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ABSTRACT: Motor imagery is one common paradigm
in brain computer interface (BCI) systems where the user
imagines moving a part of his/her body to control a com-
puter. Motor imagery is endogenous and requires a large
amount of training for the user to be able to control the
BCI. Therefore, the feedback that is provided to the user
is critical to ensure informative insight into improving
imagery skills. In this study, we investigate a new proto-
col for providing motor imagery feedback and compare it
to the conventional feedback scheme. The proposed feed-
back focuses on ‘elaborating’ how the user can improve
imagery as opposed to the conventional training proto-
cols which only provide information on whether the user
was ‘correct’ in performing imagery. Our results show
that providing more informative feedback results in more
efficient motor imagery training and is preferred by the
users.

INTRODUCTION

Brain computer interface (BCI) systems collect and infer
neural signals directly from the brain through bypassing
common neuromuscular pathways [1, 2]. One modality
to collect brain signals is electroencephalography (EEG)
which is popular for being non-invasive and inexpensive.
Motor imagery is one common paradigm in EEG-based
BCIs in which the user imagines a part of her/his body,
such as a hand, foot, tongue, etc. Motor imagery of dif-
ferent body parts results in different spatial patterns of
decrease in power across the scalp in mu (8-13 Hz) and
beta (14-30 Hz) frequency bands [3, 4, 7, 8]. These fea-
tures are used to distinguish among the imagined classes.
One of the advantages of motor imagery based BCIs is
that they are endogenous [5]; they do not depend on user
response to external stimulation. Endogenous BCIs have
several benefits: 1) They do not require the user to have
good visual or other sensory responses to respond to ex-
ogenous stimuli, 2) They do not require the computer
presentation of (possibly annoying or fatiguing) stimuli,
and 3) They have the potential to be used in natural asyn-
chronous communication. However, because they are en-
dogenous and depend on the user generating the signal,
there is wide individual differences in the ability to gen-
erate different discriminable motor imagery patterns for
different imagined body parts. Therefore, training users

to provide classifiable motor imagery signal is critical.
So far, there have been a few training methods proposed
in the literature, e.g. [9–13]. Lotte et al. [14] investigated
the current state-of-the-art training approaches and iden-
tified flaws in their design based on instructional design
literature. They looked at the training approaches at the
level of feedback provided to the user, instructions pro-
vided to her/him and the training task itself. Our cur-
rent study focuses on the feedback that the user receives.
In traditional motor imagery BCI training, the feedback
provided to the user is evaluative and corrective, where
it only tells the user whether he/she has performed the
task correctly and possibly with what confidence [14]. In
other words, traditional motor imagery training involves
giving the user feedback on the output of the classifi-
cation. However, this is like training someone to shoot
baskets by telling them how close the ball was to going
in without giving them information about whether they
overshot or undershot. In particular, participants may fail
to be successful at right hand vs. left hand motor imagery
because they are unable to cause mu-desynchronization
or they may fail to be successful because they are caus-
ing mu-desynchronization that is bilateral for both right-
and left-hand motor imagery. In the first case, they may
need to try harder, and in the second, they may need to
try less hard and focus on the side of interest to get more
lateralized signals.
Motivated by work of [6] we hypothesized that providing
richer feedback while users are learning motor imagery
would result in faster and better learning. To do so, we
decided to provide the users with not just the classifica-
tion output and its confidence, but a perceivable form of
features that are used by the classifier. In other words,
our proposed feedback is an example of ‘elaborated feed-
back’ as described by [23], where it will provide more
information and will let users not only evaluate their per-
formance based on the input to the classifier as opposed
to its 1-dimensional output, but also will provide specific
information about what could have gone wrong and direc-
tions for how the users can improve their motor imagery.

METHODS

We recorded data from 6 healthy participants recruited
from the UC San Diego student population. All partic-



ipants were naive to BCI and motor imagery skills and
before participating in the study, signed a consent form
that was approved by UC San Diego Institutional Review
Board. The demographic details of the participants (i.e.,
age, gender and handedness) are specified in Tab. 1.

Table 1: The demographics of participants.
Participant ID Age Gender Handedness
P1 18 Female Right
P2 18 Female Right
P3 19 Female Right
P4 21 Female Right
P5 21 Male Right
P6 18 Female Right

Each participant participated in a one-session experiment
consisting of 5 blocks, each consisting of 20 motor im-
agery trials. Each trial began with an arrow on the screen
pointing to the right or the left to specify the trial type.
After 1.5 seconds, the arrow disappeared and a cross
showed up in the center of the monitor and 1 second later,
a term “imagery” on top of the cross appeared. Partici-
pants were instructed to begin motor imagery of the cor-
responding hand (depending on the direction of the ar-
row) for 3 seconds until the cross disappeared. The par-
ticipants were instructed to imagine their action of choice
so long as it involved a hand movement. Fig. 1 shows an
example of the frames shown in one trial. At the end of
each trial in blocks 1, 3 and 5, no feedback was provided.
In blocks 2 and 4, the conventional and proposed elab-
orated feedback were provided which will be described
next. Participants 1, 2, and 6 were shown the elaborated
and conventional feedback in blocks 2 and 4 respectively.
Participants 3, 4, and 5 on the other hand, were presented
with the conventional feedback in block 2 and elaborated
feedback in block 4. This is to balance the order of the
provided feedback types.

Feedback 
/ or blank 

n-th trial 
n+1-th trial 

Figure 1: An example of a trial in the experiment.

We designed our experiment in python using the python-
based Simulation and Neuroscience Application (SNAP)
toolbox [18]. In each trial, data were downsampled to
100 Hz and Laplacian filtered [17] to partially compen-
sate for spatially distributed artifacts by subtracting the
mean of the four directly neighboring channels from each

channel. Next, an FIR filter of order 225 was used to
calculate the average of the normalized power in 3 sec-
onds of motor imagery in 8-13 Hz frequency band for the
channels specified over the right and left motor cortices
in Fig. 2. The conventional feedback was provided as the
difference between the power on the two sides and the
proposed feedback protocol showed the power on both
sides. Fig. 3 shows an example of the two types of feed-
back. Since motor imagery results in contra-lateral de-
synchronization of power [7, 8] the participants were in-
structed to maximize the bar height on the motor imagery
side.
Fig. 4 shows an example of how the same conventional
feedback can be mapped to two different elaborated ones;
the conventional feedback provides less information to
the user similar to the ball and basket example described
in the previous section.
As the power over motor cortices may be biased towards
one side, we trained a threshold to be the average of the
difference in the normalized power on right and left sides
of the motor cortex across trials of each block. In blocks 2
and 4, the threshold that was trained with trials in blocks
1 and 3 respectively, was used to adjust for the potential
bias. Therefore, the provided feedback to the participant
was based on the adjusted bar heights.

Figure 2: Electrode locations in 10-20 international sys-
tem EEG cap. The selected electrodes were used to cal-
culate power on each side of the motor cortices.

Conventional Elaborated 

Figure 3: Types of feedback.

Conventional Elaborated (a)  Elaborated (b) 

Figure 4: Two different elaborated feedback examples (a
and b) lead to the same conventional feedback.



EEG data were recorded with a 64-channel BrainAmp
system (Brain Products GmbH) located based on the in-
ternational 10-20 system, as Fig. 2 shows. Data were col-
lected with sampling rate of 5000 Hz but were downsam-
pled to 500 Hz for further processing in offline analysis.
We chose 500 Hz instead of 100 Hz — which was the rate
of the downsampled signal in the online experiment — to
keep information in higher frequencies for the purpose of
running independent component analysis (ICA) later.

MATLAB [15] and EEGLAB [16] were used for offline
analysis. Data were processed in two cases: 1) without
artifact removal to investigate the effect of the feedback
that was provided to the participants during the experi-
ment. 2) with artifact removal to investigate the effect of
training on brain signals and to verify that the participants
are not potentially using muscle movements to control the
bar heights.

In the first case, the raw data were filtered in 8 to 13 Hz
with a 500-tap FIR filter. Laplacian filter [17] was ap-
plied to partially compensate for spatially distributed ar-
tifacts by subtracting the mean of directly neighboring
channels from each channel. We looked at the ‘classifia-
bility’ of each trial in blocks 2 and 4 where the feedback
was present. ‘Classifiability’ is estimated as follows: first
the power on each channel on motor cortices is calculated
— as shown in Fig. 2. Then the power on each channel
was normalized to the sum of the powers on the 10 chan-
nels and the average of the power on each side of the mo-
tor cortex was used as the probability of that side being
selected by the classifier.

We also looked at the classification rates in blocks 1, 3
and 5 where no feedback was provided. To do so, we se-
lected three non-overlapping one-second time windows
to cover 3 seconds of imagery period in each trial. Since
there are 20 trials in each block, each block has a total
of 60 one-second windows of imagery. Next we applied
common spatial patterns (CSP) [21] to data from all 64
channels and selected the top 3 filters for each class. Lin-
ear discriminant analysis (LDA) [22] was chosen as the
classifier to classify right/left classes.

For the second case, we first filtered the raw data using
a 500-tap FIR filter in 1 to 200 Hz. Next, we removed
up to 6 noisy channels with large muscle artifacts mostly
from the temporal and one from the occipital cites. Then
the cleanline EEGLAB plugin was used to remove the
line noise [19]. We removed parts of the EEG data that
were suffering from large muscle artifacts; however, no
information from the 3 seconds of imagery was removed.
We ran independent component analysis (ICA) using the
AMICA [20] EEGLAB plugin to isolate eye and muscle
artifacts. Eye and muscle artifacts from the top 30 IC
components were removed. Similar analysis to the pre-
vious case were performed and the results are described
next. Significance in what follows is calculated with a
two-tailed t-test with 0.05 significance level.

RESULTS

To investigate how the probability of selecting the correct
class (left or right motor imagery) changes over time, we
looked at it as a function of the trial number in blocks 2
and 4. For each participant in each trial, the probability
of selecting the correct class is calculated as the ratio of
the power on the corresponding side as described in pre-
vious section. A line was fit and the slope of the line was
estimated. Fig. 5 shows the slopes calculated in case one
(without artifact rejection) as height of the bars in blocks
2 and 4 in separate plots based on whether conventional
feedback was provided in block 2 and elaborated in block
4 or vice versa. Fig. 6 shows the same for data from case
two (with artifact rejection). Note that P1, P2 and P6
show some improved performance when the elaborated
feedback is provided to them — i.e., in block 2. How-
ever, they show decreased performance across the trials
in block 4 — where conventional feedback was provided
subsequently. P3 and P5 who were provided with conven-
tional feedback first in block 2, show decreased perfor-
mance; however, they both show improved performance
during the elaborated feedback in block 4. P4 shows im-
proved performance during both feedback types; how-
ever, the improvement is higher in the elaborated feed-
back block when only brain signals are considered, i.e. in
Fig. 6. This shows that the proposed feedback paradigm
could potentially be more effective than the conventional
feedback.
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Figure 5: Percent change of classification rate per trial in
data during feedback blocks, without artifact rejection.

Classification results in no-feedback blocks — 1, 3, and 5
— are provided in tables 2a, 2b, 3a, and 3b. The training
and testing were performed within each block separately



and we made sure that both train and test sets were bal-
anced and the test set was absolutely separate from the
training. We ran 10-fold cross-validation while making
sure that the three one second time windows from one
trial will appear all in either train or test sets and the re-
sults are presented in Tab. 2a and Tab. 2b. For ease of
comparison, we have included the type of feedback in
blocks 2 and 4 in these tables: EF and CF stand for elab-
orated feedback and conventional feedback respectively.
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Figure 6: Percent change of classification rate per trial in
data during feedback blocks, with artifact rejection .

Table 2a: P1, P2, P6 performances without artifact rejection
ID B1 B2 B3 B4 B5
P1 0.58 / 0.048 EF 0.60 / 0.051 CF 0.37 / 0.074
P2 0.73 / 0.051 EF 0.85 / 0.058 CF 0.80 / 0.065
P6 0.75 / 0.057 EF 0.85 / 0.058 CF 0.78 / 0.043

Table 2b: P3, P4, P5 performances without artifact rejection.
ID B1 B2 B3 B4 B5
P3 0.52 / 0.080 CF 0.57 / 0.037 EF 0.65 / 0.063
P4 0.82 / 0.072 CF 0.87 / 0.048 EF 1.00 / 0.000
P5 0.42 / 0.057 CF 0.57 / 0.057 EF 0.52 / 0.052

P1, P2 and P6 were provided with the elaborated feed-
back in block 2. P2 and P6 show clear improvement in
block 3 compared to block 1 which can be associated with
the training they received in block 2. These two partici-
pants also show decreased performance in block 5 which
is right after block 4 where they were provided with the
conventional feedback but the decreased performance is
not significant. Performance of P1 in all three blocks

is below chance level which is calculated as described
in [24] to be 0.62% with significance level of 0.05.
P3, P4 and P5 were provided with conventional feedback
in block 2 and elaborated feedback in block 4. P3 and P4
show improvement after being exposed to the proposed
elaborated feedback in block 4. Especially, P3 shows
chance level performance in blocks 1 and 3 but above
chance performance in block 5. However, P5 shows
chance level performance in all blocks.
To make sure that the classification rates are not affected
by non-brain sources including eye and muscle move-
ments, we performed the same analysis described above
with the ICA-cleaned data. In this case, we filtered each
trial in 8 to 30 Hz frequency band to include both mu (8-
13 Hz) and bet (14-30 Hz) frequency bands. The reason
we did not include the beta band when we were classify-
ing the non-ICA-cleaned data is that beta band is usually
more contaminated with muscle artifacts. After filtering
the data, non-overlapping one second time windows were
selected and 10-fold cross-validation was performed —
while making sure that the three one second time win-
dows from one trial will appear all in either the train or
test set — to classify right/left motor imagery in blocks
1, 3, and 5 separately.

Table 3a: P1, P2, P6 performances with artifact rejection
ID B1 B2 B3 B4 B5
P1 0.55 / 0.043 EF 0.55 / 0.056 CF 0.47 / 0.060
P2 0.82 / 0.084 EF 0.85 / 0.046 CF 0.85 / 0.052
P6 0.77 / 0.079 EF 0.85 / 0.058 CF 0.83 / 0.043

Table 3b: P3, P4, P5 performances with artifact rejection.
ID B1 B2 B3 B4 B5
P3 0.68 / 0.052 CF 0.52 / 0.052 EF 0.78 / 0.071
P4 0.80 / 0.074 CF 0.82 / 0.063 EF 1.00 / 0.000
P5 0.43 / 0.051 CF 0.55 / 0.043 EF 0.55 / 0.086

Tab. 3a and Tab. 3b show the classification results. For
ease of comparison, we have included the type of feed-
back in blocks 2 and 4 in these tables: EF and CF stand
for elaborated feedback and conventional feedback re-
spectively. P3 and P4 who were provided with the con-
ventional feedback first and proposed feedback next, both
show significantly improved classification rates in block
5 compared to blocks 1 and 3. On the other hand, P1 and
P5 do not show improved performance in either of the
blocks similar to results in Tab. 3 which is classification
in the same blocks before artifact rejection. Performance
between blocks 3 and 5 in P2 and P6 is not significant
after artifact rejection. It is possible that the participant
has been controlling the bars with muscle movements and
that is why before artifact rejection the performance in
block 3 was higher than chance level whereas after ar-
tifact rejection, performance in blocks 3 and 5 are sim-
ilar. Nevertheless, this shows that the elaborated feed-
back was more effective for the participant to somehow
(either through brain signals or muscle) control the bars.
Note that since the number of samples in each class is 30,



chance level calculated as described in [24] is 0.62% with
significance level of 0.05.

DISCUSSION AND CONCLUSION

In this pilot study, we have explored the capability of a
richer elaborated feedback in training motor imagery BCI
and proposed a training protocol that suggests providing
the participant the input to the classifier, i.e. an inter-
pretable version of the features that are available to the
classification algorithm as opposed to the classifier out-
put. Since any classifier needs motor imagery data from
the user and our participants were all naive to motor im-
agery BCI, we chose to use a very simple classifier, i.e. a
threshold, to minimize the effect of instability in a clas-
sifier trained with motor imagery data that is changing as
the user learns how to control his/her event-related de-
synchronization signal. All our participants (6/6) chose
the elaborated feedback in an answer to a question on the
post-study questionnaire: “Which type of feedback did
you like better and found more useful?”. This shows that
the elaborated feedback has the potential to replace the
standard conventional feedback paradigm for motor im-
agery training.
Our results from offline analysis show that the elaborated
feedback protocol is potentially more powerful in training
motor imagery which is expected as described in [23]. In
fact, our participants found the proposed feedback more
‘informative’ which again emphasizes this point.
One downside of the conventional feedback strategies
that our proposed protocol could overcome is the need to
have the first block of training with no-feedback or sham
feedback as there is no data yet to train a classifier on
— the conventional feedback is the output of a classi-
fier. The issue occurs if the participant does not provide
proper imagery during this time period, then the classi-
fier is trained on ‘incorrect’ data. Our method provides
the features to the user that later could be used to train a
classifier on. We propose to use the power on the motor
imagery cortices and train a threshold to compensate for
biases towards either side. Even if the bias is not compen-
sated for, the participant could still be provided with the
power on two sides of motor cortices and be instructed to
control the bars towards the ideal bar heights, i.e. sup-
pressed power on left side in right motor imagery and
suppressed power on right side in left motor imagery tri-
als. Hence, our proposed elaborated feedback can func-
tion without training data.
To evaluate the elaborated feedback further, we are in-
terested in comparing it with the conventional feedback
across multiple sessions and to see whether there is more
significant difference between the two schemes when
more time elapses between training sessions.
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