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Abstract

In this paper we develop an algorithm for
spectral clustering in the multi-view setting
where there are two independent subsets of
dimensions, each of which could be used for
clustering (or classification). The canonical
examples of this are simultaneous input from
two sensory modalitites, where input from
each sensory modality is considered a view, as
well as web pages where the text on the page
is considered one view and text on links to
the page another view. Our spectral cluster-
ing algorithm creates a bipartite graph and
is based on the “minimizing-disagreement”
idea. We show a simple artifically generated
problem to illustrate when we expect it to
perform well and then apply it to a web page
clustering problem. We show that it performs
better than clustering in the joint space and
clustering in the individual spaces when some
patterns have both views and others have just
one view.

Spectral clustering is a very successful idea for clus-
tering patterns. The idea is to form a pairwise affin-
ity matrix A between all pairs of patterns, normalize
it, and compute eigenvectors of this normalized affin-
ity matrix (graph Laplacian)L. It can be shown that
the second eigenvector of the normalized graph Lapla-
cian is a relaxation of a binary vector solution that
minimizes the normalized cut on a graph (Shi & Ma-
lik, 1998; J.Shi & Malik, ; Meila & Shi, 2001; Ng
et al., 2001). Spectral clustering has the advantage
of performing well with non-Gaussian clusters as well
as being easily implementable. It is also non-iterative
with no local minima. The Ng,Jordan, Weiss(Ng et al.,
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2001) (NJW) generalization to multiclass clustering
(which we will build on) is summarized below for data
patterns x; to be clustered in to k clusters.

e Form the affinity matrix A(4,j) = exp(—||z; —
z[?/207)

e Set the diagonal entries A(i,i) =0

e Compute the normalized graph Laplacian as L =
D=®AD~5 where D is a diagonal matrix with

D(iyi) = 35 A(i, 7)

e Compute top k eigenvectors of L and place as
colums in a matrix X

e Form Y from X by normalizing the rows of X
e Run kmeans to cluster the row vectors of Y

e pattern x; is assigned to cluster « iff row i of Y is
assigned to cluster «

In this paper we develop an algorithm for spectral clus-
tering in the multi-view setting where there are two in-
dependent subsets of dimensions, each of which could
be used for clustering (or classification). The canoni-
cal examples of this are multi-sensory input from two
modalities where input from each sensory modality is
considered a view as well as web pages where the text
on the page is considered one view and text on links to
the page another view. Also computer vision applica-
tions with multiple conditionally independent sensor
or feature vectors can be viewed in this way.

1. Algorithm Development

Our spectral multi-view algorithm is based on ideas
originally developed for the (non-spectral) Minimizing-
Disagreement algorithm (de Sa, 1994a; de Sa &
Ballard, 1998). The idea behind the Minimizing-
Disagreement (M-D) algorithm is that two (or more)
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networks receiving data from different views, but with
no explicit supervisory label, should cluster the data
in each view so as to minimize the disagreement be-
tween the clusterings. The Minimizing-Disagreement
algorithm was described intuitively using the following
diagram shown in Figure 1. In the figure imagine that
there are two classes of objects, with densities given
by the thick curve and the thin curve and that this
marginal density is the same in each one-dimensional
view. The scatter plots on the left of the figure show
two possible scenarios for how the “views” may be re-
lated. In the top case, the views are conditionally inde-
pendent. Given that a “thick/dark” object is present,
the particular pattern in each view is independent. On
the right, the same data is represented in a different
format. In this case the values in view 1 are repre-
sented along one line and the values in view 2 along
another line. Lines are joined between a pair if those
values occurred together. The minimizing disagree-
ment algorithm wants to find a cut from top to bottom
that crosses the fewest lines — within the pattern space
(subject to some kind of balance constraint to prevent
trivial solutions with empty or near empty clusters).
Disagreement is minimized for the dashed line shown.
Here we transform this intuitive idea for 1-D views to
a general algorithm on a weighted bipartite graph.

The difficulty in transforming this intuitive idea into a
general algorithm for a M-D spectral algorithm is that
in describing it as making a cut from top to bottom,
we assume that we have a neighborhood relationship
within each top set and bottom set, that is not explic-
itly represented. That is we assume that points drawn
in a line next to each other are similar points in the
same view. Treating the points as nodes in a graph
and applying a graph cut algorithm, would lose that
information.

One solution would be to simply connect co-occurring
values and also join nearest neighbors (or join neigh-
bors according to a similarity measure) in each view.
This, however, raises the tricky issue of how to encode
the relative strengths of the pairing weights with the
within-view affinity weights.

Instead, our solution is to draw reduced weight co-
occurrence relationships between neighbors of an ob-
served pair of patterns (weighted by a unimodal func-
tion such as a Gaussian). We call our algorithm sM-D
Each input in each view is represented by a node in the
graph. The strength of the weight between two nodes
in different views depends on the number of multi-view
patterns (which we can think of as co-occuring pairs
of patterns) that are sufficiently close (in both views)
(with a fall off in weight as the distances grow). This

representation has the semantics that we believe there
is noise in the actual patterns that occur or alterna-
tively that we wish to consider the pairings simultane-
ously at multiple scales.

More specifically, let us define xz(-”) as view v of the

ith pattern. We will construct a graph node for each
view of each pattern and define n(; , to represent the
node for view v of the ith pattern. Now consider the
pattern :c(ll) = [1 2 1] (where throughout this pa-
per ’ denotes the transpose operator) and the pattern

xél) =[1 2 1] + €. These two patterns should prob-
ably be considered identical for small €. This means
that :1:52) the co-occurring pattern for :c(ll) should prob-
ably also be linked with xél). The Gaussian weight-
ing allows us to do this in a smooth way for increas-
ing € To compute the total weight between node
n;,1) and n(;2) we sum over all observed pattern co-

occurrences (k=1 to p): the product of (the (Gaussian
(€]

weighted) distance between x; ' (the pattern repre-

sented by n(; 1)) and xg) and the same same term for

) and a:,(f). That is

the relationship between the z;

\\(151)7121))‘|2 ”W§2)*m§€2))u2

wij = Zei 207 e 202 (1)
P

= [Avl X AU2]7] (2)

where A, is the affinity matrix for the view 1 patterns

and Ao the affinity m(a;crb(( )for just the view 2 pat-
Il —ai)))2

terns. Ay1(i,7) =e 207 . Note that the prod-

uct between the Gaussian weighted distances within

each view is just the Gaussian weighted normalized

distance between the two concatenated patterns (when

considered as multi-view patterns).

Then we take the p X p matrix of w’s and put it in a
large 2p X 2p matrix of the form

A= B o,

where 0,, represents a p X p matrix of zeros (and we
will drop the subscript from here on for clarity). This
matrix could then be considered an affinity matrix (for
a bipartite graph) and given to the spectral clustering
algorithm of (Ng et al., 2001). However note that the
next step is to compute eigenvectors of the matrix

D—45A5M7DD—.5

where D is a diagonal matrix with D(i,i) =
Zj Aspi—p(i,j) (row sums of Aspr—p) which is equal
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to (where Dy (Deor) is the diagonal matrix with di-
agonal entries equal to the row (column) sums of W)

Digw 0 0 W[ Do O
0 D || W o0 0 D
but that matrix has the same eigenvectors as the ma-
trix

[ D 3WDIW'D:> 0

row col row

0 Do W'D, WD, }
which has conjoined eigenvectors of each of the
blocks D;3WD_W'D.;3 and D_?W'D;}, WD_?
and these parts can be found efficiently together by
computing the SVD of the matrix Ly = D;;0WD_ 7.
This trick is used in the co-clustering literature
(Dhillon, 2001; Zha et al., 2001), but there the affinity
submatrix W is derived simply from the term docu-
ment matrix (or equivalent) not derived as a prod-
uct of affinity matrices from different views '. The
final clustering/segmentation is obtained from the top
eigenvectors. There are several slightly different ways
to cluster the values of this eigenvector. We use the
prescription of Ng, Jordan and Weiss from the first

page where Y is obtained as follows.

Avl =exp(-distmatviewl/(2*sigsql));

Av2 =exp(-distmatview2/(2*sigsq2));
W=Av1*Av2;

Dtop=(sum(W’));

Dbot=(sum(W)) ;

Lw=diag(Dtop.~ (-.5))*W+diag(Dbot. (-.5));
[U,S,V]=svds(Lw)
X=[U(:,1:numclusts);V(:,1:numclusts)];
Xsq=X.*X;
divmat=repmat (sqrt (sum(Xsq’)’),1,numclusts);
Y=X./divmat;

Note that computing the SVD of the matrix Ly =
D;(;EUWD;f, gives two sets of eigenvectors, those of
Lw Ly, and those of Li,Lw. The algorithm above
concatenates these to form the matrix Y (as one would
get if performing spectral clustering on the large ma-
trix Agpr—p). This thus provides clusters for each view
of each pattern. To get a cluster for the multi-view
pattern, when both views are approximately equally
reliable, the top p rows of the Y matrix can be av-
eraged with the bottom p rows before the k-means
step. If one view is significantly more reliable than the
other, one can just use the Y entries corresponding
to the more reliable view (The eigenvectors of Lyy Ly,
reveal the clustering for the view 1 segments and the
eigenvectors of L, Ly for the view 2 segments). .

Tt is possible to combine these ideas and use multiple
views, each (or one) of which is a co-clustering

For comparison, we consider the patterns to be in the
joint space given by the inputs in the two views. We
call this algorithm JOINT In this case, we can sim-
ply use the standard spectral clustering algorithm to
determine clusters. Note that in this case

Cl@i—= 12
Ajornt(i,j) = e 207
@ =2 12412l —a ()12
= e 202
= Avl(Zv.])UTAUQ(%])?

Thus the affinity matrix for clustering in the joint
space can be obtained by a componentwise product
(Hadamard product or .* in Matlab) of the affinity ma-
trices for the individual modalities. [As shown above,
a person who ignored the multi-view structure of the
data would use one ¢? for all dimensions, however to
give this algorithm the best chance we allowed the use
of different 0? and 03.] In other words, we actually
used Ajornt(i,J) = Av1(i, ) - Ava(i, 5)

We also compare our algorithm to one where the affin-
ity matrices of the two individual modalities are added.
This idea is mentioned in (Joachims, 2003) for the
semi-supervised case. We call this algorithm SUM.
case Asyn(i,7) = Apa1(4,7) + Aua(i, ).

2. Theoretical Comparison of
Algorithms

As discussed in (Ng et al., 2001), the simplest case
for spectral clustering algorithms, is when the affinity
matrix is block diagonal. One can easily see that the
following statements are true.

Statement 1: For consistent block diagonal A,; and
A2, all 3 algorithms preserve block diagonal form.

Statement 2: If the affinity matrix in one view is block
diagonal but random in the other then only JOINT
results in a block diagonal affinity matrix.

When is the sM-D algorithm better than the JOINT
algorithm? Figure 2 shows a simple example that
shows that clustering in the joint space and M-D style
algorithms are not identical. The datapoints are num-
bered for the purposes of discussion. Consider in par-
ticular the membership of the circled datapoint (4).
The sM-D algorithm would cluster it with datapoints
1, 2 and 3. The JOINT algorithm is much more likely
(over a wider range of parameters and noise levels)
to cluster datapoint 4 with datapoints 5,6,7 and 8.
To quantify this effect, we constructed an affinity ma-
trix for each view from the example in Figure 2 and
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Marginal densities for two classesin each
of two views
View 2 h
L] (d
.‘o. Conditionally Independent ‘:
* . View 1
View 1
View2 ° View 2
~.’ Highly Correlated
0 )
0 View:r

View 1

Figure 1. A Consider two classes of patterns with two 1-D
views. The top of the figure represents the density for the
two pattern classes (bold and unbold) in View 1. Assume
the marginal densities in View 2 are similar. An exam-
ple scatterplot is shown on the left of the figure. On the
right,the same data is presented in a different format. Here
lines are joined between co-occurring patterns in the two
imaginary 1-D views/modalities (as shown at top). The
M-D algorithm wants to find a partition that crosses the
fewest lines. Two cases are shown for when the views are
conditionally independent or highly correlated. In the con-
ditionally independent case, there is a clear non-trivial op-
timal cut. In the correlated case,there are many equally
good cuts and the M-D algorithm will not perform well in
this case.

ran spectral clustering algorithms on noisy versions of
these affinity matrices for varying levels of noise and
varying cross-cluster strength m.

cCoococo O
o3I o3I ~oro
cCoococor O
oS o3I ~roro
o~ or~r3 o3 o
mFoO R OO0 O OO
o~ or3I o3 o
—FoROoOOOOO

=NeoNeoNeoNeol S o
= eloBolel

co3I I ~roo
co3I I ~roo
corr~3 3 oo
corr~3 3 oo
=R =R=R=N =N

—mooocooo

(an)
(en)
—

The cross-cluster strength m relates to the relative
spacing between the two clusters with respect to the
o? parameter in the spectral clustering algorithm. The
results are robust over a broad range of noise levels
(1071 to 107!). For m=0, all three algorithms cor-

View 2

View 1

View 2

@)

|_\.
INY J

View 1

Figure 2. A simple example that would give a different so-
lutions clustered in the joint space JOINT, than if the
sM-D algorithm was used.

rectly cluster nodes 1-4 and 5-8. However for m > .05
the JOINT method breaks down and groups one of
nodes 4 or 5 with the wrong cluster. The SUM
algorithm breaks down for m > .81 and the sM-
D algorithm continues to group appropriately until
m = .92. Figure 3 explains these results graphically as
well as showing the actual (pre-noise) matrices com-
puted Wiar—p,Asunm, and AjornT.

3. Clustering results with the course
webpage dataset

This dataset consists of two views of web pages. The
first view consists of text on the web page and the
second view consists of text on the links to the web
page (Blum & Mitchell, 1998). We use the six class
(course, department, faculty, project, staff, student)
version in (Bickel & Scheffer, 2004) consisting of tfidf
(term frequency inverse document frequency - where
a document is stored as a vector of weighted words.
THdf weights words more if they occur more in a doc-
ument and downweights words that occur often in the
full dataset) vectors without stemming. Patterns were
normalized within each view so that squared distances
reflected the commonly used cosine similarity measure.

We use the average entropy error metric of (Bickel &
Scheffer, 2004)

e Zk:mz >, Pii logz(pu))

i=1

where p;; is the proportion of cluster ¢ that is from
mixture component j, m; is the number of patterns
in class ¢ and m is the total number of patterns. On
this dataset, with this error measure, perfect agree-
ment would result in £ = 0, everybody in the same
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class would give F = 2.219 (and equal size clusters
with probability measurement equal to the base class
probabilities also gives F = 2.2).

We first compared the algorithms on the full dataset.
To do this we first searched for good o7 and oy from
clustering in the individual views.

We found that (with the proper normalization), the
joint method worked slightly better(E=1.64) than the
sum (E=1.70) and m-d version (E=1.66) (standard er-
ror estimates are provided later when 90% of the data
is used). For comparison, Bickel and Scheffer report
measures on the same error measure (with 6 clusters)
of approximately? 1.73 (multi-view) and 2.03 (single
view) for their mixture-of-multinomials EM algorithm
and approximately 1.97 (multi-view) and 2.07 (single
view) for their spherical k-Means algorithm (Bickel &
Scheffer, 2004).

As mentioned, when computing the SVD of the matrix
Lw = D;;2WD_7, one gets two sets of eigenvectors,
those of Ly Ly, and those of L}, Ly and for equally
reliable views, the Y matrices can be averaged before
the k-means step. For this dataset however, view 1 is
significantly more reliable than view 2 and we obtain
improved performance by simply using the eigenvec-

tors from view 1.

The main advantage of our algorithm is that it can al-
low us to combine sources of information with different
numbers of views. To see this, remember that the affin-
ity submatrix W is in terms of how similar pairs are
to co-occurring pairs. Thus a single view pattern xl(l)
from view 1 does not contribute to the library of paired

occurrences but can still be related to patterns x§-2) in

view 2 according to how similar the pair (:z:l(.l), xg»z)) is
to the set of co-occurring patterns. Thus we can con-
struct a full bipartite affinity matrix between patterns
from view 1 and those from view 2 using equation 2
where p sums over only the paired patterns. This re-
sults in a matrix multiplication of the form A, X Ay
where this time A,; is (p + m) X p dimensional and
Ay is p X (p + n) dimensional where there are p co-
occurring (multi-view) patterns and m patterns with
only view 1 and n patterns with only view 2 (see Fig-
ure 4). Note that the bottom right quadrant of the
resulting W matrix computes the affinity between an
unpaired view 1 pattern and an unpaired view 2 pat-
tern according to the sum of the affinities between this

pair (ml(jlﬁi, xz()i)j) and each of the set of observed pairs

{(9:51),:1752)), ...(xél),asg))}. The affinity between two
pairs of patterns is the product between the affinity

2estimated from their graph

between each view of each pattern.

In this case we use the eigenvectors of Ly Lj;, to find
the clusters for both the paired and view 1 data and
must use the eigenvectors of L}, Ly to find the clusters
for the data that only has view 2.

For comparison, we consider two other alternatives for
clustering data that consists of some multi-view pat-
terns and some single view patterns.

Alternative A using JOINT: cluster only the p
patterns consisting of x,El) and ;vg?) concatenated in
the joint space. Spectral clustering will give clusters
for these patterns. To report clusters for the m + n
unpaired patterns, report the cluster of the nearest

same view paired pattern of the pattern.

Alternative B: cluster the patterns from each view
separately. In this case the pairing information is lost.

Results for different values of p are reported in Tables
1 thru 3. Table 1 shows that there is a very slight but
significant performance advantage for the multi-view
patterns using Alternative A when 2084 (90%) of the
patterns have both views, but that Alternatives B and
our sM-D method perform significantly better on the
patterns that only have values for view 1 and our sM-D
method performs significantly better than both alter-
natives for patterns that only have values for view 2.
When only 1158 (50% ) of the patterns are provided
with two views, the sM-D algorithm performs signifi-
cantly better in all categories. Table 3 shows how the
sM-D algorithm varies for different numbers of paired
patterns. (The slight improvement in clustering per-
formance (with increased variance) for the paired view
data in the 50% paired case is likely due to an in-
creased chance of not including inappropriate pairs in
the paired dataset. Performance decreases with non
independent sources of information have been observed
with the non-spectral M-D algorithm. If leaving out
some data vectors increases the independence between
views, we would expect improved performance.) Per-
formance for the single view data is seen to decrease
gradually with less paired training data.

One value of an algorithm that can train with multi-
view data and report data for single-view data would
be when the single-view data arrive at a later time.
We are working on using the Nystrom approximation
(Charless Fowlkes & Malik, 2004) for such out of sam-
ple estimates. This would allow us to train with paired
data and provide cluster labels for later unpaired data.
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Table 3. Average Entropy for sM-D for varying amount of two-view data. (See Table 1 for an explanation of terms)

2084 (90%) 1621 (70%) 1158 (50%) 694 (30%) 231 (10%)
both views  1.684.003  1.66+.006  1.64 + .01 1.684+.01  1.76 +.03
View 1 only  1.63 & .02 1.66 + .01 1.66+.006  1.67+.01  1.73+.02
View 2 only  1.83 4 .02 1.91 + .01 1.954+.006  1.97+.01  2.00=+.01

Table 1. Average Entropy where 2084 (90%) of the Pat-
terns have both views. Alt. is an abbreviation for Alterna-
tive. All values are given 4+ 1 standard error of the mean
over 10 runs. The both view line refers to the error for
patterns that had two views, View 1 only refers to errors
on patterns that consisted of only view 1 and View 2 only
refers to errors on patterns that consisted of View 2 only.
All errors are using the average entropy error measure

Alt. A Alt B sM-D
both views  1.66 £.003 1.68£.002 1.68 4 .003
View 1 only 1.83+£.02 1.64 £ .02 1.63 £ .02
View 2 only 1.95+£.02 2.04+.003 1.834.02

Table 2. Average Entropy where 1158 (50%) of the Pat-
terns have both views. (See Table 1 for an explanation of
terms)

Alt. A Alt. B sM-D
both views  1.67+.01 1.69 £.002 1.64 + .01
View 1 only 1.90 £ .02 1.68 £.006 1.66 £ .006
View 2 only 2.04 £.006 2.04+.003 1.954.006

4. Discussion

We have shown that spectral clustering is competi-
tive in the webpage domain and have introduced a
novel multi-view spectral clustering algorithm. While
it performs slightly worse than properly normalized
joint spectral clustering in the full webpage domain,
the difference is small and the sM-D algorithm has the
major advantage that it allows single view patterns to
benefit from the paired dataset. This allows one to
incorporate all available information to form the best
clusters when there is lots of single-view data to be
clustered.

The spectral Minimizing-Disagreement algorithm was
motivated by the earlier Minimizing-Disagreement al-
gorithm(de Sa, 1994a; de Sa & Ballard, 1998) and we
believe that of the different ways of spectral clustering

with multiple views, sM-D best incorporates the idea
of minimizing the disagreement of the outputs of two
classifiers (clusterers). In the appendix we reproduce
an argument from (de Sa, 1994b; de Sa & Ballard,
1998) that motivates, in the 1-D case, the minimizing-
disagreement approach as an approximation to mini-
mizing misclassifications.

The spectral implementation of the Minimizing-
Disagreement idea shares many of the advantages and
disadvantages of other spectral techniques. It does not
work as well for multi-class classifications as for binary.
It is quick to implement and run (with sparse matri-
ces) and has a guaranteed global optimum which is
related by a relaxation to the desired optimum.

Putting the algorithm in the framework of graph par-
titioning should allow easier comparison and combi-
nation with results from clustering in the joint space.
Also it should be straightforward to modify the algo-
rithm to incorporate some labeled data so that the
algorithm can be used in a semi-supervised way. We
are currently exploring these avenues.

Appendix: Minimizing Disagreement as
an Approximation to Minimizing
Misclassifications

The M-D algorithm to minimize the disagreement cor-
responds to the LVQ2.1 algorithm(Kohonen, 1990) ex-
cept that the “label” for each view’s pattern is the hy-
pothesized output of the other view. To understand
how making use of this label, through minimizing the
disagreement between the two outputs, relates to the
true goal of minimizing misclassifications in each view,
consider the conditionally independent (within a class)
version of the 2-view example illustrated in Figure
5. In the supervised case (Figure 5A) the availabil-
ity of the actual labels allows sampling of the actual
marginal distributions. For each view, the number
of misclassifications can be minimized by setting the
boundaries for each view at the crossing points of their
marginal distributions.

However in the self-supervised system, the labels are
not available. Instead we are given the output of the
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other view. Consider the system from the point of
view of view 2. Its patterns are labeled according to
the outputs of view 1. This labels the patterns in Class
A as shown in Figure 5B. Thus from the actual Class
A patterns, the second view sees the “labeled” distri-
butions shown. Letting a be the fraction of Class A
patterns that are misclassified by view 1, the resulting
distributions of the real Class A patterns seen by view
2 are (1 —a)P(Cx)p(a2|Ca) and (a)P(Cx)p(a2|Ca).

Similarly Figure 5C shows View 2’s view of the pat-
terns from class B (given View 1’s current border).
Letting b be the fraction of Class B patterns misclas-
sified by view 1, the distributions are given by (1 —
b)P(Cp)p(z2|Cp) and (b)P(Cp)p(x2|Cp). Combining
the effects on both classes results in the “labeled” dis-
tributions shown in Figure 5D. The “apparent Class
A” distribution is given by (1 — a)P(Ca)p(z2]|Ca) +
(b)P(Cp)p(z2|Cp) and the “apparent Class B” distri-
bution by (a)P(Ca)p(z2|Ca)+(1-b)P(Cp)p(z2|Cp).
The crossing point of these two distributions occurs at
the value of zy for which (1 — 2a)P(Ca)p(z2|Ca) =
(1 — 20)P(Cp)p(x2|Cp). Comparing this with the
crossing point of the actual distributions that occurs
at x5 satisfying P(C4)p(z2|Ca) = P(Cp)p(z2|Cp) re-
veals that if the proportion of Class A patterns mis-
classified by view 1 is the same as the proportion of
Class B patterns misclassified by view 1 (i.e. a = b)
the crossing points of the distributions will be identi-
cal. This is true even though the approximated distri-
butions will be discrepant for all cases where there are
any misclassified patterns (¢ > 0 OR b > 0). If a = b,
the crossing point will be close.

Simultaneously the second view is labeling the pat-
terns to the first view. At each iteration of the al-
gorithm both borders move according to the samples
from the “apparent” marginal distributions.
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Figure 3. The resulting graphs (and matrices) resulting
from the three algorithms a) sM-D b)SUM c¢) JOINT. ap-
plied to the matrices A; and As above. The light lines
correspond to weights of m and 2m and the dark lines cor-
respond to weights of 1 and 1 +m?. In a) the solid lines
correspond to co-occurrence lines and the dashed lines, in-
ferred relationships. In c¢) the faint dotted lines only arise
due to noise. The e’s in the matrix result only from the
noise and would be different small numbers at each spot).
Each algorithm tries to find the smallest normal-
ized cut in its graph
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Figure 4. A graphical view of the matrix multiplication re-
quired to compute W when there are p patterns with both
views, m patterns with only view 1 and n patterns with
only view 2.
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Figure 5. An example joint and marginal distribu-
tion for a conditionally independent example prob-
lem. (For better visualization the joint distribution is ex-
panded vertically twice as much as the marginal distribu-
tions.) The darker gray represents patterns labeled “A”,
while the lighter gray are labeled “B”. (A) shows the label-
ing for the supervised case. (B) shows the labeling of Class
A patterns as seen by view 2 given the view 1 border shown.
a represents the fraction of the Class A patterns that are
misclassified by view 1. (C) shows the labeling of Class B
patterns as seen by view 2 given the same view 1 border.
b represents the fraction of the Class B patterns that are
misclassified by view 1. (D) shows the total pattern dis-
tributions seen by view 2 given the labels determined by
view 1. These distributions can be considered as the la-
beled distributions on which view 2 is performing a form
of supervised learning. (However it is more complicated as
view 1’s border is concurrently influenced by the current
position of view 2’s border). See text for more details.
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