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Abstract

In supervised learning there is usually a clear distinction between
inputs and outputs — inputs are what you will measure, outputs
are what you will predict from those measurements. This paper
shows that the distinction between inputs and outputs is not this
simple. Some features are more useful as extra outputs than as
inputs. By using a feature as an output we get more than just the
case values but can learn a mapping from the other inputs to that
feature. For many features this mapping may be more useful than
the feature value itself. We present two regression problems and
one classification problem where performance improves if features
that could have been used as inputs are used as extra outputs
instead. This result is surprising since a feature used as an output
is not used during testing.

1 Introduction

The goal in supervised learning is to learn functions that map inputs to outputs
with high predictive accuracy. The standard practice in neural nets is to use all
features that will be available for the test cases as inputs, and use as outputs only
the features to be predicted.

Extra features available for training cases that won’t be available during testing
can be used as extra outputs that often benefit the original output[2][5]. Other
ways of adding information to supervised learning through outputs include hints[1],
tangent-prop[7], and EBNNJ[8]. In unsupervised learning it has been shown that
inputs arising from different modalities can provide supervisory signals (outputs for
the other modality) to each other and thus aid learning [3][6].

If outputs are so useful, and since any input could be used as an output, would some
inputs be more useful as outputs? Yes. In this paper we show that in supervised
backpropagation learning, some features are more useful as outputs than as inputs.
This is surprising since using a feature as an output only extracts information from
it during training; during testing it is not used.
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This paper uses the following terms: The Main Task is the output to be learned.
The goal i1s to improve performance on the Main Task. Regular Inputs are the
features provided as inputs in all experiments. Extra Inputs (Extra Outputs) are
the extra features when used as inputs (outputs). STD is standard backpropagation
using the Regular Inputs as inputs and the Main Task as outputs. STD+IN uses
the Extra Features as Extra Inputs to learn the Main Task. STD+QOUT uses the
Extra Features, but as Extra Outputs learned in parallel with the Main Task, using
Just the Regular Inputs as inputs.

2 Poorly Correlated Features

This section presents a simple synthetic problem where it is easy to see why using a
feature as an extra output is better than using that same feature as an extra input.

Consider the following function:
F1(A,B) = SIGMOID(A+B), SIGMOID(x) = 1/(1 + (=)

The STD net in Figure 1a has 20 inputs, 16 hidden units, and one output. We use
backpropagation on this net to learn F1(). A and B are uniformly sampled from the
interval [-5,5]. The network’s input is binary codes for A and B. The range [-5,5] is
discretized into 2'° bins and the binary code of the resulting bin number is used as
the input coding. The first 10 input units receive the code for A and the second 10
that for B. The target output is the unary real (unencoded) value F1(A,B).
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Figure 1: Three Neural Net Architectures for Learning F1

Backpropagation is done with per-epoch updating and early stopping. Each trial
uses new random training, halt, and test sets. Training sets contain 50 patterns.
This is enough data to get good performance, but not so much that there is not
room for improvement. We use large halt and test sets — 1000 cases each — to
minimize the effect of sampling error in the measured performances. Larger halt
and test sets yield similar results. We use this methodology for all the experiments
in this paper.

Table 1 shows the mean performance of 50 trials of STD Net 1a with backpropaga-
tion and early stopping.

Now consider a similar function:
F2(A,B) = SIGMOID(A-B).

Suppose, in addition to the 10-bit codings for A and B, you are given the unencoded
unary value F2(A,B) as an extra input feature. Will this extra input help you learn
F1(A,B) better? Probably not. A+B and A-B do not correlate for random A and B.
The correlation coefficient for our training sets is typically less than +0.01. Because
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Table 1: Mean Test Set Root-Mean-Squared-Error on F1
[ Network [ Trials [ Mean RMSE | Significance |

STD 90 0.0648 -
STD+IN 50 0.0647 ns
STD+OUT 50 0.0631 0.013*

of this, knowing the value of F2(A,B) does not tell you much about the target value
F1(A,B) (and vice-versa).

F1(A,B)’s poor correlation with F2(A,B) hurts backprop’s ability to learn to use
F2(A,B) to predict F1(A,B). The STD+IN net in Figure 1b has 21 inputs — 20
for the binary codes for A and B, and an extra input for F2(A,B). The 2nd line in
Table 1 shows the performance of STD+IN for the same training, halting, and test
sets used by STD; the only difference is that there is an extra input feature in the
data sets for STD+IN. Note that the performance of STD+IN is not significantly
different from that of STD — the extra information contained in the feature F2(A,B)
does not help backpropagation learn F1(A,B) when used as an eztra input.

If F2(A,B) does not help backpropagation learn F1(A,B) when used as an input,
should we ignore it altogether? No. F1(A,B) and F2(A,B) are strongly related.
They both benefit from decoding the binary input encoding to compute the subfea-
tures A and B. If, instead of using F2(A,B) as an extra input, it is used as an extra
output trained with backpropagation, it will bias the shared hidden layer to learn
A and B better, and this will help the net better learn to predict F1(A,B).

Figure 1c shows a net with 20 inputs for A and B, and 2 outputs, one for F1(A,B)
and one for F2(A,B). Error is back-propagated from both outputs, but the per-
formance of this net is evaluated only on the output F1(A,B) and early stopping
is done using only the performance of this output. The 3rd line in Table 1 shows
the mean performance of 50 trials of this multitask net on F1(A,B). Using F2(A,B)
as an extra output significantly improves performance on F1(A,B). Using the ex-
tra feature as an extra output is better than using it as an extra input. By using
F2(A,B) as an output we make use of more than just the individual output values
F2(A,B) but learn to extract information about the function mapping the inputs to
F2(A,B). This is a key difference between using features as inputs and outputs.

The increased performance of STD+OUT over STD and STD+IN is not due to
STD+OUT reducing the capacity available for the main task F1(). All three nets
— STD, STD+IN, STD+OUT — perform better with more hidden units. (Because
larger capacity favors STD+OUT over STD and STD+IN, we report results for the
moderate sized 16 hidden unit nets to be fair to STD and STD+IN.)

3 Noisy Features

This section presents two problems where extra features are more useful as inputs
if they have low noise, but which become more useful as outputs as their noise
increases. Because the extra features are ideal features for these problems, this
demonstrates that what we observed in the previous section does not depend on
the extra features being contrived so that their correlation with the main task is
low — features with high correlation can still be more useful as outputs.

Once again, consider the main task from the previous section:
F1(A,B) = SIGMOID(A+B)
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Now consider these extra features:
EF(A) = A + NOISE_SCALE * Noisel
EF(B) = B + NOISE_SCALE * Noise2

Noisel and Noise2 are uniformly sampled on [-1,1]. If NOISE_SCALE is not too
large, EF(A) and EF(B) are excellent input features for learning F1(A,B) because
the net can avoid learning to decode the binary input representations. However, as
NOISE_SCALE increases, EF(A) and EF(B) become less useful and it is better for
the net to learn F1(A,B) from the binary inputs for A and B.

As before, we try using the extra features as either extra inputs or as extra outputs.
Again, the training sets have 50 patterns, and the halt and test sets have 1000
patterns. Unlike before, however, we ran preliminary tests to find the best net size.
The results showed 256 hidden units to be about optimal for the STD nets with
early stopping on this problem.
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Figure 2: STD, STD+IN, and STD+OUT on F1 (left) and F3 (right)

Figure 2a plots the average performance of 50 trials of STD+IN and STD+OUT
as NOISE_SCALE varies from 0.0 to 10.0. The performance of STD, which does
not use EF(A) and EF(B), is shown as a horizontal line; it is independent of
NOISE_SCALE. Let’s first examine the results of STD+IN which uses EF(A) and
EF(B) as extra inputs. As expected, when the noise is small, using EF(A) and
EF(B) as extra inputs improves performance considerably. As the noise increases,
however, this improvement decreases. Eventually there is so much noise in EF(A)
and EF(B) that they no longer help the net if used as inputs. And, if the noise
increases further, using EF(A) and EF(B) as extra inputs actually hurts. Finally,
as the noise gets very large, performance asymptotes back towards the baseline.

Using EF(A) and EF(B) as extra outputs yields quite different results. When the
noise is low, they do not help as much as they did as extra inputs. As the noise
increases, however, at some point they help more as extra outputs than as extra
inputs, and never hurt performance the way the noisy extra inputs did.

Why does noise cause STD+IN to perform worse than STD? With a finite training
sample, correlations between noisy inputs and the main task cause the network to
use the noisy inputs. To the extent that the main task is a function of the noisy
inputs, it must pass the noise to the output, causing the output to be noisy. Also,
as the net comes to depend on the noisy inputs, it depends less on the noise-free
binary inputs. The noisy inputs ezplain away some of the training signal, so less is
available to encourage learning to decode the binary inputs.
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Why does noise not hurt STD+OUT as much as it hurts STD+IN? As outputs, the
net is learning the mapping from the regular inputs to EF(A) and EF(B). Early
in training, the net learns to interpolate through the noise and thus learns smooth
functions for EF(A) and EF(B) that have reasonable fidelity to the true mapping.
This makes learning less sensitive to the noise added to these features.

3.1 Another Problem

F1(A,B) is only mildly nonlinear because A and B do not go far into the tails of
the SIGMOID. Do the results depend on this smoothness? To check, we modified
F1(A,B) to make it more nonlinear. Consider this function:

F3(A,B) = SIGMOID(EXPAND(SIGMOID(A)-SIGMOID(B)))

where EXPAND scales the inputs from (SIGMOID(A)-SIGMOID(B)) to the range
[-12.5,12.5], and A and B are drawn from [-12.5,12.5]. F3(A,B) is significantly more
nonlinear than F1(A,B) because the expanded scales of A and B, and expanding
the difference to [-12.5,12.5] before passing it through another sigmoid, cause much
of the data to fall in the tails of either the inner or outer sigmoids.

Consider these extra features:
EF(A) = SIGMOID(A) + NOISE_SCALE * Noisel
EF(B) = SIGMOID(B) + NOISE_SCALE * Noise2

where Noises are sampled as before. Figure 2B shows the results of using extra
features EF(A) and EF(B) as extra inputs or as extra outputs. The trend is similar
to that in Figure 2A but the benefit of STD+OUT is even larger at low noise. The
data for 2a and 2b are generated using different seeds, 2a used steepest descent and
Mitre’s Aspirin simulator, 2b used conjugate gradient and Toronto’s Xerion simu-
lator, and F1 and F3 do not behave as similarly as their definitions might suggest.
The similarity between the two graphs is due to the ubiquity of the phenomena, not
to some small detail of the test functions or how the experiments were run.

4 A Classification Problem

This section presents a problem that combines feature correlation (Section 1) and
feature noise (Section 2) into one problem. Consider the 1-D classification problem,
shown in Figure 3, of separating two Gaussian distributions with means 0 and 1,
and standard deviations of 1. This problem is simple to learn if the 1-D input
is coded as a single, continuous input but can be made harder by embedding it
non-linearly in a higher dimensional space. Consider encoding input values defined
on [0.0,15.0] using an interpolated 4-D Gray code(GC); integer values are mapped
to a 4-D binary Gray code and intervening non-integers are mapped linearly to
intervening 4-D vectors between the binary Gray codes for the bounding integers.
As the Gray code flips only one bit between neighboring integers this involves simply
interpolating along the 1 dimension in the 4-D unit cube that changes. Thus 3.4 is
encoded as .4(GC(4) — GC(3)) + GC(3).

The extra feature is a 1-D value correlated (with correlation p) with the original
unencoded regular input, X. The extra feature is drawn from a Gaussian distribution
with mean p x (X — .5)+ .5 and standard deviation /(1 — p?). Examples of the
distributions of the unencoded original dimension and the extra feature for various
correlations are shown in Figure 3. This problem has been carefully constructed so
that the optimal classification boundary does not change as p varies.

Consider the extreme cases. At p = 1, the extra feature is exactly an unencoded
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Figure 3: Two Overlapped Gaussian Classes (left), and An Extra Feature (y-axis)
Correlated Different Amounts (p = 0: no correlation, p = 1: perfect correlation)
With the unencoded version of the Regular Input (x-axis)

version of the regular input. A STD+IN net using this feature as an extra input
could ignore the encoded inputs and solve the problem using this feature alone. An
STD+OUT net using this extra feature as an extra output would have its hidden
layer biased towards representations that decode the Gray code, which is useful to
the main classification task. At the other extreme (p = 0), we expect nets using the
extra feature to learn no better than one using just the regular inputs because there
is no useful information provided by the uncorrelated extra feature. The interesting
case is between the two extremes. We can imagine a situation where as an output,
the extra feature is still able to help STD+OUT by guiding it to decode the Gray
code but does not help STD+IN because of the high level of noise.
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Figure 4: STD, STD+IN, and STD+OUT vs. p on the Classification Problem

The class output unit uses a sigmoid transfer function and cross-entropy error mea-
sure. The output unit for the correlated extra feature uses a linear transfer function
and squared error measure. Figure 4 shows the average performance of 50 trials of
STD, STD+IN, and STD+OUT as a function of p using networks with 20 hidden
units, 70 training patterns, and halt and test sets of 1000 patterns each. As in the
previous section, STD+IN is much more sensitive to changes in the extra feature
than STD+OUT, so that by p = 0.75 the curves cross and for p less than 0.75, the
dimension is actually more useful as an output dimension than an extra input.

5 Discussion

Are the benefits of using some features as extra outputs instead of as inputs large
enough to be interesting? Yes. Using only 1 or 2 features as extra outputs instead of
as inputs reduced error 2.5% on the problem in Section 1, more than 5% in regions
of the graphs in Section 2, and more than 2.5% in regions of the graph in Section
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3. In domains where many features might be moved, the net effect may be larger.

Are some features more useful as outputs than as inputs only on contrived problems?
No. In this paper we used the simplest problems we could devise where a few
features worked better as outputs than as inputs. But our findings explain a result
we noted previously, but did not understand, when applying multitask learning to
pneumonia risk prediction[4]. There, we had the choice of using lab tests that would
be unavailable on future patients as extra outputs, or using poor — i.e., noisy —
predictions of them as extra inputs. Using the lab tests as extra outputs worked
better. If one compares the zero noise points for STD+OUT (there’s no noise in a
feature when used as an output because we use the values in the training set, not
predicted values) with the high noise points for STD+IN in the graphs in Section
2, it is easy to see why STD+OUT could perform much better.

This paper shows that the benefit of using a feature as an extra output is different
from the benefit of using that feature as an input. As an input, the net has access
to the values on the training and test cases to use for prediction. As an output,
however, the net is instead biased to learn a mapping from the other inputs in the
training set to that output. From the graphs it is clear that some features help
when used either as an input, or as an output. Given that the benefit of using a
feature as an extra output is different from that of using it as an input, can we
get both benefits? Our early results with techniques that reap both benefits by
allowing some features to be used simultaneously as both inputs and outputs while
preventing learning direct feedthrough identity mappings are promising.
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