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Abstract

Surround suppression occurs when a visual stimulus outside a neuron’s classical receptive field causes a reduction in firing rate. It has become

clear that several mechanisms are working together to induce center–surround effects such as surround suppression. While several models exist

that rely on lateral connections within V1 to explain surround suppression, few have been proposed that show how cortical feedback might play a

role. In this work, we propose a theory in which reductions in excitatory feedback contribute to a neuron’s suppressed firing rate. We also provide a

computational model that incorporates this idea.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A visual stimulus can excite a neuron in the primary visual

cortex if the stimulus is within the neuron’s receptive field.

Stimuli presented outside a neuron’s receptive field would not

by themselves excite the neuron, but these stimuli can

modulate the response of a neuron that is already firing.

These modulatory visual stimuli presented in the area outside

the receptive field, called the surround, typically suppress the

response of an active neuron (Cavanaugh, Bair, & Movshon,

2002a,b). Thus, this effect is called surround suppression.

Besides this suppressive effect, several other related

experimental results have been reported (for reviews, see the

papers by Seriés, Lorenceau and Frégnac (2003), Shapley

(2004), Angelucci and Bullier (2003)). Under some conditions,

the surround may cause facilitation as opposed to suppression

(Polat, Mizobe, Pettet, Kasamatsu, & Norcia, 1998). The data

suggest that this happens much more when the stimuli have low

contrast as opposed to high contrast. An experiment by Polat et

al. (1998) used localized Gabor patches in the surround of the

same contrast as a center Gabor patch. They were able to show

examples of neurons that were facilitated by the surround at

low stimulus contrast, but suppressed by the same stimulus at

higher contrast. Also, it seems that the very size of a neuron’s
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receptive field can change. If the stimuli are low contrast, the

neuron’s receptive field will be larger than if the stimuli are

high contrast (Cavanaugh et al., 2002a; Kapadia, Westheimer,

& Gilbert, 1999; Sceniak, Ringach, Hawken, & Shapley,

1999). (This result seems to hold for the various ways of

measuring receptive field size (Cavanaugh et al., 2002a)).

Why is this surround influence on neuronal response

important to investigate? One reason is that these effects may

tell us something about the underlying cortical microcircuitry

of primary visual cortex. The most straight-forward models of

the primary visual cortex involve feedforward connections to

linear Gabor-like filters. This type of model cannot describe

these surround suppression findings. Understanding how

various mechanisms contribute to these surround suppression

effects will reveal what other mechanisms are at work,

including lateral interactions and feedback from higher cortical

areas. Also, center–surround interactions may play important

functional roles in visual processing. It has been suggested that

center–surround effects may be related to the perceptual

integration of contours. In support of this idea many

psychophysics studies have shown directly that surround

stimuli can have an influence on how we perceive a visual

input (Bakin, Nakayama, & Gilbert, 2000; Polat & Sagi, 1993).

Cavanaugh et al. (2002a) and Sceniak et al. (1999) proposed

a model that largely reproduces the suppressive effects. This

model is based on Gaussian center and surround components.

The response from the center component is divided or

subtracted by the response from the surround component.

This is similar to the model proposed by Schwartz and
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Fig. 1. The center–surround model. Five V1 hypercolumn-sized neuron regions

are simulated along with one V2 region. For visual clarity the model is shown

twice: on the left with only the feedforward connections shown and on the right

with only feedback connections shown. The feedforward connections are

excitatory and inhibitory, while the feedback connections are only excitatory.

The V1 regions influence each other only indirectly through interaction with the

V2 region.
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Simoncelli (2001). In this case, a filter’s feedforward excitation

is divided by a quantity that depends on the outputs of the

nearby filter responses. These models show suppression as a

response to surround stimuli.

None of these high-level models propose underlying neural

mechanisms. Creating a realistic neural model will allow us to

gain a deeper understanding and make more detailed

predictions. Several compelling neuron-level models have

been proposed that reproduce some of the center–surround

effects (Dragoi & Sur, 2000; Somers et al., 1998; Stemmler,

Usher, & Niebur, 1995; Ursino & Cara, 2004). These models

propose that lateral connections connecting the neurons

responding to the center and surround stimuli can play a

major role in creating center–surround effects. This seems

logical and is backed up by evidence matching the scale of

facilitation in psychophysics studies to the distribution of

lateral connections in V1 (Stettler, Das, Bennett, & Gilbert,

2002).

There is evidence that another mechanism plays a role in

surround suppression: “the suppressive surrounds of V1

neurons are derived in part from feedback signals. It is a

challenge for theorists to understand what is the function of this

feedback in visual perception” (Shapley, 2004). This view is

supported by the anatomical findings that the lateral

connections within a layer do not extend far enough to account

for all surround suppression effects (Angelucci et al., 2002;

Cavanaugh et al., 2002a). Furthermore, it was shown in a

separate study that lateral connections would not be fast

enough to account for the time course of the suppression (Bair,

Cavanaugh, & Movshon, 2003).

It is not obvious how feedback from higher cortical areas

can contribute to surround suppression and the other center–

surround effects. One clue comes from the finding in rat

physiology that the feedback pathway is balanced more toward

excitation than feedforward pathways (Johnson & Burkhalter,

1996; Johnson & Burkhalter, 1997; Shao & Burkhalter, 1996).

In these results, excitation dominated inhibition in the cortical

feedback pathway, much more so than in the feedforward

pathway. This is consistent with the monkey MT and V2 results

of Hupé et al. (1998), Hupé, James, Girard, and Bullier (2001),

and Mignard and Malpeli (1991). They showed that many

neurons showed a significant decrease in response when MT

and V2 were inactivated. Of interest here is how is it possible

that excitatory feedback can be responsible for a suppression of

V1 response?

Motivated by the findings of Johnson and Burkhalter (1996),

Johnson, Shao, and Burkhalter (1997), Shao and Burkhalter

(1996), the theory proposed here begins by assuming that

higher cortical areas like V2 feed back mostly excitation to V1.

Groups of neurons in V1 and V2 that have been activated

together often in the past facilitate each other’s firing rate.

What appears to be neuronal suppression is actually a decrease

in this feedback excitation. A surround stimulus can trigger this

decrease by causing a competition for representation among

V2 neurons. With no surround stimulus, a center stimulus

representation in V2 wins easily and feeds back excitation to

the center neurons in V1. When a surround stimulus is present,
that stimulus fights for representation in V2 through lateral

inhibition. The resulting competition decreases the excitation

given to the original neurons.

A computational model incorporating these ideas is

presented in the following sections. It is intended to test

whether cortical feedback can play a role in suppression in the

way just described. It is different from the feedback model

offered by Grossberg and Raizada (2000). In that model, a

folded feedback mechanism is proposed in which excitatory

feedback from higher areas is directed through layer 6 and

subsequently fed through excitatory and inhibitory connections

to layer 4. The result is a modulatory pathway that has

excitation in the center and inhibition in the surround. In our

model, V2 neurons feedback directly with excitation into the

feedforward V1 pathway (layer 4, effectively). Only center

excitation is present. It is also different from the work of Rao

and Ballard (1999). Their V2 neurons also learn associations

between V1 outputs, but those neurons feed back inhibition to

cancel out the responses of the V1 neurons. An important note

to keep in mind is that it seems that multiple mechanisms are at

work producing center–surround effects. The purpose for this

model is to examine the role of excitatory cortical feedback.

Future work should investigate the relative roles and

interaction of all involved mechanisms.
2. Model

The model consists of six small regions of neurons (see

Fig. 1). Five of the regions represent V1 hypercolumns and the

other represents a hypercolumn in V2. Each of the five V1

regions receive feedforward input from limited, non-overlap-

ping receptive fields in the visual input space. The V1 regions

have no direct lateral interaction with each other since this

model is limited to the investigation of the potential role of

feedback in surround suppression. The V1 regions can only

interact with each other indirectly through feedforward and

feedback connections between them and the V2 region.

Each V1 region contains a grid of 16!16 rate-based

neurons. All of the neurons within a region share the same

receptive field. The receptive fields contain a 15!15 grid of

pixels, so each neuron has 225 (15!15) incoming weights.

The activity of one excitatory neuron is computed as a dot



Fig. 2. Example input images for V1 training. The 15!15 pixel images are sine-wave gratings of random orientation and phase offset.

Fig. 3. Incoming weights of V1 center and surround regions after training. The

top map shows the incoming weights of the V1 center region after training.

Each square corresponds to the weights of one of the V1 neurons. The bottom

map shows the incoming weights of one of the V1 surround regions. These

weights are used for all the surround regions for computational efficiency.
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product modified by a logistic function, given by:

Ak Z f
X
J

Ijwkj

 !
;

where Ij is one of the J pixels in the receptive field, and there

are J incoming weights, wkj, into the kth neuron. f(x) is the

logistic function given by:

f ðxÞZ
fmax

1CCeKbx
:

C and b are parameters that control the shape of the logistic

function. C sets the offset and b sets the steepness of the curve.

Their values are discussed later.

Before running the model the incoming weights of the V1

neurons of each region were trained using a standard self-

organizing map (SOM) algorithm (Kohonen, 2001). This was

done in order to create realistic patterns of activation in V1.

The SOM Toolbox for Matlab (Alhoniemi, Himberg,

Parhankangas, & Vesanto, 1999) was used for training. The

input training images are sine-wave gratings of random

orientation and phase offset, such as in Fig. 2. The network

was trained on five runs through the data set, which included

2000 grating images. The topology of the network was set to a

toroid with an initial learning rate, a, of 1.5 (decreasing toward

0 throughout the training). One set of weights was generated

for the center V1 region. A separate set of weights was

generated with the same type of inputs but a different random

assignment of initial weights. This second set of weights is

used by all four surround V1 regions for computational

efficiency. The resulting trained weights give an indication of

the stimuli that excite the V1 neurons. Fig. 3 shows the

generated weights of the center V1 region and the surround V1

regions.

It is proposed that lateral inhibition in the higher cortical

area plays a key role in surround suppression. It is therefore

necessary to include more detail in the V2 region model. The

V2 region is constructed with a grid of 16!16 excitatory

neurons, superimposed on a grid of 8!8 inhibitory neurons, all

of which are rate-based. This gives a ratio of 4:1 excitatory to

inhibitory neurons, which is consistent with physiology

(Braitenberg & Schuz, 1998). Each neuron is connected to its

neighbors with weights that drop off with distance in a

Gaussian fashion (close neighbors have stronger connections

than far-away neighbors). There are connections from

excitatory neurons to excitatory neurons, excitatory to

inhibitory, and inhibitory to excitatory. In all cases the weights

drop off with distance, but the height and width of the Gaussian
shape are set to different values for each set of connections. The

dimensions of these Gaussians are discussed later in Section 3.

The neuron region is connected as a torus in order to avoid edge

effects.

The activity of one excitatory neuron in V2 is calculated by

summing the contributions of the feedforward connections, the

lateral excitatory connections, and the lateral inhibitory

connections, as in:

Ae Z f
X

FFC
X

LATEEK
X

LATIE

� �
More precisely, if there are L excitatory neurons and M

inhibitory neurons in the V2 region and K neurons in each of
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the V1 regions, then

Ae Z f
X
5reg

X
K

Akwek

 !
C
X
L

AlwelK
X
M

Amwem

 !
;

where S5reg indicates the summing of the contributions of all

five V1 regions. In this equation, Ak, Aj, and Am are the neuron

activities from the V1 regions, excitatory neurons in V2, and

inhibitory neurons in V2, respectively. The w’s are the

associated weights. Similarly, the activity of the inhibitory

neurons is given by:

Ai Z f
X
5reg

X
K

Akwik

 !
C
X
L

Alwil

 !
:

f(x) is the same logistic function given above. However, the

excitatory and inhibitory populations have different offset,

gain, and maximum firing rate values obtained from the

literature, as discussed below.

All five V1 regions send feedforward projections to the V2

region. The feedforward projections originate from the V1

neurons and terminate on both excitatory and inhibitory

neurons within the V2 region. The output weights extending

from one V1 neuron take on a Gaussian pattern, which is

identical for all the V1 neurons (except for a shift in location).

The V2 contributions from all five V1 regions are summed

together to form the feedforward input to the V2 region.

The feedback projections originate from the excitatory

neurons of the V2 neurons. This feedback uses a similar

Gaussian weight pattern with all positive weights. Since

inhibitory neurons are not modelled explicitly in the V1

regions, the feedback is exclusively excitatory in nature. This is

an exaggeration of the known anatomy discussed in the

introduction. Using exclusively excitatory feedback serves to

highlight one of the main themes of this model: that feedback

can cause surround suppression by reducing the amount of

excitatory feedback excitation produced. The results would be

the same if the feedback were mostly excitatory, as opposed to

exclusively excitatory.

With both the V1-to-V2 projections, as well as the V2-to-V1

projections, a more realistic model would include the learning

of associations between groups of neurons. When a group of

neurons is activated in one of the V1 regions, which neurons in

the V2 region will be driven to excitation? In the cortex, this

may be a matter decided by the learning process. Groups of

neurons in V1 will converge onto V2 neurons to form V2

receptive field properties. These connections likely reflect the

statistics of the inputs used during training (natural visual

stimuli, in the case of the human visual system). For example,

if certain neuronal activations in the V1 regions coincided

often, we predict they would come to be strongly connected to

the same V2 neurons and that this arrangement would lead to

firing rate facilitation of V2 neurons. Center and surround

stimuli that were not seen together during development would

not converge onto the same V2 neurons. In this case, lateral

inhibition in V2 would result. Measuring or deriving the

connectivity patterns of V2 neurons is currently a big open
question. We will leave this problem for future study in order to

concentrate on surround suppression mediated by cortical

feedback.

In this model, the problem of learning connections between

V1 and V2 (both feedforward and feedback) is avoided. The

connections are created topographically such that each neuron

in the V1 regions sends out a Gaussian weight pattern to the V2

region, and vice-versa. Since, the V1 center region and the V2

surround region are trained separately with an SOM, the

topographical connections result in random orientation pairs

(from center and surround) converging in V2 neurons.

The activity equations of the individual neurons are highly

coupled within the V2 region and between V2 and V1 regions.

To compute the overall activity, an iterative algorithm is used.

Using the equations described above, an old set of neuron

activations leads to a new set of activations. The simulation

errors are set such that forcing the simulator to converge to

lower error values made no significant difference in the

population’s activity.

3. Parameter assignment

The parameters that were built into the model, and the

values used in the simulations, are specified in Table 1. Within

the V2 region, we use a Gaussian distribution of weights

leaving an excitatory neuron that terminate on the other

excitatory neurons. Each excitatory neuron in the V2 region

uses the same distribution of lateral output weights. The

prototype for this distribution is:

WEE Z SFEE

1

2ps2
eKðd2=2s2Þ

where SFEE is a unit-less scale factor, d is the distance between

the two neurons which share the weight, and s is the weight

distribution width. The same equation was used for the

excitatory-to-inhibitory weights and the inhibitory-to-excit-

atory weights, but with different s and scale factor values. The

weight distribution widths are taken from anatomical studies

(Douglas, Koch, Mahowald, Martin, & Suarez, 1995; Hirsch,

Alonso, Reid, & Martinez, 1998; Stettler et al., 2002). For the

scale factors on the other hand, it is difficult to find values from

experimental work. These were set such that there is

competition between neurons through lateral inhibition. To

be sure that we did not just happen across a perfect set of model

parameters, these scale factors were varied over substantial

ranges with similar results. Those parameter range simulations

and results are described in Appendix A.

Individual neuron behavior is governed by a logistic

function with three parameters: the maximum firing rate,

gain, and offset. In physiology experiments the maximum

firing rate of the excitatory neurons and inhibitory neurons are

hard to estimate and vary considerably from neuron to neuron.

The maximum firing rates chosen from the reported distri-

butions (Ringach, Shapley, & Hawken, 2002; Stemmler et al.,

1995) are set at 50 Hz for excitatory neurons and 100 Hz for

inhibitory neurons. The gains were obtained by McCormick,

Connors, Lighthall and Prince (1985) and are set in the model



Table 1

Model parameters and their values

Model parameter Value Reference

Hypercolumn width 900 mm Stettler et al. (2002)

E-to-E weight distribution (1 s) 110 mm Hirsch et al. (1998)

E-to-I weight distribution (1 s) 110 mm Hirsch et al. (1998)

I-to-E weight distribution (1 s) 500 mm Stettler et al. (2002)

E-to-E efficacy scale factor 1.0 Range: 0.25–1.75

E-to-I efficacy scale factor 0.55 Range: 0.30–1.10

I-to-E efficacy scale factor 85 Range: 40–130

Maximum gain of E neurons 241 Hz/nA McCormick et al. (1985)

Maximum gain of I neurons 549 Hz/nA McCormick et al. (1985)

Spontaneous rate of E neurons (f0) 2 Hz Ringach et al. (2002)

Maximum firing rate of E (fmax) 50 Hz Ringach et al. (2002)

Spontaneous rate of I neurons (f0) 1 Hz Stemmler et al. (1995)

Maximum firing rate of I (fmax) 100 Hz McCormick et al. (1985)

V2-to-V1 feedback scale factor 3.75 Range: 2.40–6.00

These values used in the model simulations were taken or derived from the references given in the right-hand column. The function of the model parameters are

described in the text. For model parameters without references, ranges for valid behavior are given. This is discussed further in Appendix A.
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as 241 Hz/nA for excitatory neurons and 549 Hz/nA for

inhibitory neurons. These gains are used to set the maximum

slope of the logistic function by noting that

bZ 4
ðdf =dxÞmax

fmax

where b is the logistic equation parameter, (df/dx)max is the

maximum neuron gain obtained from the literature, and fmax is

the neuron’s maximum firing rate. The logistic parameter C, on

the other hand, determines how much input drive is required to

excite the neuron. To make an appropriate choice, the firing

rate with no input was examined. This was compared to typical

spontaneous firing rates and again this was chosen to be

something reasonable from the distributions reported (Ringach

et al., 2002; Stemmler et al., 1995): 2 Hz for excitatory neurons

and 1 Hz for inhibitory neurons. The logistic function

parameter, C, was set by noting that

C Z
fmax

f0
K1

where f0 is the firing rate with no input current.

The gains of the neuron types are reported in units of Hertz

per nanoAmphere. Neurons can be thought to take a current

(with units of nanoAmphere) as input and output a firing rate
Fig. 4. Diagram showing the units used in the model. The incoming synapses of

the neurons convert neuron firing rates (in Hertz) into current (in

nanoAmperes). This current is summed in the dendrites and converted into a

firing rate near the beginning of the axon. The output of the neuron is a firing

rate (measured in Hertz).
(in Hertz). The weights in this model represent synapses with

units nanoAmphere per Hertz. Therefore, an output firing rate

multiplied by a weight will result in a current (the units are

shown graphically in Fig. 4).

The V2-to-V1 scale factor is used to scale the weights leaving

the V2 excitatory neurons and terminating on the V1 neurons.

This model proposes that surround suppression is a result of

lower feedback excitation. Thus, the feedback excitation sent

from V2 to V1 should be roughly equivalent to the amount of

suppression. The V2-to-V1 scale factor was set to a number that

shows a reasonable suppression. As discussed in the Appendix,

any value within a wide range works.
4. Results

Computer simulations were performed with the model.

Fig. 5 shows a typical visual input used during the testing.
Fig. 5. Typical input test image. A sine-wave grating of varying contrast is

place in the center with a surround sine-wave grating.



Fig. 6. Suppression mechanism in model. With no surround, the V1 center

region neurons and the V2 region neurons facilitated each others firing rates.

With a surround, lateral inhibition in the V2 region causes a decrease in

excitatory feedback.

Fig. 8. Surround suppression in experiments with Macaque V1 (after

Cavanaugh et al., 2002b). A neuron’s response with changing contrast is

typically suppressed when a surround stimulus is introduced.
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There is a sine-wave grating in the center surrounded by

other sine-wave gratings of an independently chosen

orientation. As described in Section 2, the receptive field of

the center V1 neurons encompasses only the center area of the

visual field. The surround V1 neurons have their receptive

fields surrounding the center receptive field (see Fig. 1).

A two-dimensional cartoon drawing of typical neuron

suppression is shown in Fig. 6. With only a center stimulus,

a group of neurons in the V1 center region becomes active.

This excites a group of neurons in the V2 region. These active

neurons further enhance each others firing rates through the

feedforward and excitatory feedback connections. When a

surround stimulus is added, groups of neurons from the

surround regions (only one surround region is shown) become

active. They, too, excite some neurons in V2, but if these V2

neurons are different, competition through lateral inhibition

takes place. This lateral inhibition diminishes the firing rate of

all the V2 neurons, and the amount of excitatory feedback is

reduced. This reduction in V1 activity is the suppression

caused by the surround.

A typical example is shown in Fig. 7. A neuron’s response to

its optimal stimulus is shown with increasing stimulus contrast.
Fig. 7. Typical suppression by surround stimulus. (Solid line). A model

neuron’s response to its optimal stimulus is shown with changing contrast.

(Dashed line). When a surround is present, the neuron’s response is suppressed.

In this case, the activity of the neurons in the center V1 region and surround V1

regions produced V2 activity in separate locations (about eight neuron grid

spacings apart).
The top curve shows the response with no surround stimulus.

The bottom curve shows the response of the same neuron after

a surround is added. The neuron’s response is indeed

suppressed. This is similar in nature to the experimental

findings of Cavanaugh et al. (2002b) shown in Fig. 8.

In this case, the neurons in V2 inhibit each other and result

in surround suppression. When activities from the center and

surround V1 regions converge onto one group of neurons in

V2, we would expect that facilitation could occur. Fig. 9 shows

that this is indeed the case. In this figure, the response with no

surround stimulus and changing center contrast is plotted. The

neuron response is facilitated when a surround stimulus is

present. While we have not seen a graph exactly like this in the

literature, facilitation at low contrasts is consistent with
Fig. 9. Facilitation by surround stimulus. (Solid line). A model neuron’s

response to its optimal stimulus is shown with changing contrast. (Dashed line).

When a surround is present, the neuron’s response is facilitated. In this case, the

activity of the neurons in the center V1 region and surround V1 regions

converged onto the same location in V2.



Fig. 10. Facilitation and suppression with changing contrast. (Top). Facilitation

recorded in experiments on cats (taken from (Polat & Sagi, 1993) with

permission). Facilitation and suppression both occur with the same surround

stimulus (in this case small, collinear patches in the surround). (Solid line). A

model neuron’s response to its optimal stimulus is shown with changing

contrast. (Dashed line). When a surround is present, the neuron’s response is

facilitated at low contrasts and suppressed at high contrasts. In this case, the

activity of the neurons in the center V1 region and surround V1 regions

converged onto the V2 region in locations being separated by five neurons.

T.J. Sullivan, V.R. de Sa / Neural Networks 19 (2006) 564–572570
previous experimental findings (Polat & Sagi, 1993). Our

model predicts that some neurons could have contrast response

functions like that shown in Fig. 9.

Fig. 10 shows an example of something in between

facilitation and suppression. When the active neurons in the

V1 center and surround regions do not converge exactly, but

are slightly offset (with mean activities five neurons apart in

V2, for example), the center-induced response in V2 will be

facilitated at low contrasts but suppressed at higher contrasts.

This is because at low contrasts, the inhibitory neurons in V2

are not sufficiently excited to produce appreciable inhibition,

allowing facilitation through short-range excitatory connec-

tions. At higher contrasts, the inhibitory neurons (with their

higher gains) overwhelm the facilitation that takes place. This
facilitation and suppression in the center-induced response of

V2 is reflected back to V1 through the excitatory connections.

The effect is similar to the results reported by Polat et al.

(1998).

5. Discussion

It seems likely from experimental findings that feedback

from higher cortical areas contributes to surround suppression.

This model shows a plausible way in which this feedback can

play a role. The model assumes that groups of neurons in V1

and V2 are linked through learning. A visual stimulus that has

been seen before during training excites these linked neurons

through feedforward and feedback connections. In the case of a

stimulus that does not match with previous experience, lateral

inhibition in V2 reduces activity and leads to less excitatory

feedback. A reduction in excitatory feedback will give the

appearance that V1 neuron firing rates have been suppressed.

While at first glance, it is difficult to imagine how excitatory

feedback from higher cortical areas can contribute to

suppression in V1, this reduction in excitatory drive is an

interesting candidate.

The linking together of groups of neurons through learning

seems to be supported by findings of facilitation for iso-

oriented, co-linear flanking stimuli (Polat et al., 1998). This is

because long contours are a key component of natural scenes.

While this effect is strongly influenced by lateral connections,

it is not hard to imagine similar connections forming from

groups of neurons in V1 to neurons in V2. At first glance, it is

difficult to reconcile these facilitation findings with suppression

caused by iso-oriented surround (Cavanaugh et al., 2002b).

This could be explained by noting that a stimulus completely

surrounding the center has both a component in line with the

center and a component forming lines in parallel, but to the

side, of the center. These parallel lines to the side of the center

might create enough inhibition to counteract any facilitation

that occurs. The facilitation would be consistent with being

exposed to extended lines during visual development, while the

inhibition from the sides would be consistent with not being

exposed to many gratings during development.

Facilitation by orthogonal surround (Jones, Wang, & Sillito,

2002) is a trickier problem to reconcile with our model. Our

model proposes that frequently observed stimuli should be

facilitated and seldom observed stimuli suppressed. Develop-

mental stimuli probably do not look much like the orthogonal

surround stimuli (with the possible exception of corners). This

may be due to a separate explanation. Indeed, Dragoi and Sur

(2000) propose a lateral disinhibition mechanism to account for

orthogonal surround facilitation. In any case, the idea that there

is always suppression by iso-linear surrounds and facilitation

by orthogonal surrounds is an overly simplified view. In reality,

there are a wide variety of modulation patterns (see Levitt &

Lund, 1997, for example).

The work of Hupé et al. (2001) was unable to report any

influence of V2 on surround suppression effects and so does not

support this model. This negative result, though, focuses only

on near surround effects. Since far surround effects could be



Fig. 11. Example parameter range test. The I-to-E efficacy scale factor (IE) was

varied between 40 and 130. Across the range, surround suppression was

qualitatively similar. (Top). IEZ40. (Bottom). IEZ130.
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dominated by cortical feedback (Angelucci et al., 2002), it

would be interesting to see similar experiments using only far

surrounds. This work certainly does not propose that cortical

feedback is the only mechanism involved in surround

suppression. It appears that several different mechanisms

contribute simultaneously. Certainly, lateral connections have

a strong influence on center–surround interactions, especially

in the near surround. The role of feedforward connections from

LGN has not yet been completely explored. Also, cortical

feedback comes from several different areas to converge onto

V1 (Hupé et al., 1998; Mignard & Malpeli, 1991). What this

work does is propose a plausible model by which cortical

feedback can contribute.

The great challenge now is to tease apart how (and how

much) each mechanism contributes to center–surround

interactions. One place to start may be to recognize that lateral

connections may dominate the near surround interactions

(Hupé et al., 2001), but the far surround influences may be

dominated by cortical feedback (Angelucci et al., 2002). Using

this observation, experiments may be able to show how the

feedback and lateral interactions differ.

The model can be used to make a few predictions. The most

straight-forward is that in some cases, neurons will be

facilitated by the surround at all contrast levels, as shown in

Fig. 9. This should happen for a far–surround (where feedback

presumably dominates) that is very consistent with the center

stimulus. Also, this model implies that the effects of

facilitation/suppression from the far surround will disappear

when feedback is disabled. Thus, an experiment could be done

in the same style as the one by Hupé et al. (2001), but this time

concentrating on the effects due only to the far surround

(disabling MT as well as V2 would also be interesting). At first

glance it seems that the model predicts that V2 alone can

activate parts of V1, leading to hallucination or filling-in.

However, this would only be the case if V2 were sufficiently

activated, which might first require activation in V1. This

feedback might therefore only play a modulatory role in most

cases and specific predictions about inducing hallucination and

filling-in are difficult to make.

Finally, we believe this is a particularly important topic for

further research. Any light shed onto the roles of lateral and

feedback interactions can be exploited for computer vision

systems. These seem to be important mechanisms used in

animal vision systems, but have not been employed much in

our current efforts in man-made vision.
Table 2

Model parameter ranges

Model parameter Low value Nominal value High value

E-to-E efficacy 0.25 1.00 1.75

E-to-I efficacy 0.30 0.55 1.10

I-to-E efficacy 40 85 130

V2-to-V1 scale factor 2.40 3.75 6.00

These model parameters were tested over the indicated ranges. The suppressive

behavior was qualitatively similar over these parameter ranges.
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Appendix A. Parameter ranges

In order to allay fears that an extremely narrow parameter

set was found that accounts for the surround suppression

findings, key parameters were systematically altered. The

behavior at each of these new parameter settings was tested.

For example, when the strength of the excitatory-to-inhibitory
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neurons in the V2 model is changed from 85 to 40, a typical

suppression curve still shows qualitatively the same suppres-

sion (as seen in the top of Fig. 11). The ranges that were

verified to give the same qualitative results are shown in

Table 2. When the parameters went beyond these ranges, either

the behavior started to change or the model was not tested since

the parameter range was deemed large enough to give a robust

model.
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