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Abstract
Data were collected from a brain-computer interface speller
that utilized the P3b as a control signal. Stimuli consisted of
letters and their “segments”. Importantly, different letters were
made up of different numbers of segments from a 10 segment
library. Subjects were instructed to mentally note whenever
segments from their letter (targets) were flashed. We found
that P3b amplitudes of target segments decreased as the num-
ber of segments in a letter (target letter complexity) increased.
In contrast, the P3b attenuation was not affected by the total
number of letters a segment belonged to (segment frequency).
These results may reflect higher task difficulty caused by in-
creased working memory load with increased target letter com-
plexity. Alternatively, it’s possible that despite the target rate
being fixed at 30% within each block, subjects erroneously be-
lieved the target rate increased with target letter complexity.
Further work to disentangle these possibilities may enrich our
understanding of the P3b.
Keywords: EEG; ERP; P300; P3b; BCI; brain-computer in-
terfaces, speller

Introduction
The P3b has been used to create brain-computer interface
(BCI) spellers, devices which allow people to communicate
using their brains. The first speller, an electroencephalogram
(EEG) system created by Farwell and Donchin (1988) known
as the matrix or grid speller, exploited the large body of re-
search surrounding the P300 component of the human event-
related brain potential (ERP). By illuminating individual rows
and columns containing letters and digits and by instructing
subjects to keep a mental count every time their desired let-
ter – the letter they’re trying to spell – was illuminated, Far-
well and Donchin gave subjects the power to “talk” off the
tops of their heads. Various improvements were suggested
and researched in regards to P3b spellers. By clustering
stimuli more efficiently (Blankertz et al., 2006) or by using
more human-salient stimuli (Kaufmann, Schulz, Grünzinger,
& Kübler, 2011), researchers were able to create faster and
more reliable systems alongside improvements in amplifica-
tion and computation.

We studied data from a P3b speller with a novel paradigm
originally designed by Stivers and de Sa (2017) to probe for
letters in parallel without requiring eye movements (which
are lacking in people who are completely locked in). Mul-
tiple letters are probed centrally by flashing letter segments
that are part of multiple letters (Stivers & de Sa, 2017). The
P3b is a useful control signal as it is only elicited by task-
relevant stimuli (Polich, 2007). It is one of various P300 or

P3 sub-components, so named because it originally appeared
as a positive-going waveform that peaked approximately 300
ms after stimulus onset. Visual stimuli elicit a P3b that com-
monly peaks between 250 to 500 ms at parietal electrodes.
Although it is not clear what the P3b component reflects, it is
commonly associated with context-updating (Donchin, 1981)
and working memory (for review, see Polich, 2007). Classi-
cally, researchers utilized variations of the oddball paradigm
wherein a target or “oddball” stimulus is presented less fre-
quently than the non-target or standard. Subjects are in-
structed to keep a mental count, make a mental response or
make a physical response when they see the task-relevant
oddball which will in turn elicit a P3b.

P3b amplitude is partially dependent on the probability of
the target stimulus relative to the non-target (Duncan-Johnson
& Donchin, 1977; Vogel, Luck, & Shapiro, 1998). P3b ampli-
tudes are also affected by the sequence of stimuli (Donchin,
1981), and time between target stimuli (Gonsalvez & Polich,
2002; for review see Polich, 2007; Luck, 2014).

Furthermore, when multiple targets are present, the rela-
tive probability of the target class affects the amplitude of the
P3b, not just the rarity of a specific target. Kutas, McCarthy,
and Donchin (1977) originally discovered this phenomenon
in two experiments where subjects were presented with fe-
male names in 20% of trials and male names the remaining
80%. In the condition where only a single female and male
name were used, a strong P3b was elicited as expected. Inter-
estingly, when random, one-off male and female names were
shown, similarly potent P3bs were elicited, indicating the rel-
ative probability of the target class determines P3b amplitude.

P3b amplitudes and latencies are also affected by the num-
ber of items a person is required to memorize. In 1969, Dr.
Saul Sternbeg devised an item-recognition task to probe hu-
man memory-scanning capabilities (Sternberg, 1969). The
item-recognition task consists of a set of stimuli divided into
a positive and negative set. By having this set contain rel-
atively simple items such as digits, a subject can be given
a “positive” set for memorization before being serially pre-
sented with items of the positive and negative sets. An ex-
perimenter can then ask subjects to respond to only items in
the positive or negative set and record reaction times. Stern-
berg showed that as the size of the positive set increased,
so did subjects’ reaction times. Not long after Sternberg’s
work, EEG researchers began utilizing the item-recognition



task to investigate the effects of increased memory load on
ERP components such as the P300. Roth et al. (1975) appear
to be the first to have extended Sternberg’s work with EEG
recording by having subjects complete blocks where the tar-
get set size was one, two, three, or four digits sampled from
0 to 9. Roth et al. did not find that P300 latencies were
affected by set size, but did find that P300 amplitudes de-
creased as the positive set size increased. Gomer, Spicuzza,
and O’Donnell (1976) conducted a similar experiment with
Latin alphabet characters and with set sizes of one, two, four,
or six and found, in contrast to Roth et al., that P300 ampli-
tudes to positive sets did not vary significantly as a function
of set size, while P300 latencies increased with positive set
size. Whether the set size influences amplitude or latency was
explored by (Pelosi, Hayward, & Blumhardt, 1995), who sug-
gested that decrease in amplitude as a function of increased
target set size may cause (secondary) apparent latency vari-
ations. All three of these studies had balanced positive and
negative item frequencies, e.g. the target stimulus rate was
50% and each required subjects to memorize a novel list of
items shortly before probing. To the best of our knowledge,
no subsequent work has explored the impacts of lower tar-
get rates, sets which have been previously learned, or target
stimuli with different global frequencies throughout an exper-
iment.

We discovered a similar trend of P3b amplitudes decreas-
ing with increasing target set size in the segment-based P3b
BCI speller. The intent of the speller was to optimize spelling
performance by probing for multiple letters in parallel cen-
trally as to be usable by patients unable to voluntarily con-
trol ocular muscles. The speller is able to probe for letters
in parallel by showing segments that are part of multiple let-
ters. While the speller operated successfully, the performance
was not as high as expected. In the process of analyzing the
speller’s performance, we became interested in exploring the
effects of global segment frequency and letter complexity on
the P3b. We discovered that as the number of segments in
the target letter, i.e. complexity, increased, P3b amplitudes
decreased. In contrast, segment frequency —the number of
letters a segment is in —did not significantly affect P3b am-
plitudes. This paper explores these findings and discusses
why these differences may have occurred and how they can
be utilized or avoided in future studies.

Methods
All data were collected as part of a larger brain-computer in-
terface study aimed at designing a system usable by people
suffering from completely locked-in syndrome. Supplemen-
tary data, figures, and code can be found at our GitHub repos-
itory (https://github.com/desa-lab/cogsci22-damico
-desa).

Participants
7 subjects (5 naı̈ve) were recruited to participate in the exper-
iment. While the EEG cap was being prepared, participants
were given a familiarization task where they had to identify

whether a stimulus was a target or non-target (explained be-
low). Prior to data collection it was decided that any partic-
ipant with accuracy lower than 90% on this task would be
excluded. One subject was excluded following this criterion
by having an accuracy of 81% (mean accuracy was 98% with
a standard deviation of 1.5%), resulting in a final pool of 6
subjects.

Experimental Design
Participants were enrolled in a visual speller brain-computer
interface study in which they would see letters and compo-
nents (segments) of letters serially in one central location
(Stivers & de Sa, 2017; D’Amico, Mousavi, & de Sa, 2021).
The goal of the speller was to spell words one letter at a time.
The paradigm was designed to probe for multiple letters si-
multaneously by showing segments, which should be theoret-
ically more efficient than showing only letters. Each of the 26
letters in the Latin alphabet in the study was represented by a
unique combination of 10 “segments” (with the exception of
the letters “O” and “D”; see Figure 2). Segments consisted
of a unique color and spatial location in a five-by-seven dot
matrix (see Figure 2). One letter or “macroblock” at a time,
participants completed three blocks wherein they were given
instructions and assigned a target letter (see Figure 1). Targets
were defined as any segment belonging to the target letter (in
blocks 2 and 3) or the target letter itself (in blocks 1 and 3),
but not letters contained within letters (e.g. the letter “I” was
not a valid target if the target letter was “T”). Non-targets
consisted of all other stimuli allowed in the block. Partici-
pants were instructed to keep a mental note of when they saw
a target.

Certain letters such as “I”, “V”, and “X” contained a single
segment, while the letter “B” contained six. In the case of
single-segment letters, 100% of the target stimuli in block 2
(segments only; Figure 1) will be the single segment. For all
letters with two or more segments, the random selection pro-
cedure is unconstrained, meaning a letter could have five seg-
ments, yet only one segment is selected for each of the three
target trials in block 2. Consequently, any letter containing
four or more segments will never have each segment selected
as a target in a single block since there are fewer allowed
targets than possible candidate targets. Furthermore, not all
segments are present in an equal number of letters, thus the
global frequency of each segment is inconsistent . For exam-
ple, the blue, vertical segment 3 is present in 18 letters, while
the purple, diagonal segment 0 is present in only two. While
analyzing the data off-line, we noticed larger P3b amplitudes
elicited by the dark-green, vertical segment 9 present in “I”,
“T”, and “Y”, and thus decided to do further analyses into the
effects of target set size and global frequency on the P3b (see
Figure 2).

Stimuli were presented on a Dell P992 with a resolution
of 1280×1024 pixels and a refresh rate of 75 Hz using Psy-
choPy3 (improved version of PsychoPy2; Peirce et al., 2019)
PsychoPy3 was selected for its frame-perfect control of stim-
ulus presentation. In combination with a photoresistor, it was



Figure 1: Overview of task design. Each participant completed 26 unique macroblocks, one for each letter in the alphabet.
The order of blocks 1, 2, and 3 is fixed across all macroblocks. In each block, 10 trials are shown in total, of which 3 are
always targets and 7 non-targets. In total, each participant viewed 780 stimuli; 234 targets and 546 non-targets. All target and
non-target stimuli were randomly selected during each block.

possible to precisely synchronize the visual stimuli with EEG
recordings. Target and non-target stimuli were presented for
30 frames (approximately 400 ms) followed by an interstim-
ulus interval of 14 frames (approximately 187 ms). While
the EEG cap was being prepared, participants completed an
online task designed to familiarize them with the letters and
segments. During this task, participants were presented with
a letter stimulus for approximately 500 ms, after which they
were presented with a random segment and asked to identify
whether or not the segment belonged to the previously shown
letter. Target rate was set at 50% during this task and the
primary goal was to assess whether or not participants could
accurately identify target and non-target segments. Each par-
ticipant completed 100 trials with each letter shown approxi-
mately four times (mean 3.85, median 4, mode 4).

EEG Collection and Processing
EEG data were collected from 64 electrodes placed on an act-
iCAP (BrainVision, n.d.-a) following the 10-5 a.k.a. extended
10-20 system (Oostenveld & Praamstra, 2001). All analyses
were conducted using electrode site Pz. Mastoid electrodes
were placed directly on subjects and were not attached to the
cap. Impedance values of each electrode were taken below 25
kΩ before the experiment began. Cz was used as the online
reference.

EEG and auxiliary data were recorded using BrainProd-
ucts’ actiCHamp (BrainVision, n.d.-b) digitized at a rate of
50 kHz and were acquired using PyCorder. Within PyCorder,
the data were downsampled and recorded at a rate of 500
Hz. Using the BrainVision RDA server, a single labstreaming
layer (LSL; Kothe, 2014) stream was created for the combi-

nation of EEG and auxiliary data on the local machine. Data
were recorded and saved in PyCorder using the BrainVision
header format and in LabRecorder using the extensible data
format (XDF). The LSL marker stream created by stimuli pre-
sentation was synchronized with the EEG and auxiliary LSL
stream and recorded in XDF format.

Prior to filtering, data were re-referenced to the aver-
age of the mastoids. EEG data were filtered using a non-
causal second-order (functionally fourth-order) Butterworth
filter with cutoff frequencies of 0.1 Hz and 15 Hz. Fil-
ter coefficients were generated as second-order sections us-
ing the function butter() and were applied using the func-
tion sosfiltfilt() from the SciPy toolbox (Virtanen et al.,
2020). For computing the amplitude of the P3b, we processed
each trial of data independently. Data were baseline corrected
by subtracting the mean activity 100 ms prior to stimulus on-
set from all time points in the epoch. The epoch was defined
as all activity from 100 ms prior to 1000 ms following stim-
uli onset. We then performed artifact rejection using simple
voltage thresholding with a threshold of 75 µV . We averaged
voltage over a pre-defined window spanning 200 to 600 ms
after stimulus onset to represent P3b amplitude. A combina-
tion of a photoresistor and an LSL marker stream were uti-
lized for epoching wherein the LSL marker provided infor-
mation about the stimulus shown such as the stimulus iden-
tity and whether or not it was a target, while the photoresistor
was used for precise synchronization at the individual trial
level. Finally, we computed grand average ERPs of target,
non-target and difference waves for each block (1, 2, or 3) and
stimulus type (character or segment). Within each of these
categories, six independent grand averages were computed,
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Figure 2: The segments and characters used in the BCI experiment. (A) Global segment frequency. Each row shows one
segment and all the letters that contain that segment; right-most number indicates the count. (B) The ten segments with upper-
text representing names. (C) Letter complexity. Letters are ordered left-to-right by the number of segments they contain with
the top number indicating number of letters in each category.

one for each letter complexity level (i.e. letters containing
between one and six segments; see Supplementary Figure 1).
We also created a figure that illustrates the effects of target
letter complexity on target segment-locked ERPs (see Figure
3).

We computed onset latencies of the P3b by first filtering
the data using an identical filter as described above but with
cutoff frequencies of 0.1 and 10 Hz. Target and non-target
averages were computed within each subject and within each
letter complexity (see Supplementary Figure 1, right-most
column). In other words, epochs were categorized by the
number of segments the target letter had before averaging.
These averages were created for segment and character tri-
als differentiated by block number. Difference waves were
then computed by subtracting the non-target average from
the target average. These difference waves were also com-
puted separately for each of the twelve categories for all sub-
jects. In the event that there were no target or non-target trials
for a specific segment, as was often the case when the tar-
get letter was “B”, no onset latency was recorded. We uti-
lized a version of the fractional peak latency algorithm (see
Luck, 2014; Kiesel et al., 2008) to determine P3b onsets.
Peaks were searched within the ERP window of interest us-
ing signal.find peaks() from SciPy. We then selected the
peak closest to the average of the ERP window, which in this
case was 400 ms. The amplitude of this peak was recorded

and divided by two (50% fractional peak). An iterative algo-
rithm then searched backwards from the selected peak until it
found a point that was within 0.005 µV of the fractional peak.
This point’s latency was determined to be the P3b onset la-
tency. All onset latency analyses were conducted on channel
Pz.

Statistics
In order to understand how the global frequency of segments
and the complexity of target letters impacted the P3b, we per-
formed a series of linear mixed-effects regressions on target
trials using the R packages lme4 (Bates, Mächler, Bolker,
& Walker, 2015) and lmerTest (Kuznetsova, Brockhoff, &
Christensen, 2017). Our base segment model consisted of
three fixed effects: block number (2 or 3), global frequency
(number of letters the segment was present in) and letter com-
plexity (total number of segments in the target letter). We
had two random effects; the subject and the segment shown,
and one dependent variable: the mean amplitude of Pz from
200 ms to 600 ms after segment onset. Another model which
included an interaction between segment frequency and let-
ter complexity was created in order to compare to the base
model. Two additional models were created by isolating tar-
get and non-target stimuli. For character stimuli, we ran sim-
ilar models, with the only significant difference being the
omission of global segment frequency (which is not appli-
cable to characters).



Figure 3: Grand average of target segments. Averages com-
puted using segment-locked target ERPs from blocks 2 and 3
across all subjects. There is a monotonic, near-linear ampli-
tude decrease in the P3b window (gray) with increasing target
letter complexity (number of segments in the letter).

For both segment and character target-only trials, we also
created “α models,” which encoded the number of trials since
the previous target stimulus (T) was shown. The number
of trials since previous target was computed across all tar-
gets within a single block. The only stimuli between targets
were non-targets (N). When P3b amplitudes are plotted by
distances between targets, there is a non-linear trend. In or-
der to better approximate a linear trend for our linear mixed
effects model, we merged all distances of three and greater
into a single category, leaving us with three categories: target
immediately followed by a target (TT), one non-target spacer
between two targets (TNT), and two or more non-target spac-
ers between targets (TNN*T).

Results
P3b amplitudes decreased as the number of segments in the
target letter increased (see Figure 3). This trend was visible
with target segment stimuli, but not target characters (see dif-
ferences between first two and last two rows, first column in
Supplementary Figure 1). The base segment model revealed
a significant effect of letter complexity (t = -2.53, p < 0.05),
block (t = -2.70, p < 0.01), and whether the stimulus was
a target or a non-target (t = 8.54, p < 0.0001), but not seg-
ment frequency. The interaction model returned insignificant
differences on everything except whether the stimulus was a
target (p < 0.0001). We compared both models using the
anova() function and found that the models were similar;
the base model fit the data better with an Akaike information
criterion (AIC) of 14,717 while the interaction model had an
AIC of 14,719. The Chi-squared test did not show significant

results (χ2 = 0.1744, p = 0.6762).
The target-only model returned a significant effect of letter

complexity (t = -2.665, p < 0.01), but nothing else, while
the non-target-only model only returned a significant effect
of block (t = 2.135, p < 0.05).

The model including the additional stimulus sequence in-
formation —“model α” —showed a significant effect of se-
quence (t = 4.903, p < 0.0001), letter complexity (t = -2.454,
p < 0.05), and block (t = -2.299, p < 0.05), but not segment
frequency. The model containing sequence information fits
the target data significantly better than the base target-only
model (χ2 = 23.419, p < 0.0001).

The base character model only showed a significant effect
of whether or not the stimulus was a target (t = 7.822, p <
0.0001). Neither of the target-only or non-target-only models
returned any significant results. The model accounting for se-
quence only found a significant effect of sequence (t = 2.880,
p < 0.01).

Onset latencies were not affected by block, stimulus type,
or number of segments in the target letter (all p > 0.1).

Discussion
P3b amplitudes to segments appear to significantly attenuate
with an increase in letter complexity as shown by the base
model and target-only models and visualized in Figure 3. We
theoretically wouldn’t expect the P3b amplitudes to change
for non-target trials, which the models confirm. Since the-
ory dictates that only target trials should elicit a P3b and that
stimulus-order (Donchin, 1981) and time-to-target intervals
affect P3b amplitudes (Gonsalvez & Polich, 2002), we be-
lieve our most accurate model is model α. The significance
of sequence is supported by this model, which also shows sig-
nificant effects of letter complexity and block on segment P3b
amplitudes. Judging from the grand-averaged segment ERPs,
both block 2 and block 3 exhibit the fairly linear attenuation
of segment-locked P3b amplitudes (see Supplementary Fig-
ure 1).

Responses to character stimuli seem to differ consider-
ably, with no reliable patterns emerging. We hypothesize that
this is due to character stimuli being processed uniquely and
more automatically than segment stimuli. Character stimuli
are easily discriminable as they resemble standard, everyday
stimuli that are processed automatically. Segments, on the
other hand, are foreign outside the scope of this experiment,
and therefore may employ different or additional cognitive
systems. Since we hypothesize that users are processing full
character stimuli as single-length objects, we would not ex-
pect there to be any significant trend in the block 1 (character
only) trials.

We did not find any differences in P3b onset latencies
across any examined condition. This could be due to the fact
that we were unable to compute single-trial onsets due to un-
balanced target and non-target classes. However, the method
we used that exploits the difference wave may be a more reli-
able method for detecting P3b onsets (Luck, 2014; Kiesel et



al., 2008). One limitation of the difference wave technique
is that the number of trials per condition are not fixed, which
further complicates the fact that target to non-target ratio per
letter complexity is also not fixed. Finally, our version of the
fractional peak latency algorithm may make assumptions not
typically made by similar approaches, thus leading to unsta-
ble results. Our implementation is available in the supple-
mentary materials.

Global segment frequency, i.e. the number of letters a seg-
ment is in, does not appear to impact the P3b in any system-
atic way. This suggests that although certain segments are
more common and may therefore be easier to identify than
others, these differences did not meaningfully impact the P3b.

One parsimonious explanation for these exploratory find-
ings is that P3b amplitudes decrease because it becomes more
difficult for subjects to determine if a segment is a target when
there are more possible targets, i.e. it is possible that P3b
attenuation is caused by increased working memory require-
ments. With this view, the amplitude differences we found
could be similar to those found by (Pelosi et al., 1995), which
could also explain the lack of latency variation. However,
the lack of onset latency variation does not necessarily in-
dicate that there are no processing differences across letter
complexities. Rather, it’s possible that the categorization of
targets in all cases is simply not slow enough to significantly
delay the onset of the P3b. One way to tease this apart would
be to create a modified “font” with a larger number of seg-
ments. Alternatively, it is possible that the limitation exists
in visual working memory. Visual working memory capacity
is approximately three or four objects (Luck & Vogel, 2013)
and most of the letters in our font contain three, four, and five
segments assuming that participants are chunking individual
”pixels” of matching color as a single segment, which was the
intent of the design and instructions. It is therefore unlikely
that most participants are able to accurately store the segment
representation of letters for the duration of the macroblock.
Future iterations of a visual segmented font should include
letters with fewer segments in order to reduce visual working
memory requirements.

Another explanation is that the P3b amplitude decreases
are caused by changes in subjective probabilities of targets.
Although targets are shown in 30% of all blocks, when asked
at the end of the experiment, some subjects did not realize
they saw three targets every block. It could therefore be the
case that when there are more possible target segments in a
letter, that the participant expects those segments to be pre-
sented more frequently, i.e. they may expect that the letter
“B” has a segment target rate of 60% while the letter “I” has a
segment target rate of 10%. One way to test this hypothesis is
by telling participants a priori what the target rate is, although
these instructions themselves may modify ERP components.

In summary, we found that P3b amplitudes to target seg-
ments were affected by the number of segments in a target
letter but not the global segment frequency. For subsequent
iterations of similar spellers, our work has two significant im-

plications. The first is that if the goal is to maintain con-
sistency, all characters should ideally be composed of equal
numbers of segments, preferably between one and three. The
second is that the these differences in P3b amplitudes may be
potentially used as additional information. For example, if
a classifier is sufficiently trained to discriminate responses to
different letter complexities, it may be possible to achieve bet-
ter accuracy than simply discriminating between target and
non-target segments.

Finally, determining the underlying explanation for the de-
creased P3b amplitude with increasing target set size may
provide more insight into the P3b in general.
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