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In natural environments, the sensations arriving at two or more sensory modalities are often correlated.

We derive an algorithm for a piecewise linear classi�er which uses the relationship between patterns

presented simultaneously to two or more networks as a supervisory signal. The algorithm is based on the

idea of minimizing the disagreement error | the proportion of patterns disagreed upon | between two

or more networks receiving correlated patterns. We test the algorithm on a ten class vowel classi�cation

problem and �nd that it performs better than a hybrid unsupervised/supervised algorithm and, with

two iterations, almost as well as a related supervised algorithm (Kohonen's LVQ2.1).

One of the most ubiquitous tasks for both animals and machine recognition systems is to classify novel

patterns based on prior experience with other similar patterns. For machine applications, a supervised

approach (in which prior patterns are presented together with their classi�cation label or target output) is

often used and these systems have produced many successful pattern recognition systems.

Humans and other animals learn to form complicated categories seemingly without this kind of supervi-

sion. However, while no explicit labeling signal is present, there is more information available than is modeled

with conventional unsupervised approaches. Natural environments are structured such that sensations to

di�erent sensory modalities (and sub-modalities) are correlated. For example, \hearing mooing" and \seeing

cows" tend to occur together.

We develop a model in which two \modalities" provide the labeling signal for each other. The algorithm is

derived by minimizing the disagreement error |the proportion of patterns on which the modalities disagree|

between the outputs of the two networks that receive correlated input patterns from a world consisting of

a number of discrete classes. Each class has a particular probability distribution for the sensation received

by each modality. Figure 1 represents a simple 2-Class world, with two 1-D modalities. Experience with the

world does not consist of the usual input sensation and pattern label (as for regular supervised learning),

but instead appropriate sensations to two or more modalities. If modality 1 experiences a sensation from its

pattern A distribution, modality 2 experiences a sensation from its own pattern A distribution. That is, the

world presents patterns from the appropriate corresponding distributions.

MINIMIZING DISAGREEMENT

Consider the task of iteratively learning to discover the optimal class boundary for distinguishing whether

Class A or Class B occurred in the one-dimensional problem of two classes in Figure 1. Let the current

boundary for modality i be represented with b

i

(see Figure 1). The ideal goal is to minimize the probability

of misclassi�ed patterns for each modality. That is, to minimize
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Figure 1: This �gure shows an example world as sensed by two di�erent modalities. If modality A receives

a pattern from its Class A distribution, modality 2 receives a pattern from its own class A distribution (and

the same for Class B). Without receiving information about which class the patterns came from, they must

try to determine appropriate placement of the boundaries b

1

and b

2

.

for both modalities (j = 1; 2) where P (C

i

) is the a priori probability of Class i and p(x

j

jC

i

) is the conditional

density of Class i for modality j.

The problem with this formulation is that the estimation of the conditional probabilities depends explicitly

on class information. Instead consider minimizing the Disagreement Error between the networks
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This heuristic measure is motivated by the fact that in the case where both modalities have distributions

in which the Bayes optimal border is such that the fraction of misclassi�cation is equal for both classes (as

for example in identical symmetric distributions), if (3) has a single non-trivial local minimum it is the same

as the minimum of (1). But the key point is that (3) does not depend on the class information as can be

seen by letting
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and rewriting (3) as
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Actually we are interested in �nding a non-trivial local minimum of the Disagreement Error. Such a

local minimum exists when there exists a pair (b
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> 0. A local minimum is not guaranteed to exist even for distributions for which the optimal

boundary could be found with a supervised algorithm.
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and similarly with respect to b
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Using an extension by Wassel and Sklansky [1972], to the stochastic approximation method [10] gives the

following iterative calculation for b

1

(see the Appendix for the derivation) where the hypothesized output

class from the other modality network replaces the correct label.
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In analogy with Competitive Learning[5, 7, 12] and LVQ2.1 [6] consider moving the borders indirectly

through the motion of codebook vectors. The borders arise from the Voronoi tessellations of the codebook

vectors. In the 1-D case the borders b

j

can be de�ned by b
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= (w
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)=2, where w
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is a codebook
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. Otherwise no updates are made. Note that here we

have removed the restriction that Class A lies to the left of Class B.

Expanding the problem to more dimensions, and more classes with more codebook vectors per class,

complicates the analysis as a change in two codebook vectors to better adjust their border a�ects more than

just the border between the two codebook vectors. However ignoring these e�ects, a �rst order approximation

suggests the algorithm shown in Figure 2. Note that this algorithm is identical to the modi�ed LVQ2.1 [6]

algorithm in [3] except that the labeling signal is not the actual class but the class hypothesized by the other

modality (and the unsupervised initialization).

The label initialization algorithmmentioned in the second step above, can best be described by considering

the network shown in Figure 3. Each output class has associated with it a vector in the space of codebook

vector activations. These vectors can be represented as weights from hidden neurons (whose weights are the

2

How the unsupervised labeling initialization of the codebook vectors is accomplished, is discussed at the

end of this section.



� Generate initial codebook vectors (currently randomly chosen data vectors)

� Initialize labels of codebook vectors using the network shown in Figure 3 with the algorithm

described below

� Repeat for each presentation of input patterns X
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is the codebook vector

with another label.

{ update the labeling weights as described below

Figure 2: Minimizing Disagreement (M-D) Algorithm

codebook vectors) to output neurons|one for each class as shown in the �gure. The weights are trained with

a Competitive learning [5, 7, 12] rule which tends to connect co-active neurons (representing closest codebook

vectors in each modality) to the same output class. During this stage the codebook vectors themselves are

not modi�ed.

During the main part of the algorithm described in the third step of Figure 2, the connections to the

output neurons are also adjusted in the same way by increasing the weight to the output class hypothesized

by the other modality, from the neuron with the closest codebook vector. Experiments show that this makes

the algorithm more robust because codebook vectors that are not able to �nd one particular boundary (due

perhaps to no local minimum in the Disagreement Error) may be reassigned.

SIMULATIONS

The algorithm was tested using a version of the Peterson and Barney vowel formant data

3

. The dataset

consists of the �rst and second formants for ten vowels in a /hVd/ context from 75 speakers (32 males, 28

females, 15 children) who repeated each vowel twice

4

. For comparison with other algorithms, the training

set and test set were the same. In order to facilitate evaluation, the algorithm was tested by giving the same

distributions to each modality. That is p(x

1

jC

j

) = p(x

2

jC

j

) for all j. A pattern presentation consisted of

randomly choosing one of the data patterns for the �rst modality and randomly choosing a pattern from the

same class for the second modality.

The algorithm obtained an average performance of 74% with 30 codebook vectors and 40000 pattern

3

obtained from Steven Nowlan

4

3 speakers were missing one vowel and the raw data was linearly transformed to have zero mean and fall

within the range [�3; 3] in both components
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Figure 3: This �gure shows a network for learning the labels of the codebook vectors. The weight vectors of

the hidden layer neurons represent the codebook vectors while the weight vectors of the connections from the

hidden layer neurons to the output neurons represent the output class that each codebook vector currently

represents. In this example there are 3 output classes and two modalities each of which has 2-D input

patterns and 5 codebook vectors.

.

presentations. Performance was averaged between modalities

5

and over 30 runs from di�erent initial code-

book vector positions. This was a big improvement over the initial accuracy after the label initialization step

(where the positions of the codebook vectors are still random but the output weights have been trained)

which had an average performance of 59%. The �nal performance �gures were positively correlated with

the performance after the label initialization step, which in turn was correlated with (in fact bounded by)

the best performance possible with the initial codebook vectors (as measured independently with optimal

labels). Improved methods of choosing the initial codebook vectors and algorithms for label initialization

result in improved performance. For example, using the �nal codebook vectors from a run of the M-D

algorithm as the initial codebook vectors for another run (replacing the �rst step in Figure 2) results in a

�nal performance of 76%. This can be seen in Figure 4 which shows performance after the initial labeling,

�rst application of the M-D algorithm, and second application of the M-D algorithm.

The algorithm's performance compares favourably with the 72% resulting from a hybrid unsupervised-

supervised algorithm| Kohonen feature mapping algorithm (with 30 codebook vectors) followed by optimal

labeling of the codebook vectors. (In fact if the same optimal labeling algorithm is applied to the codebook

vectors resulting from the M-D algorithm, an average performance of 76% and 78% (for applying after one

or two iterations respectively) results.) Performance is not as good as that of the related fully supervised

algorithm, LVQ 2.1 which achieved an average performance of 80%, but is comparable to the performance

of (supervised) back-propagation (with 25-200 hidden layer neurons) which obtained average performances

of 73.4-78.5% [8]. Nowlan's mixture model (supervised) achieved an average performance of 86.1%.

DISCUSSION

In summary, we have shown that classi�cation borders can be learnt without an explicit labeling or

supervisory signal. For the particular vowel recognition problem, the performance of this \self-supervised"

algorithm is almost as good as that achieved with supervised algorithms. This algorithm would be ideal for

tasks in which signals for two or more modalities are available, but labels are either not available or expensive

to obtain. One speci�c task is learning to classify speech sounds from images of the lips and the acoustic

5

Each modality was tested separately for its ability to output the same label for all occurrences of the

same vowel.
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Figure 4: The performance (for 30 di�erent initial con�gurations) after: initial labeling (init-lab), one

application of the M-D algorithm (Min-Dis 1), and two applications of the M-D algorithm (Min-Dis 2)

signal. Stork et. al. [1992] performed this task with a supervised algorithm but one of the main limitations

for data collection was the manual labeling of the patterns [David Stork, personal communication, 1993].

The algorithm could also be used for learning to classify signals to a single modality where the signal to

the other \modality" is a temporally close sample. As the world changes slowly over time, signals close in

time are likely from the same class. This approach should be more powerful than that of [4] as signals close

in time need not be mapped to the same codebook vector but the closest codebook vector of the same class.

This work is similar in general motivation to that of [1, 2], but di�ers signi�cantly in the derivation

and resulting algorithm. Both algorithms are able to self-supervise from spatial/temporal/multi-modality

relationships between their sub networks. This algorithm, however is restricted to classi�cation tasks but

requires less computation, memory storage and communication complexity. The di�erent advantages and

disadvantages with both algorithms are analogous to those between their related supervised algorithms, LVQ

[6] and back-propagation [11].

Appendix: Derivation of the Minimizing Disagreement Algorithm

The algorithmwe derive for minimizing (3) is patterned after [14] and uses their extension to the stochastic

approximation method [10]. In stochastic approximation, iterative approximations are made by adding to

the current estimate an appropriately scaled random variable (which is a function of the received input)

whose expected value is the gradient, at the current estimate, of the function to be minimized. In this case

the function to be minimized is a regression function. Wassel and Sklansky [1972] extended this method

to work for functions that are the limit of a sequence of regression functions. Thus the solution to the

minimization of (3) involves �nding a sequence of functions whose limit is given by (6)(and similarly for (7)).
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where 	(x� z; c) is a Parzen window function [9] centred at z with width parameter c that satis�es the

following conditions
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The theorem in [14] guarantees convergence under the condition that the function to be minimized
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