different areas to converge onto
V1 (Hupé et al., 1998; Mignard & Malpeli, 1991). What this
work does is propose a plausible model by which cortical
feedback can contribute.

The great challenge now is to tease apart how (and how
much) each mechanism contributes to center—surround
interactions. One place to start may be to recognize that lateral
connections may dominate the near surround interactions
(Hupé et al., 2001), but the far surround influences may be
dominated by cortical feedback (Angelucci et al., 2002). Using
this observation, experiments may be able to show how the
feedback and lateral interactions differ.

The model can be used to make a few predictions. The most
straight-forward is that in some cases, neurons will be
facilitated by the surround at all contrast levels, as shown in
Fig. 9. This should happen for a far—surround (where feedback
presumably dominates) that is very consistent with the center
stimulus. Also, this model implies that the effects of
facilitation/suppression from the far surround will disappear
when feedback is disabled. Thus, an experiment could be done
in the same style as the one by Hupé et al. (2001), but this time
concentrating on the effects due only to the far surround
(disabling MT as well as V2 would also be interesting). At first
glance it seems that the model predicts that V2 alone can
activate parts of VI, leading to hallucination or filling-in.
However, this would only be the case if V2 were sufficiently
activated, which might first require activation in V1. This
feedback might therefore only play a modulatory role in most
cases and specific predictions about inducing hallucination and
filling-in are difficult to make.

Finally, we believe this is a particularly important topic for
further research. Any light shed onto the roles of lateral and
feedback interactions can be exploited for computer vision
systems. These seem to be important mechanisms used in
animal vision systems, but have not been employed much in
our current efforts in man-made vision.
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Fig. 11. Example parameter range test. The I-to-E efficacy scale factor (IE) was
varied between 40 and 130. Across the range, surround suppression was
qualitatively similar. (Top). IE=40. (Bottom). IE=130.

Appendix A. Parameter ranges

In order to allay fears that an extremely narrow parameter
set was found that accounts for the surround suppression
findings, key parameters were systematically altered. The
behavior at each of these new parameter settings was tested.
For example, when the strength of the excitatory-to-inhibitory

Table 2

Model parameter ranges

Model parameter Low value Nominal value ~ High value
E-to-E efficacy 0.25 1.00 1.75

E-to-I efficacy 0.30 0.55 1.10
I-to-E efficacy 40 85 130
V2-to-V1 scale factor  2.40 3.75 6.00

These model parameters were tested over the indicated ranges. The suppressive
behavior was qualitatively similar over these parameter ranges.
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neurons in the V2 model is changed from 85 to 40, a typical
suppression curve still shows qualitatively the same suppres-
sion (as seen in the top of Fig. 11). The ranges that were
verified to give the same qualitative results are shown in
Table 2. When the parameters went beyond these ranges, either
the behavior started to change or the model was not tested since
the parameter range was deemed large enough to give a robust
model.
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