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Abstract—Motor imagery classification is known to be highly
user dependent. Subspace alignment has been somewhat suc-
cessful in allowing for unsupervised transfer from one training
user to a new user. In this paper we develop a method to weight
contributions from subspace alignment to multiple training users
to give improved unsupervised transfer performance on the
new test user. Ablation analyses show that both the subspace
alignment and weighting are critical for improved performance.
We also discuss how weighting uses the labels of the training
users to better interpret subspace alignment.

Index Terms—Common spatial patterns (CSP), motor imagery,
brain-computer interface (BCI), subspace alignment, electroen-
cephalography (EEG), unsupervised transfer learning

I. INTRODUCTION

Motor imagery (MI) brain-computer interface (BCI) is a
popular category of BCI systems in which the user imagines
parts of her/his body such as the right or left hand and the
BCI attempts to detect which limb was imagined by the user
[1], [2]. MI-BCI is trained on the electroencephalography
(EEG) signal recorded from each user in a calibration session.
First, the supervised method of common spatial patterns (CSP)
is trained for feature extraction [3] and secondly, a linear
classifier on the selected features is trained to select the
imagined class [4]. In practice, often times the calibration
session is short to avoid fatigue for the user and training of the
CSP filters and the classifier are done for each user separately.

Due to the non-stationarity and variations in temporal and
spatial information of the motor imagery signal, the quality of
the trained classifier is negatively affected when the number
of training trials is limited. This is often the case in practice.
One way to overcome this limitation is to use existing motor
imagery data from other users to train a classifier for a
new user. However, as described below, differences in brain
anatomy and in motor imagery performance between users [5],

This work was supported by NSF IIS 1219200, IIS 1817226, SMA
1041755, and IIS 1528214, FISP G2171, G3155, NIH 5T32MH020002-18,
and UC San Diego Mary Anne Fox dissertation year fellowship

usually results in poor performance for direct transfer of one
user’s MI-BCI to another.

The motor imagery signal is user generated and in EEG-
based systems this signal is recorded at the scalp; however,
the signal recorded at the scalp depends not only on the
location of the involved neurons but also the orientation of
the neurons’ dendrites which affects the orientation of the
current flow [6]. Therefore, the MI signal across users varies
and a classifier trained for one user cannot be readily used
for another [7], [8]. Even for the same user, frequent re-
calibration is often necessary to accommodate possible drifts
in the generated motor imagery signal [9], [10]. There are
many transfer learning attempts that use existing data to train
a classifier for a new user in an unsupervised fashion, i.e., with
unlabeled calibration data for the new user [11]. Among these
methods, subspace alignment [12] finds a linear mapping to
adapt the features from the source domain to the target domain,
however, it does not use the available labels from the source
domain.

In this work, we propose a novel improvement on subspace
alignment that utilizes data from multiple users and weights
the subspace-aligned features from the source users by how
much in agreement they are in their transfer to the target (new)
user. Our method does not use labels from the target user and
hence is completely unsupervised with respect to the target
user, but is able to leverage multiple training users to assess
their applicability when subspace aligned with the target user.
We compare our proposed method with a few baseline methods
and show its superiority in improving the subspace alignment
features on three different motor imagery datasets.

II. DATASETS

We test our method on three different EEG motor imagery
datasets. Pre-processing and data analyses were done in MAT-
LAB.

A. Dataset IVa, BCI Competition III

This dataset [13] from BCI competition III [14] contains
2-class (right hand and foot) motor imagery EEG data from 5
subjects. Data were originally recorded from 118 Ag/AgCl978-1-6654-13337-4/22/$31.00 ©2022 IEEE
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electrodes; however, we selected 68 channels for analysis
based on [15]. For each subject, 280 trials were available. The
size of the training set and test set differed for each subject.
For both classes combined, there were 168, 224, 84, 56, 28
training trials and 112, 56, 196, 224, 252 test trials for subjects
s1, s2, s3, s4 and s5, respectively. The preprocessing of this
dataset replicated the steps in [15] and [16]. The time interval
of 0.5-2.5s after cue were selected for each trial and the signal
was bandpass filtered between 8-30Hz with Matlab’s butter
function with order 5, which gives a tenth order Butterworth
filter.

B. Dataset IIa, BCI Competition IV

This dataset [17] from BCI competition IV [18] contains
4 motor imagery classes (i.e., left hand, right hand, foot, and
tongue) from 9 subjects, and we used two of the classes for
analysis (left hand and right hand). Data were recorded with 22
Ag/AgCl electrodes. For each subject, there were 72 training
trials and 72 test trials per class. The preprocessing of this
dataset was the same as the procedure used for Dataset IVa,
BCI competition III. The time interval of 0.5-2.5s after the
cue were selected for each trial and the signal was bandpass
filtered between 8-30Hz with Matlab’s butter function with
order 5, which gives a tenth order Butterworth filter.

C. Dataset Three

This dataset from [10], [19] contains 2-class (left hand and
right hand) motor imagery EEG data from 12 subjects. Data
were recorded with 64 channels. After balancing the right and
left trials, for each subject, there were 93 one-second trials
per class in the training session. In the test session, there were
179, 215, 85, 238, 169, 282, 211, 208, 181, 269, 111, 248 trials
per class for subjects s1 to s12 respectively. The preprocessing
of this dataset used the code from [19]. Data were filtered
between 7-30 Hz Matlab’s butter function with order 3,
which gives a sixth order Butterworth filter.

III. METHODS

A. Common Spatial Patterns (CSP)

Motor imagery results in desynchronization (or decreased
power) of EEG activity in alpha/mu (8-13 Hz) and beta (13-
30 Hz) frequency bands over the relevant areas of somato-
motor cortex. For distinguishing between motor imagery of
two different body parts, it is critical to discriminate spatial
differences in this desynchronization at the scalp. Common
spatial patterns (CSP) is one of the most commonly used
algorithms for extracting such features. CSP finds spatial filters
that maximize the variance (or power) of the band-limited
spatially filtered signals from one class while minimizing it
for the other class [3], [4]. Let ξi be the ith trial from a
preprocessed EEG dataset, and ξi ∈ RC×T , where C is
the number of EEG channels and T is the number of time
samples. For each of the two classes, N1 and N2 represent

the set comprising trials for classes 1 and 2, respectively. The
normalized covariance matrix Σy can be estimated as:

Σy =
1

|Ny|
∑
i∈Ny

ξiξ
>
i

trace(ξiξ>i )
(1)

where y ∈ {1, 2} and |Ny| represents the number of trials in
Ny , ξ> indicates the transpose of ξ, and the trace is the sum
of the diagonal entries. The CSP filter that maximizes variance
for class 1 (while minimizing it for class 2) can be found by
maximizing the following objective function:

maxw
w>Σ1w

w>(Σ1 + Σ2)w
. (2)

A full set of filters can be optimized by solving the generalized
eigenvalue problem Σ1w = λ(Σ1 + Σ2)w [4]. Concatenating
the eigenvectors corresponding to the m largest and smallest
eigenvalues as columns of matrix W , the spatially filtered
signal of a trial ξi is obtained as Z = W>ξi. The feature
extracted by the kth spatial filter is:

fk = log

 var(Zk)
2m∑
j=1

var(Zj)

 (3)

where Zk (k = 1 . . . 2m) is the kth row of matrix Z. In this
paper, we used m = 3 for the CSP parts of all algorithms as
is commonly used [4].

B. Subspace Alignment (SA)

Subspace alignment (SA) is an algorithm proposed by
Fernando et al. [12], and it is has been widely used for
domain adaptation [20] [21]. We used this algorithm to reduce
the domain discrepancy between training and test data in our
method. In SA, given source data XS and target data XT ,
principal component analysis (PCA) is applied separately to
the training and test data to produce a lower dimensional
source subspace SS and lower dimensional target subspace
ST . Then XS and XT are each projected to their respective
subspaces by XSSS and XTST . The source subspace is then
mapped to the target subspace through linear transformation.
The transformation matrix M is learned by minimizing the
Bregman matrix divergence:

M∗ = argminM (||SSM − ST ||2F ) (4)

where || · ||2F is the Frobenius norm. The Frobenius norm has
the orthogonal invariance property, so Equation (4) can be
rewritten as:

M∗ = argminM (||S>S SSM − S>S ST ||2F )

= argminM (||M − S>S ST ||2F ). (5)

The solution to the above is M∗ = S>S ST , and thus the
subspace aligned coordinate system is Sa = SSS

>
S ST . The

subspace alignment [12] algorithm is presented in Algorithm
1. We used 2 dimensional subspaces on Dataset IVa from BCI
competition III and Dataset IIa from BCI competition IV. For



Dataset Three, we determined the dimension by using subject
1’s training data as training and subject 12’s training data as
test data and vice versa. We performed CSP with SA with
different dimensions and looked at the classification accuracy
of LDA on subject 1 and 12’s training data. The dimension
determined for Dataset Three was 6. No test data for any
subject was used in this selection process.

Algorithm 1: Subspace Alignment [12]
Input: Source data XS , Target data XT , Subspace
dimension d

Output: Subspace aligned data XSa, XTa

SS ← PCA(S, d);
ST ← PCA(T, d);
Sa ← SSS

>
S ST ;

XSa = SSSa;
XTa = STSa;
return Xsa, XTa

C. Proposed Algorithm: SA weighted

Let {X1 . . . Xn} indicate EEG data from n subjects where
subject j is the selected test subject and the rest are training
subjects. Each subject contains training trials Xtr and test
trials Xte, and trials are labeled with -1 (class 1) and 1 (class
2).

This algorithm loops through each of the training subjects.
For a training subject i, CSP is trained from labeled training
trials Xtr

i . Then CSP filters are applied to subject i’s training
trials Xtr

i and the test subject’s test trial Xte
j to extract

corresponding features. Subspace alignment is then applied
to the extracted features to perform domain adaptation. Then
Linear Discriminant Analysis (LDA) is trained on the aligned
training features and produces a prediction of the labels of
the aligned test features. The prediction is produced based on
subject i’s training data, so it is named predictioni.

After getting predictioni, an inner loop is used to determine
the weighting for predictioni. The inner loop loops through
subjects other than i and our test subject j. For a subject k
in the inner loop, the features of his/her training data Xtr

k are
extracted by the CSP filters trained on Xtr

i from the outer loop.
Subspace alignment is then applied to the extracted features of
Xtr

k and Xte
j . LDA is trained on the aligned training features

from subject k and produces a prediction of the labels of the
aligned test features. This prediction is trained on subject k’s
training data, so it is named predictionk.

For each test trial of the test subject, the inner loop
predictions from every training subject k are added together.
Since the labels of the predictions are either -1 or 1, then after
addition, the sign function is applied to get the combined pre-
dicted labels. predictioni is then compared with the combined
predicted labels to see predictioni’s agreement rate with the
combined labels. The agreement rate is compared with 0.5

Fig. 1. Subspace alignment results of subject 1 and subject 3 from dataset
IVa BCI competition III. The training data of subject 1 (circles) and test data
of subject 3 (crosses) are aligned. The color represents the label of the trials,
where red represents class 1 and blue represents class 2.

before being used as the weighting for predictioni to generate
an ensemble prediction in the outer loop through:

ensemble prediction =

n∑
i=1

weighti ∗ predictioni (6)

An agreement rate below chance level would suggest that this
subject has opposite prediction compared to others, and it is
possible that the subspace alignment has mapped class one
training data closer to class two test data. We will explain this
with an example:

In Fig. 1 and Fig. 2, we plotted the features of subject
1’s training data and subject 3’s test data after SA from
dataset IVa, BCI competition III. Fig. 1 shows the results
with the correct labels for subject 1 and subject 3. But, SA
is unsupervised, so if we switch the labels of training data
from class one and class two for subject 1, the SA results
don’t change (Fig. 2). SA generally works due to a tendency
for subjects to be somewhat aligned (for example due to
contralateral cortical organization for right vs left imagery),
but as it is unsupervised, misalignment is still possible, and if
they are close to 180 degrees out of phase, the alignment can
still be very useful if the signs are flipped.

The final predicted labels of the test data Xte
j are generated

after applying the sign function to the ensemble prediction.
The pseudo-code for SA weighted is depicted in Algorithm 2.

D. Baseline Algorithms

We included the results of the supervised CSP algorithm
(called CSP) with LDA for classification, as a reference for
the performance of the unsupervised algorithms.

The unweighted version of our proposed algorithm (called
unweighted) and the weighted but without SA version (called



Fig. 2. Subspace alignment results of subject 1 and subject 3 from dataset
IVa BCI competition III after manually reversing the labels of subject 1’s data
before SA. The training data of subject 1 (circles) and test data of subject 3
(crosses) are aligned. The color represents the label of the trials, where red
represents class 1 and blue represents class 2.

Algorithm 2: The proposed algorithm: SA weighted
Input: n subjects’ training data {Xtr

1 · · ·Xtr
n } and the

jth subjects’ test data Xte
j

Output: prediction of Xte
j ’s labels

initialize ensemble pred as a zero array;
for i = 1 : n and i 6= j do

load training data Xtr
i1

for class 1 and Xtr
i2

for
class 2;

initialize Σi1 and Σi2 as the average covariance
matrix of Xtr

i1
and Xtr

i2
;

Wi = CSP (Σi1 ,Σi2);
calculate features f tri and f tej using Wi;
construct aligned subspace Xtr

sai
and Xte

saj
;

train LDA using Xtr
sai

;
apply LDA on Xte

saj
to get predictioni;

initialize pseudoLabeli as an zero array;
for k = 1 : n and k 6= j and k 6= i do

calculate features f trk and f tej using Wi;
construct aligned subspace Xtr

sak
and Xte

saj
;

train LDA using Xtr
sak

;
apply LDA on Xte

saj
to get predictionk;

pseudoLabeli += predictionk;
end
pseudoLabeli = sign(pseudoLabeli);
weight = 0.5− ((sum(|pseudoLabeli −
predictioni|)/number of trials)/2);
ensemble pred += weight ∗ predictioni;

end
labels = sign(ensemble pred);
return labels

noSA) are ablation analyses included separately for compari-

son to the full algorithm, i.e., SA weighted.
We also include another method (called combine) which

involves concatenating the training data from all training
subjects and learning one set of CSP filters and LDA classifier
for all the training data. The CSP filters and LDA classifier is
then applied to the test data from the test subject. This method
serves as a baseline for unsupervised transfer learning.

The combine SA is another baseline algorithm that we
used to compare the results with our proposed algorithm.
combine SA is identical to the combine algorithm except that
SA is applied to the test data to align it with the combined
training data. The pseudo-code for this algorithm is depicted
in Algorithm 3.

Algorithm 3: Combine SA
Input: n training dataset {Xtr

n · · ·Xtr
n } and the jth

test dataset Xte
j

Output: prediction of Xte
j ’s label

initialize Xtr
combine1

and Xtr
combine2

as empty cells;
for i = 1 : n and i 6= j do

load training data Xtr
i1

for class 1 and Xtr
i2

for
class 2;

append Xtr
i1

into Xtr
combine1

and append Xtr
i2

into
Xtr

combine2
;

end
initialize Σ1,Σ2 as the average covariance matrix of
Xtr

combine1
and Xtr

combine2
;

W = CSP (Σ1,Σ2);
calculate features f tr and f tej using W ;
construct aligned subspace Xtr

sa and Xte
sa;

train LDA using Xtr
sa;

apply LDA on Xte
sa to get prediction;

return prediction

IV. RESULTS

We tested the prediction accuracy of different methods on
the three datasets. The accuracy results on dataset IVa from
BCI competition III, dataset IIa from BCI competition IV, and
dataset Three are presented in Table I, Table II, and Table III
respectively. In Table I and Table II, the proposed SA weighted
algorithm outperforms the other unsupervised methods, while
it is close to combine SA in Table II. In Table III, combine SA
outperforms the rest of the algorithms, but the accuracy of
SA weighted is comparable or better among all methods.

The weightings found by our algorithm are shown in
Fig. 3, Fig. 4 and Fig. 5. While generally positive, there are
some notable negative values which, as mentioned earlier, are
possibly due to SA being an unsupervised algorithm.

V. DISCUSSION

We have presented a method for unsupervised transfer by
weighting predictions from different training subjects after
subspace alignment to the test subject. This method performs
generally well across different datasets and in several cases



TABLE I
RESULTS OF METHODS ON DATASET IVA FROM BCI COMPETITION III.

subjects supervised unsupervised
CSP unweighted noSA SA weighted combine combine SA

s1 0.7321 0.7143 0.4554 0.7589 0.6875 0.3661
s2 0.9821 0.8214 0.4821 0.7679 0.4821 0.3571
s3 0.6378 0.5663 0.5204 0.6378 0.5306 0.5510
s4 0.8884 0.4955 0.4911 0.7634 0.5357 0.6830
s5 0.7698 0.7222 0.5000 0.7341 0.6468 0.7381

Mean 0.8021 0.6640 0.4898 0.7324 0.5766 0.5391

TABLE II
RESULTS OF METHODS ON DATASET IIA FROM BCI COMPETITION IV.

subjects supervised unsupervised
CSP unweighted noSA SA weighted combine combine SA

s1 0.9028 0.8264 0.7639 0.8542 0.8611 0.8403
s2 0.5833 0.5833 0.5347 0.6111 0.6250 0.6111
s3 0.9722 0.9097 0.9306 0.9306 0.9444 0.9444
s4 0.6875 0.6806 0.5139 0.6806 0.5208 0.6319
s5 0.5000 0.5764 0.5903 0.5694 0.5278 0.5833
s6 0.6806 0.5347 0.5139 0.6111 0.5347 0.6250
s7 0.8056 0.5556 0.5972 0.6806 0.6736 0.7153
s8 0.9444 0.9236 0.8958 0.9514 0.9722 0.9653
s9 0.9236 0.7222 0.5903 0.7569 0.6319 0.6250

Mean 0.7778 0.7014 0.6590 0.7384 0.6991 0.7269

TABLE III
RESULTS OF METHODS ON DATASET THREE. THE * BESIDES S1 AND S12 INDICATE
THAT THEIR TRAINING DATA WERE USED TO DETERMINE THE DIMENSION OF SA.

NOTE THAT THE TEST DATA OF THESE SUBJECTS WERE NOT USED FOR THIS PURPOSE.

subjects supervised unsupervised
CSP unweighted noSA SA weighted combine combine SA

s1* 0.6237 0.7293 0.6366 0.7087 0.7944 0.7966
s2 0.5377 0.6109 0.5769 0.6212 0.6784 0.6753
s3 0.7447 0.6535 0.5824 0.6435 0.6471 0.7206
s4 0.7120 0.6218 0.5126 0.6233 0.6408 0.6739
s5 0.6334 0.7148 0.6138 0.7472 0.6438 0.6876
s6 0.5156 0.5489 0.5059 0.5472 0.5246 0.5748
s7 0.6642 0.5806 0.5235 0.6085 0.5154 0.5863
s8 0.6221 0.5808 0.5786 0.5873 0.5938 0.5856
s9 0.7229 0.6088 0.5033 0.6304 0.6956 0.7127

s10 0.5041 0.6158 0.5385 0.6067 0.5857 0.5980
s11 0.6932 0.6113 0.5581 0.5966 0.5482 0.5640
s12* 0.4873 0.5014 0.5018 0.4980 0.4694 0.4677
Mean 0.6218 0.6148 0.5526 0.6182 0.6114 0.6369

outperforms the supervised performance obtained by training
only on each subject’s own training data. Dataset IVa from
BCI competition III has different numbers of training trials for
each subject, and our method outperforms other unsupervised
transfer algorithms presented in Table 1. The bias caused by
different training set sizes has a strong influence on methods
like combine SA while it inflicts little influence on our method
as we are weighting the predicted labels created by each
training model based on their agreement with other subjects.

For Dataset IIa from BCI competition IV and Dataset Three,
each subject has the same number of training trials, and our
method performs comparably to others. In Dataset Three,
combine SA outperforms our method, and we found that the
weightings for each training subject in Dataset Three have
less variability (except for s6, s10, and s12, which have poor
performance on supervised CSP) compared to those in the

other two datasets. The less variability in weightings causes
the method to perform more like the unweighted version. Even
though it does not improve the overall accuracy, the lower
weightings on the less reliable training subjects is a valuable
feature and improves performance on some subjects.
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