
Network: Comput. Neural Syst.9 (1998) 73–84. Printed in the UK PII: S0954-898X(98)88342-5

Cascaded redundancy reduction

Virginia R de Sa† and Geoffrey E Hinton
Department of Computer Science, University of Toronto, Toronto, Ontario, M5S 1A4, Canada

Received 13 September 1997

Abstract. We describe a method for incrementally constructing a hierarchical generative model
of an ensemble of binary data vectors. The model is composed of stochastic, binary, logistic
units. Hidden units are added to the model one at a time with the goal of minimizing the
information required to describe the data vectors using the model. In addition to the top–down
generative weights that define the model, there are bottom–up recognition weights that determine
the binary states of the hidden units given a data vector. Even though the stochastic generative
model can produce each data vector in many ways, the recognition model is forced to pick just
one of these ways. The recognition model therefore underestimates the ability of the generative
model to predict the data, but this underestimation greatly simplifies the process of searching
for the generative and recognition weights of a new hidden unit.

1. Introduction

Unsupervised learning algorithms attempt to extract statistical structure from an ensemble
of input vectors without the help of an additional teaching signal. One way of defining
what it means to extract statistical structure is to appeal to a stochastic generative model
that produces data vectors from hidden stochastic variables. If a relatively simple generative
model is likely to have produced the observed data vectors, then we can view the underlying
states that the model uses to generate a particular data vector as an economical representation
of that vector.

In this paper we consider the problem of fitting a generative model that is composed of
multiple layers of stochastic binary units. The bottom layer consists of ‘visible’ units which
correspond to the individual components of a binary data vector. The model generates data
by starting at the top layer and working downwards. At the top level, each unit turns on
randomly and independently with a probability that depends only on its generative bias.
At each subsequent level, a unit,i, receives top–down input that depends on the already
decided binary states,sj , of units in the layer above and the generative weights,gj,i . This
top–down input is combined with the unit’s generative bias‡, g0,i to produce the unit’s ‘total
generative input’,xi :

xi = g0,i +
∑
j>i

sjgj,i (1)

† Present address: Sloan Center for Theoretical Neurobiology, Department of Physiology—Box 0444, 513
Parnassus Ave, San Francisco, CA 94143-0444, USA.
‡ The bias is equivalent to a generative weight from a ‘bias’ unit that is always on. For notational convenience
we define this node as unit 0.

0954-898X/98/010073+12$19.50c© 1998 IOP Publishing Ltd 73

74 V R de Sa and G E Hinton

The total generative input is then put through a logistic function to determine the
probability,pi , of the unit being turned on:

pi = σ(xi) = 1

1+ e−xi
. (2)

Because the units are stochastic, each top–down generative pass through the model will
typically produce a different data vector and each data vector can typically be produced in
many different ways.

If we start with a multilayer model with a fixed architecture and we want to learn the
generative weights and biases, the obvious objective function is the log likelihood of the
observed data under the generative model:∑

d

logp(d|θ) =
∑
d

log

(∑
α

p(α|θ)p(d|α, θ)
)

(3)

whered is an index over data vectors,α is an index over all possible assignments of binary
states to the hidden units andθ is the generative weights and biases.

If units receive top–down generative connections from many units in the layer above,
to maximize this objective function using either the EM algorithm or gradient ascent
is an intractable problem. Both of these algorithms need to compute the posterior
distribution over exponentially many hidden state vectors,α, given a data vector,d, and
the generative parameters,θ . Instead of computing the posterior distribution exactly, it can
be approximated using Gibbs sampling (Neal 1992) or mean-field methods (Jaakkolaet al
1996), though neither of these approaches seems to have much biological plausibility.

A Helmholtz machine (Dayanet al 1995) uses a separate set of recognition connections
to compute an approximation to the posterior distribution. It can be shown that the use of
an approximation still allows EM to maximize a lower bound on the log probability of the
data, with the tightness of the bound depending on the quality of the approximation (Neal
and Hinton 1998). For one version of the Helmholtz machine (Hintonet al 1995), there is
a very simple ‘wake–sleep’ learning algorithm that uses only locally available information.

An extreme version of the idea behind Helmholtz machines is for the recognition
connections to approximate the posterior distribution using a single vector of hidden states.
Although this provides a much worse bound than the other approximations it greatly
simplifies the search for the recognition and generative weights because there is no need
to integrate across the many alternative ways of producing the data. The hope is that the
computational convenience will compensate for the looser bound. A secondary aim is to
see how much is gained by allowing the recognition connections of a Helmholtz machine
to produce a whole distribution rather than a single hidden state vector†. In this form,
the algorithm is similar to that of Redlich (1993). The biggest difference is in the search
strategy and the construction in this case of a stochastic generative model.

Given a data vector,d, the recognition connections produce a binary state vector,sd ,
over the hidden units. Usingsd we get an upper bound on the negative log probability of
the data:

− logp(d|θ) = − log
∑
α

p(α|θ)p(d|α, θ)

6 − logp(sd |θ)p(d|sd, θ). (4)

† This is essentially the same debate as Viterbi versus Baum–Welch in the fitting of hidden Markov models, except
that Baum–Welch computes the true posterior distribution rather than just an approximation to it.

Cascaded redundancy reduction 75

This bound and its derivatives can be computed in a time that is linear in the number
of connections, so it is much more efficient to perform gradient descent in the upper bound
than in the true negative log probability of the data.

2. A minimum description length (MDL) interpretation of the objective function

There is an alternative interpretation of the upper bound which is mathematically equivalent,
but conceptually different. We think in terms of a communication game in which a sender
must communicate each data vector to a receiver. Rather than sending the individual
components of each data vector separately, the sender first uses the recognition connections
to produce a hierarchical representation of the data vector. Then she sends this representation
starting at the top level and working downwards. The idea is that if the sender has found
a good model for representing the data, it should take fewer bits to send the data using
the representations prescribed by the model than to send the raw data. In the full MDL
framework, we must also include the one-time cost of communicating the model itself. In
this paper we ignore the model cost, but it could be used as a criterion for deciding when
to stop enlarging the model (only add the new unit when the improvement in coding cost is
more than the cost of communicating the new unit; this is dependent on the coding strategy
for the weights).

According to Shannon’s coding theorem, if a sender and a receiver have agreed upon
a probability distribution under which a discrete event has probabilityp, the event can
be communicated using− log2p bits. This is an asymptotic result that involves using
block coding techniques, but the details are irrelevant here. On average, it is best for the
sender and receiver to agree on the correct probability distribution, but this is not required.
They can use any distribution they like. For communicating the binary state,sdi , of unit i
that is produced by the recognition connections, the sender and receiver use the Bernoulli
distributionpdi , 1− pdi that is obtained by applying the generative model to the states in
the layer above (see equation (2)). This distribution is available to the receiver because
the states of the units in the layer above have already been communicated. So it requires
−sdi log2p

d
i − (1− sdi) log2(1− pdi) bits to communicatesdi . The cost of communicating a

data vector is simply the sum of this quantity over all units, including the visible units that
represent the data. So the description length is

C(d) =
∑
i

−sdi log2p
d
i − (1− sdi) log2(1− pdi)

= − logp(sd |θ)p(d|sd, θ). (5)

3. Why a hidden unit helps

Consider the cost of describing the data using no hidden units. The only adjustable
parameters in the model are the generative biases of the visible units. The cost in equation (5)
is minimized by setting these biases so thatpi = σ(g0,i) is equal to the fraction of the data
vectors in which uniti is on. We call this the ‘base-rate’ model. The base-rate model makes
good use of the individual frequencies with which visible units come on, but it ignores all
correlations. Now, suppose we have a single hidden unit,k. If a subset of the visible
units tend to come on together, this redundancy can be captured by setting the recognition
weights,ri,k, of the hidden unit so that it comes on in these circumstances and setting its
generative weights,gk,i , so as to increasepi for all the units in the subset. By modifying

76 V R de Sa and G E Hinton

the generative biases of the visible units it is also possible to reducepi when the hidden
unit is off. In effect, the hidden unit allows the base rates to be dependent on which data
vector is being described. With just one hidden unit we obtain a mixture of two base-rate
models.

After adding one hidden unit, we could split the data into two disjoint subsets and apply
the same algorithm again to each subset separately. This would create a tree structure and
would be a natural extension of decision tree algorithms like CART (Breimanet al 1984)
to the task of probability density estimation. Unfortunately, splitting the data in this way is
usually a bad strategy when there are multiple different regularities in the data. Suppose,
for example, that components of the data vector can be split into two subsets. Within each
subset there are weak correlations, but between subsets components are independent. The
first split in a tree can use all of the data to detect the redundancy within one of the subsets,
but at the next level down the other redundancy must be discovered separately in each half
of the tree using only half the data. To avoid this problem, we consider all of the data when
adding each new hidden unit, but we take into account the work that is already being done
by the previous hidden units in creating appropriate top–down probabilities for describing
the states of lower units. We also allow new hidden units to receive recognition connections
from existing hidden units and to send generative connections to them. In adding a new
hidden unit,k, we greedily attempt to minimize the cost of describing the data using the
new unit and all the previous ones. This cost includes the cost of describing the state ofk

and the cost of describing the state of every pre-existing unit,i, using the new generative
probabilities created by combining the new bias fori with the generative weight fromk
and the pre-existing generative weights from units abovei:

C =
∑
d

(−sdk logσ(g0,k)− (1− sdk) log[1− σ(g0,k)]
)

+
∑
d

∑
i

(−sdi log[σ(xi)] − (1− sdi) log[1− σ(xi)]
)

(6)

wherexi is the generative input to uniti:

xi = g0,i + sdk gk,i +
∑
k>j>i

sdj gj,i .

The term
∑

k>j>i s
d
j gj,i is unaffected by adding unitk, so it can be stored for each data

vector in the training set, thus eliminating much computation. To emphasize this and to
simplify subsequent equations we define

Gd
k>j>i ≡

∑
k>j>i

sdj gj,i . (7)

In searching for the best generative and recognition weights fork, we allow the
generative biases of all earlier units to be modified, but not the other generative weights or
the recognition weights or biases of other units.

4. Creating a smooth search space

Once a new hidden unit has been added to the network, it behaves deterministically. Its
recognition weights cause it to be either on or off for each data vector. However, the
search for a suitable set of recognition weights is easier if the weights have a smooth,
differentiable effect on the unit’s behaviour. This can be achieved by using a stochastic unit
whose probability of being on is a smooth monotonic function of its recognition weights.

Cascaded redundancy reduction 77

Each data vector determines a single state for all previous hidden units but for the new
unit we consider both possible states and compute the expected value of the cost function
in equation (6) given this stochastic behaviour. To make the cost function represent the
negative log probability of the data vector allowing for both states of the new hidden unit, it
is necessary to subtract the entropy of the state of the new hidden unit, as explained in Hinton
and Zemel (1994). If this entropy term is omitted, the expected cost is always minimized
by scaling up all of the units recognition weights so that it behaves deterministically.

While searching for the best recognition weights we want the hidden unit to behave
stochastically in order to smooth the search space, but at the conclusion of the search
we want the hidden unit to behave deterministically. This can be achieved by using a
‘temperature’ parameter which scales both the entropy term and the softness of the logistic
function used in recognition (but not the one used in generation). During the search the
temperature is reduced from 1 to 0 in small steps.

At a given temperature, the cost function to be minimized is

C =
∑
d

∑
i<k

(
qdk
[−sdi log

(
σ(Gd

k>j>i + g0,i + gk,i)
)

− (1− sdi) log
(
1− σ(Gd

k>j>i + g0,i + gk,i)
)]

+(1− qdk)
[−sdi logσ(Gd

k>j>i + g0,i)

− (1− sdi) log
(
1− σ(Gd

k>j>i + g0,i)
)])

+
∑
d

[−qdk logσ(g0,k)− (1− qdk) log
(
1− σ(g0,k)

)]
+
∑
d

T
[
(qdk logqdk)+ (1− qdk) log(1− qdk)

]
(8)

where qdk is the recognition probability of unitk for data vectord. The last line of
equation (8) is the entropy of unitk (weighted by−T) and the penultimate line is the
expected cost of coding the state of unitk given its generative bias. The first two lines of
the equation are the cost of coding all the other units given that unitk is on, weighted by
the probability thatk is on. The third and fourth lines are the cost ifk is off, weighted by
the corresponding probability.

5. The standard CRR learning procedure

We have explored several variants of the cascaded redundancy reduction (CRR) learning
procedure. To simplify the discussion we first describe the ‘standard’ procedure.

The outermost loop of the procedure consists of adding hidden units one at a time in a
cascaded fashion (shown in figure 1) as in Fahlman and Lebiere (1990). Once a unit has
been added, its recognition weights and bias are never changed.

In searching for the best generative and recognition weights for the new unit, CRR
decreases the temperature from 1 to 0 in steps, and at each temperature it performs an
alternating optimization that closely resembles the EM algorithm. Holding the recognition
weights fixed, an iterative search is performed for the optimal generative weights and biases
(an M-step). Then, holding the generative weights and biases fixed, the recognition weights

78 V R de Sa and G E Hinton

d

generative connections

recognition connections

j

k,i

0,i

i,k

0,kg

0,k

0,j

k>j>i
d

d

d

q

g
r

g

g
 s

s

G

r

i

r0,j

k

Figure 1. The CRR network. The binary activity of uniti, resulting from application of pattern
d to the network, is given bysdi . The unit currently being considered (k) has analogue activity
given byqdk . The recognition weight from uniti to unit k is given byri,k and the generative
weights fromk to i by gk,i The bias unit is defined to be unit 0. For a given input patternd

we represent the sum generative input from alladdedunits j to input unit i by Gdk>j>i .

and bias are iteratively improved (a partial E-step). The overall algorithm has the form:

Set the initial generative biases for visible units
Repeat adding hidden units until stopping criterion is met

Create a new unit, k, with random recognition weights and
recognition bias

Set T = 1
Repeat until T = 0

Repeat N times
Do Newton searches for new generative biases of all previous

units, j
Do Newton searches for generative weights from new unit, k
Do a conjugate gradient search for recognition weights and

bias of k
Decrease T using a temperature schedule

Add the new hidden unit to the network
Set the generative bias of the new hidden unit
Use conjugate gradient to back-fit ALL generative weights and

biases.

5.1. Updating the recognition weights

The update rule for the recognition weights can be obtained by taking the partial derivative
of the cost with respect to each modifiable recognition weight. This gives

∂C

∂rj,k
= 1

T

∑
d

∂C

∂qdk
qdk (1− qdk)sdj (9)

Cascaded redundancy reduction 79

where

∂C

∂qdk
=
∑
i<k

(
−sdi log

σ(Gd
k>j>i + g0,i + gk,i)
σ (Gd

k>j>i + g0,i)
− (1− sdi) log

1− σ(Gd
k>j>i + g0,i + gk,i)

1− σ(Gd
k>j>i + g0,i)

)

− log
σ(g0,k)

(1− σ(g0,k))
+ T log

qdk

(1− qdk)
. (10)

A conjugate gradient search technique is used to determine successive steps in the search.

5.2. Updating the generative weights

The generative weights could also be updated using a gradient method. However, we can
do better by taking advantage of the independence between the individual weights and the
monotonicity of the derivative. First note that the partial derivative with respect to one of
the generative weights depends only on that generative weight and the bias weight to the
same unit:

∂C

∂gk,i
=
∑
d

−qdk
(
sdi − σ(Gd

k>j>i + g0,i + gk,i)
)
. (11)

Similarly, for the partial derivative with respect to one of the bias weights:

∂C

∂g0,i
=
∑
d

−qdk
(
sdi − σ(Gd

k>j>i + g0,i + gk,i)
)− (1− qdk)(sdi − σ(Gd

k>j>i + g0,i)
)
. (12)

This gives two equations (with two unknowns). However, we will show below that
finding the local extrema involves solving equations of only one variable.

Setting the derivative equal to zero in equations (11) and (12) gives

0=
∑
d

qdk
(
sdi − σ(Gd

k>j>i + g0,i + gk,i)
)

0=
∑
d

(
qdk
(
sdi − σ(Gd

k>j>i + g0,i + gk,i)
)+ (1− qdk)(sdi − σ(Gd

k>j>i + g0,i)
))
.

and combining gives

0=
∑
d

(1− qdk)
(
sdi − σ(Gd

k>j>i + g0,i)
)

which we can solve forg0,i . Unfortunately, this equation cannot be solved directly, but as
it is a monotonic function it could be solved using a binary search technique. We chose,
however, to use Newton’s method. Letting

A =
∑
d

(1− qdk)
(
sdi − σ(Gd

k>j>i + g0,i)
)

we solve forg0,i using

g0,i (t + 1) = g0,i (t)+ sign(A)×min

(
2,

∣∣∣∣ A(g0,i (t))

(dA/dg0,i)− ε
∣∣∣∣) (13)

whereε is a positive safety factor used to avoid instability where the second derivative (first
derivative ofA) vanishes. This, together with the constraint that the maximum step size
have magnitude 2, gives a robust implementation of Newton’s algorithm. Note that due to
the monotonicity ofA, dA/dg0,i is always non-positive.

80 V R de Sa and G E Hinton

Once we have solved forg0,i in equation (13), we can use it to findgk,i in a similar
manner:

B =
∑
d

−qdk
(
sdi − σ(Gd

k>j>i + g0,i + gk,i)
)

gk,i(t + 1) = gk,i(t)+ sign(B)×min

(
2,

∣∣∣∣B(g0,i , gk,i(t)))

(dB/dgk,i)− ε
∣∣∣∣). (14)

5.3. Back-fitting the generative weights

Greedy algorithms have the disadvantage that a step taken early may lead to subsequent
poor performance. Ideally, we would like to go back and modify earlier connections with
added hindsight. Unfortunately, to do this for all connections would defeat the efficiency
advantages of a greedy algorithm. Changing the recognition weights to a lower unit could
invalidate the recognition weights to higher units as they depend on activity propagated
from lower units. This would also invalidate the generative weights as they depend on the
activated recognition patternsd .

The generative weights and biases, however, can be updated for little cost and without
invalidating the recognition connections. The update rule is determined from the appropriate
gradient:

∂C

∂gj,i
= sj

(
si − σ

(∑
k>i

skgk,i

))
(15)

∂C

∂g0,i
= si − σ

(∑
k>i

skgk,i

)
. (16)

The conjugate gradient algorithm is also used to update these weights. A few conjugate
gradient steps of back-fitting are performed after the addition of each new unit.

6. Algorithm modifications

6.1. Adding a unit more carefully

One way to avoid some of the worst local minima while adding units is to consider a pool of
units for each new input unit as in cascade-correlation (Fahlman and Lebiere 1990). These
units can be initialized with different random weights and trained independently in parallel.
After training, the performance of each candidate unit can be assessed and the best unit
added.

We found that for a fixed number of units added, this did improve the performance, but
as discussed below, for better performance with a fixed amount of time, serial consideration
of candidate units was better. Only one candidate unit was trained at any time but if it
did not lead to a lower coding cost it was not included. To avoid overfitting, the coding
costs were evaluated on a separate validation set, rather than on the data used to train the
weights. This evaluation was performed before the back-fitting stage.

6.2. Mini-batches

All the iterative updates are done using batch algorithms. For the data-set we used, and
most suitable data-sets, the size of the set is very large and the patterns within it are quite
redundant. This suggests that an on-line algorithm would be more efficient. To maintain

Cascaded redundancy reduction 81

the parameter-free advantages of the conjugate gradient batch algorithm while increasing
the learning speed we investigated the effect of using mini-batches. For each considered
unit 20% of the patterns, balanced for class content, were used for the recognition weight
searches and the generative Newton searches.

Using this strategy, we achieved rapid initial decrease in coding cost. At this stage
it became more efficient to increase the size of the mini-batches instead of increasing the
number of minimizing steps pursued for each unit. The batch size trades off speed for
appropriate descent direction. Early in the search, the exact estimate of the gradient is not
important to allow significant improvement. When the search has evolved to a reasonable
solution, further progress depends on progressively more accurate estimates of the gradient
of the desired function. This suggests that an adaptively growing batch size that monitors
the percentage of rejected units and increases the batch size when it gets too large would
be a good strategy.

7. Results

We tested the algorithm using a data-set previously used to test similar algorithms (Hinton
et al 1995; Freyet al 1996). This data-set consists of 13 000 normalized digits quantized
into 8×8 binary images from the US Postal Service Office of Advanced Technology. As
in Frey et al (1996) the data were divided into 6000 training examples, 2000 validation
examples and 5000 examples for testing. The validation data were used to evaluate whether
a unit should be added and also, as they are already loaded, for back-fitting the generative
weights after addition of a unit.

Training curves are shown in figures 2 and 3 for training with the full (training) data-set,
the 20% mini-batches as well as a run with a gradually increasing batch size. The batches
were 10% for the first 20 iterations, 20% for the next 20 iterations, 50% for the next 10
iterations, and 100% for the last 30 iterations. The curves plot the CRR calculated coding
cost (an upper bound on the true coding cost) on the validation set. As mentioned, figure 2

40

42

44

46

48

50

52

54

56

0 5000 10000 15000 20000 25000

C
od

in
g

C
os

t (
bi

ts
)

Time (seconds)

full batches
1/5 batches

adaptive batches

Figure 2. Coding cost versus time. Thex-axis gives the number of seconds when run on a
200 MHz R4400 chip with a 4 MB secondary cache. Each plotted point represents the addition
of one unit. The plot for the mini-batches was run for 13 500 s but added no units after 5500 s.
They-axis gives the average coding cost over the data-set (in bits) for the network at that stage.

82 V R de Sa and G E Hinton

40

42

44

46

48

50

52

54

56

0 5 10 15 20 25 30 35

C
od

in
g

C
os

t (
bi

ts
)

Number of Hidden Units

full batches
1/5 batches

adaptive batches

Figure 3. Coding cost versus number of added units. This graph plots the same information as
in figure 2, but with respect to the number of units in the current network. This is not just a
simple rescaled version of figure 2, as the consideration of each unit did not always result in a
unit being added to the network.

shows that the mini-batches allow faster learning (particularly at the beginning) but are
limited in their asymptotic accuracy. Increasing the batch size throughout learning, allows
fast initial learning and good late learning. Figure 3 shows that when using the validation
set, to decide about adding a new unit, the resulting efficiency of the networks are similar
for all the training methods.

While the objective function of our network was specifically designed, for simplicity, to
optimize the coding cost using a single hidden state per data pattern, the resulting generative
model is a stochastic model capable of coding each pattern with a distribution over hidden
states just like those constructed using Gibbs sampling, mean-field methods, and Helmholtz
machines. We can therefore estimate theactual cost of coding the data using the true
posterior distribution of our trained networks. Testing the network trained with the increasing
batch size, we found that the CRR estimated coding cost (usingsd as the sole posterior
state) was significantly overestimating the true coding cost of the network, particularly as
the size of the network grew. Figure 4 shows the estimated coding cost using the CRR
(single hidden state) cost on the validation set (as shown in figure 2) reproduced beside the
coding cost on the test set calculated using Gibbs sampling of the full posterior distribution
of hidden states. Note that the Gibbs sampled estimate of the test error gives a smaller
coding cost (for all but the smallest network) and that the difference increases with the size
of the network. The Gibbs sampled coding cost, on the test data, for the network with 30
hidden units was 38.6 bits, compared with the CRR validation coding cost of 40.8 bits.

For comparison a Helmholtz machine trained using the wake–sleep algorithm with 72
hidden units (in a 16⇒ 24⇒ 32⇒ 64 layered network architecture) achieved a test-set
coding cost of 39.1 bits in 3120 s (Freyet al 1996). This coding cost was achieved using
the recognition distribution learned by the algorithm. For networks of this size, it was not
possible to compute the true log-likelihood of the data under the generative network learned
by the wake–sleep algorithm. However, Brendan Frey (1977) has found that in a variety
of cases in which the networks are small enough to compute the log-likelihood of the data
exactly, the coding cost given by the recognition distribution was very close to the true

Cascaded redundancy reduction 83

38

40

42

44

46

48

50

52

54

56

0 5000 10000 15000 20000

C
od

in
g

C
os

t (
bi

ts
)

Time (seconds)

CRR validation error (upper bound)
Gibbs sampled test error (close approximation)

Figure 4. Coding cost versus time. This graph shows the effect of considering the whole
posterior distribution over hidden states when calculating the coding cost. The whole posterior
distribution is approximated using prolonged Gibbs sampling.

log-likelihood under the generative model. Freyet al (1996) reported the total training time
as 7200 s, which included training several architectures from which they picked the best.

8. Discussion

The central idea of this training algorithm is to avoid the computational cost of computing
the posterior distribution over the hidden states by using a single-state approximation. This
gives computational simplicity at the expense of increased coding cost. We found that
even though the network was trained to optimize coding cost using a single hidden state, it
had a reduced cost when the full posterior distribution over hidden states was considered.
Considered in this way, the algorithm produced networks with similar coding cost to those
created using the wake–sleep algorithm. The advantage of the CRR method is that the size
of the network does not have to be pre-determined. Also, it is hoped that as the networks
are biased to performing well with single-state posteriors, they might lead to simpler more
understandable representations. On the particular problem we tried, our networks of 30 units
achieved a lower coding cost than the 72 hidden unit network trained with the wake–sleep
algorithm.

Acknowledgments

We thank Brendan Frey for providing us with the code for the Gibbs sampling calculations
and the performance results for the stochastic Helmholtz machine. This research was funded
by the Institute for Robotics and Intelligent Systems, the Information Technology Research
Center, and NSERC. GH is the Nesbitt–Burns Fellow of the Canadian Institute for Advanced
Research.

84 V R de Sa and G E Hinton

References

Breiman L, Friedman J H and Olshen R A and Stone C J 1984Classification and Regression Trees(Belmont, CA:
Wadsworth)

Dayan P, Hinton G E, Neal R M and Zemel R S 1995 The Helmholtz machineNeural Comput.7 889–904
Fahlman S E and Lebiere C 1990 The Cascade-Correlation Learning ArchitectureAdvances in Neural Information

Processing Systems 2, ed D S Touretzky (San Mateo, CA: Kaufmann) pp 524–32
Frey B J 1997 personal communication
Frey B J, Hinton G E and Dayan P 1996 Does the wake–sleep algorithm produce good density estimators?

Advances in Neural Information Processing Systems 8ed D S Touretzky, M C Mozer and M E Hasselmo
(Cambridge, MA: MIT Press) pp 661–7

Hinton G E, Dayan P, Frey B J and Neal R M 1995 The wake–sleep algorithm for unsupervised neural networks
Science268 1158–61

Hinton G E and Zemel R S 1994 Autoencoders, minimum decription length and Helmholz free energyAdvances
in Neural Information Proceessing Systems 6ed J D Cowan, G Tesauro and J Alspector (San Mateo, CA:
Morgan Kaufmann) pp 3–10

Jaakkola T, Saul L K and Jordan M I 1996 Fast learning by bounding likelihoods in sigmoid type belief networks
Advances in Neural Information Processing Systems 8, ed D S Touretzky, M C Mozer and M E Hasselmo
(Cambridge, MA: MIT Press) pp 528–34

Neal R M 1992 Connectionist learning of belief networksArtificial Intelligence56 71–113
Neal R M and Hinton G E 1998 A new view of the EM algorithm that justifies incremental and other variants

Learning in Graphical Modelsed M I Jordan (Dordrecht: Kluwer) to be published (currently available from
ftp://ftp.cs.utoronto.ca/pub/radford/em.ps.Z)

Redlich A N 1993 Redundancy reduction as a strategy for unsupervised learningNeural Comput.5 289–304

