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ABSTRACT: We develop and test three deep-learning re-
current convolutional architectures for learning to recog-
nize single trial EEG event related potentials for P300
brain-computer interfaces (BCI)s. One advantage of the
neural network solution is that it provides a natural way to
share a lower-level feature space between subjects while
adapting the classifier that works on that feature space.
We compare the deep neural networks with the standard
methods for P300 BCI classification.

INTRODUCTION

Brain-computer interfaces (BCls) are being developed as
communication methods for people with locked-in syn-
drome who have lost the ability to control their mus-
cles and thus can’t move, speak, or eventually even move
their eyes in a well-controlled way. Electroencephalog-
raphy (EEG) provides a cheap non-invasive monitoring
channel with excellent temporal precision and is the most
used signal for brain-computer interfaces. Classifying the
EEG signals however is a difficult task as the signals are
subject to poor spatial resolution, sensitivity to other elec-
tromagnetic sources as well as to the impedance of the
electrode-scalp interface. The accuracy of classification
algorithms for interpreting EEG data is a major barrier to
the improvement of the EEG based BCI systems.

P300 based BCIs attempt to recognize a single-trial P300-
like response that occurs when a subject attends to a pre-
sented rare or meaningful item. P300 responses have
been studied in Cognitive Neuroscience for years and are
referred to as event related potentials as they are time-
locked to the presentation of the stimulus (event) [1].
Modern P300 BClIs classify the single-trial version of the
event-related potential. Single-trial processing of EEG
data has to date largely been most successful with very
simple algorithms due to the large amounts of noise in
the data and the paucity of data.

Many studies [2,3] have generally found that linear clas-
sification methods such as linear support vector machines
(SVM) and linear discriminant analysis (LDA) worked
better for classifying P300 BCIs than simple shallow non-
linear methods such as multilayer perceptron and Gaus-
sian kernel support vector machines. However, these
classifiers treat every spatio-temporal sample equally (for

example they perform identically if channel data are con-
sistently permuted), and therefore do not benefit from the
potential assumption that local temporal and spatial pat-
terns exist in the data. By preserving the spatial orga-
nization of electrodes in the representation of the data,
we could attempt to learn local spatial filters present in
the data. Overall, a classifier should consider both spa-
tial and temporal information while classifying the P300
EEG signal.

Recently deep neural networks have transformed the
fields of handwriting recognition, speech recognition [4],
large scale image recognition [5] and video analysis [6,7],
and are rapidly transforming machine learning more gen-
erally. More recently convolutional neural nets and re-
current nets have been used in the realm of EEG signal
classification. Cecotti et al.[8] used convolutional neu-
ral networks for P300 EEG classification. Mirowski et
al.[9] used convolutional networks to predict epileptic
seizures before they happen. Bashivan et al.[10] used a
deep recurrent-convolutional network to learn represen-
tations from EEG, and demonstrated its advantages in the
context of a mental load classification task. They success-
fully preserved the spectral, spatial, and temporal struc-
ture of the data during classification. There are multi-
ple reasons to believe that deep learning could transform
EEG processing: a) convolutional neural networks pro-
vide an intuitive and well understood way to deal with
natural spatial relationships [5], b) neural networks eas-
ily allow filtering and classification to be combined in one
discriminative framework, and c) recent advances in re-
current neural network (RNN) structures such as Long
Short Term Memory (LSTM) [11] provide an intuitive
and well understood way to deal with natural temporal
relationships.

Our goal is to develop various deep learning architec-
tures for classifying the P300 EEG signals. The pro-
posed classifiers respect the spatial and temporal nature
of the EEG signals, optimally combine their informa-
tion, and naturally permit the sharing of sub-structure be-
tween tasks and between subjects. We propose a three-
dimensional convolutional neural network (3D-CNN)
[6,12] in conjunction with a two-dimensional convolu-
tional neural network (2D-CNN) and LSTM to capture
spatio-temporal patterns in the EEG signals We also ex-



plore the use of transfer learning, where the information
can be shared between different subjects [13].

Transfer learning is important in EEG analysis as due
to cortical folding and other differences between people,
EEG classifiers trained on one subject do not generalize
as well to other subjects. However, it is time-consuming
to collect training data from each new subject, so a de-
sirable strategy is to train a “proto-classifier” with many
previous subjects and then refine it with a small amount
of training data from the new subject.

Our proposed method for P300 EEG signal classification
is closely related to the one that is proposed by Bashivan
et al.[10]. This method preserved the spatial structure of
the data by transforming EEG into 2D image frames, and
combined 2D-CNN and LSTM for the classification. In
contrast, we propose the use of a 3D CNN in order to pre-
serve spatio-temporal features, and also employ transfer
learning to further increase classification performance.

MATERIALS AND METHODS

EEG DATASET: Data were collected from a P300 seg-

ment speller paradigm where letter segments were flashed
and subjects had to mentally note which stimuli were seg-
ments from their target letter[19]. That is, targets were
colored segments that form part of the desired letter and
non-targets were differently colored segments that are not
part of the letter. There were 10 segments total and each
segment has a unique color. Subjects were cued with
the colored segments at the beginning of each trial. Re-
sponses to target segments give similar P300 responses to
target letters in a more common P300 BCI paradigm.
We performed experiments using two training datasets.
EEG dataset 1 was recorded from 4 subjects using a 64-
channel active electrode EEG system (BioSemi Active
IT) with a sampling rate of 512 Hz and bilaterally refer-
enced to the average of the two mastoids. Later, the data
were segmented and temporally downsampled to 128 Hz.
EEG Dataset 2 was recorded from 5 subjects using the
BrainVision BrainAmp 64-channel EEG system. The na-
tive sampling rate was 5 kHz, downsampled to 100 Hz
for classification. Data were re-referenced to common
mean (montage average reference). On both the datasets,
the EEG signal is bandpass filtered with an FIR filter
of length 68-taps, with passband between 2 and 35 Hz
and stopband cutoffs at 0.1 and 40 Hz. Also, the signal
from 150 ms to 800 ms after segment flash onset was seg-
mented and downsampled to ten frames.
The classification task is to classify an EEG signal signal
into a target class or a non target class. The target class
refers to the signals collected when a target segment is
flashed, while the non target class refers to the signals
collected when a non target segment is flashed. The di-
mension of each input signal is 64 x 10 (Channels in 3D
space x Time Points).

DATA PRE-PROCESSING: Our goal is to improve the
detection/classification of P300 responses by learning

representations from the EEG data. We preserve spatial
information, by projecting the EEG data into a 2D grid
as in [10]. The EEG electrodes are located in a three di-
mensional space over the scalp. Transforming the EEG
measurements from 3D locations on the head into a 2D
grid is accomplished through spatial interpolation. An
azimuthal equidistant projection [14] is used to project
the position of electrodes in a 2D surface. Subsequently,
cubic spline interpolation [15] is applied on the resultant
2D mapping of the electrodes to obtain a 2D grid of size
n X n, where n is the number of points in each row. A
square with roughly 8 or 12 interpolated points on each
side seems sufficient for capturing the spatial variation.
For this experiment, we use 8 interpolated points on each
row and column resulting in an 8 x 8 2D grid, analogous
to a 2D image with pixel dimension of 8 x 8. 2D images
are constructed for every time window for each trial, and
are given as an input to the deep convolutional neural net-
work. The input dimension for each signal is 10 x 8 x 8 x
1 (Time Samples x height x width x Depth).

PROPOSED MODEL ARCHITECTURES: In order to
learn the inherent spatial and temporal features from an
EEG signal, we use a model which combines a deep hi-
erarchical feature extractor with the one that can learn to
recognize and synthesize the temporal features.

General multilayer perceptrons have not been widely suc-
cessful in EEG as the massive number of unconstrained
interdependent parameters can lead to overfitting. The
convolutional framework allows for successfully learning
complex relationships in images without overfitting for at
least two reasons: (1) Each filter is only applied to a few
local inputs, and (2) each filter is learned based on multi-
ple windows (replicated throughout the training pattern)
in each labeled example. This effectively increases the
amount of training data available for learning the param-
eters.

Moreover, human brain activity is a temporally dynamic
process. Variations of the signals between time points
may actually contain additional information about the un-
derlying P300 response. Hence, Long Short Term Mem-
ory (LSTM) is adopted on top of the CNN, to learn tem-
poral patterns as has been done for action recognition in
videos [7].

Generally, convolutions are applied on 2D feature maps
to compute spatial features, and later recurrent layers are
used to compute temporal features. However, the 2D
ConvNets do not take the temporal information into ac-
count while performing the spatial convolutions on each
frame. Hence, we propose an approach based on 3D Con-
vNets, which initially perform spatio-temporal convolu-
tions, to consider both spatial information in each frame
and temporal information encoded in multiple contiguous
frames, preserving the temporal information of the input
signal.

Here are the proposed architectures to extract the spatial
and temporal information from the EEG signal.

e 2D3 — L: Layers of 2D-CNN are stacked on top of



each other, and used on each frame to extract the
spatial information, while LSTM was used to ex-
tract the temporal information, on the sequence of
frames.

e 3D—2D3—L: A3D-CNN was used initially to ex-
tract spatiotemporal features, and then a 2D-CNN
and LSTM are applied on top of the 3D CNN.

e S(3D)—2D3 — L: A transfer learning approach is
used on 3D — 2D3 — [ architecture, where we pre-
tain the network on a different dataset, freeze the
3D CNN layers, and train the rest of the network on
the current dataset. S(3D) in S(3D)—2D3— L de-
notes that we are sharing the weights of 3D-CNN
across the subjects.

We implemented the architectures using the Keras library
and Theano framework. As described in the previous sec-
tion, the EEG electrode positions are projected and inter-
polated into an 8x8 2D square grid and a sequence of 8x8
images are extracted over the successive time windows.

2D3 — L Architecture: Here, we combine a 2D-CNN
and LSTM, as a result separately utilizing both the spa-
tial and temporal information for the classification.

As described in the previous section, in order to account
for the temporal activity, we extract 10 frames from each
trial ie., EEG signal, by dividing each trial into 10 time
windows, and averaging over each time window. The se-
quence of these images are given as input to the CNN.
The input data to the CNN is of the following dimension:
Total Number of Trials x 10 frames per each trial x 8
width x 8 height x I depth

The outputs of the 2D-CNN are fed into a recurrent net-
work, where we investigate the temporal activity in the
EEG signals.

During training, the input to the CNN is a fixed-size 8x8
image. The image is passed through a stack of convo-
lutional (conv.) layers, where we use filters with a very
small receptive field: 3 x 3 (the smallest size to capture
the notion of left/right, up/down, center). The convolu-
tion stride is fixed to 1 pixel with rectified linear (ReLu)
activation functions. In order to preserve the spatial res-
olution of the image, spatial padding of 1 pixel is used
in each convolutional layer. Multiple convolution lay-
ers are stacked together and followed by a Max-pooling
layer. Max-pooling is performed over a 2 x 2 pixel win-
dow, with stride 2. Using dataset D1, Best results were
obtained by stacking 3 convolutional layers, with kernels
respectively 32, 48 and 64, together, followed by a Max-
Pooling layer. The dimension of the input image for each
time step by the end of the 3rd Conv Layer is 8 x 8 x 64.
After applying pooling, the dimension reduces to 4 x 4 x
64.

Fig. 1 illustrates the optimal CNN configuration.
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Figure 1: 2D Convolutional Neural Network for process-
ing each temporal frame

This 2D-CNN architecture was adopted for each frame.
The number of parameters in the network were reduced
by sharing the parameters of the CNN over all the frames.
A recurrent layer is applied on top of 2D-CNN. In order
to use recurrent layers, the 3D output of 4 x 4 x 64 for
each time step is converted into a 1D output of size 1024.
The input dimension when training the recurrent neural
network is 10 x 1024 (Time Steps x No. of Features).
RNN’s provide an elegant way of dealing with sequential
data that embodies correlations between data points that
are close in the sequence. Though RNN’s are successful
in classifying many tasks such as speech recognition and
text generation, they have difficulty with long term de-
pendencies, due to the vanishing and exploding gradient
problem [11], which results from propagating the gradi-
ents back through many layers. LSTMs are capable of
handling the long term dependency problem; they learn
when to forget previous hidden states and when to update
the hidden states. We experimented (using subject D1)
with various number of LSTM layers and memory cells
in each layer. The best results were obtained when using
a single LSTM layer with 32 memory cells.

For our implementation, we fed the extracted CNN out-
puts of 10 frames to the LSTM layer. The prediction of
the LSTM layer at each time step was propagated up to
the fully connected layer. The classification is done by
averaging scores across all the frames. The outputs of the
LSTM layer are fed into a fully connected layer, followed

by a sigmoid layer.
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Figure 2: Overall architecture which combines 2D CNN
with LSTM.



We also compared using temporal convolutions instead of
LSTM, in order to evaluate the performance of LSTM in
extracting temporal information from a sequence of EEG
images (2D3 — 1D). In this model, the 2D CNN outputs
across time frames are fed into a 1D CNN with 32 kernels
of size 3 and a stride of 1 frame. These kernels capture
different temporal patterns across multiple time frames.
Fig. 2 shows the proposed 2D — L architecture.

3D — 2D — L Architecture:

The 3D ConvNets are well-suited for spatio-temporal fea-
ture learning. The 3D Convolution is achieved by con-
volving a 3D kernel to the cube formed by stacking multi-
ple contiguous frames together[12]. Therefore the feature
maps in the convolutional layer are connected to multiple
contiguous frames in the previous layer, thereby captur-
ing the temporal information.

Initially, the multidimensional input signal, with dimen-
sion 8 x 8 x 1 x 10 (Height X Width x Depth x Time
Steps) is fed into a 3D-CNN. We tried various configura-
tions of 3D-CNN, involving different number of kernels
and kernel size. Our findings indicate that using one 3D
Conv layer with 24 kernels of size 3 x 3 x 3 (kernel Depth
x Kernel Height x Kernel Width) is the best option. The
dimensions of the signal by the end of this layer would be
8 x 8 x 24 x 10 (Height x Width x Depth x Time Steps).
We used the 23— L architecture (Fig. 2) on top of the 3D
CNN. The output of the 3D Conv layer in Figure Fig. 3 is
fed into the 2D — L network. The input for the 2D3 — L
network would be 10 frames of size 8 x 8 x 24. One
layer of 3D-CNN with 24 kernels is followed by 3 layers
of 2D-CNN with kernels 32, 48, 64 respectively for each
time step.
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Figure 3: 3D convolutional neural network on EEG sig-
nal. Input signal (Red Cube) is of dimension 8 x 8 x 1
x 10 (Height x Weight x Depth x Time Points). The Red
cube is basically formed by stacking up the 10 2D frames
of size 8 x 8. A 3D -Conv layer of 24 filters with 3 x 3 x 3
size is applied (Blue cubes). The resultant output of size
8 x 8 x 10 x 24 is converted to 8 x 8 x 24 x 10 (Orange
cubes). This would be the input to 2D3 — L network,
where 2D CNN is applied on each block of size 8 x 8 x
24, and the corresponding output of the blocks from 10
time steps is given to LSTM

Overall, the 3D-CNN helps us to extract the broad spatio-
temporal features, and the 2D-CNN and LSTM find the
hidden spatial and temporal features respectively.

S(3D) — 2D? — L Architecture:

One advantage of the neural network approach is the ease
in applying transfer learning where lower layer weights
can be taken from a network trained on other subjects
and then frozen for training of the whole network on the
new subject [13].

The base network, which uses the 3D — 2D3 — L archi-
tecture was initially trained on multiple subjects, and the
corresponding parameters used in training the target net-
work, which involves a fresh subject. Once the weights
corresponding to the base network are copied to the tar-
get network, the 3D conv layer in the target network are
frozen and do not change during the training. Only the
weights corresponding to the higher layers (2D-CNN,
LSTM, FC) of the target network change. We chose to
freeze the CNN layers, instead of fine-tuning them, as the
dataset is small and the number of parameters is large.

RESULTS

The network was trained and tested on two datasets.
Dataset 1 comprises 4 subjects, while Dataset 2 com-
prises 5 subjects. The goal is to classify a signal as a
P300 Target Signal or a Non-target signal. A split of
80% - 10% - 10% was used while dividing each fold into
training, validation and testing respectively. Training is
performed by optimizing the cross-entropy loss function.
The network is trained using Adadelta, a variant of gradi-
ent descent which adapts over time using only first order
information and has minimal computational overhead. In
order to counteract possible overfitting due to the large
number of weights, we used L2 Regularization penalty
of 0.001 and Dropout of 20%. The architecture was the
same for all subjects, where model tuning was done only
on subject D1.

We compared the classification results of the proposed
architectures with standards in the field - Stepwise LDA
and shrinkage LDA. The shrinkage LDA algorithm uses
automated shrinkage computation using the formula de-
veloped by Schaefer and Strimmer [18] based on the
work of Ledoit and Wolf[17]. All tests were run with
identical training/valid/test splits so that sensitive pair-
wise comparisons of accuracy could be made between the
different algorithms. 50 different accuracy measurements
were made for each network as follows: We made 5 ran-
dom shuffles of the dataset and for each of these obtained
10 test sets by using an 80% train/10% validation/10%
test division where each 10% of the data is used as the
test set once.

Table 1: AUC measures for the proposed models on Dataset 1
Sub. A1 Sub. Bl  Sub. C1 Sub. D1

Stepwise LDA 0.67 0.65 0.69 0.65
Shrinkage LDA 0.69 0.64 0.71 0.65
2D* — 1D 0.65 0.65 0.67 0.64
2D — L 0.66 0.66 0.70 0.67

3D —2D3 — L 0.68 0.67 0.72 0.68
S(3D) —2D* — L 0.69 0.70 0.72 0.69




Table 2: AUC measures for the proposed models on Dataset 2
Sub. A2 Sub. B2 Sub. C2 Sub. D2 Sub. E2

Stepwise LDA 0.60 0.69 0.68 0.72 0.77
Shrinkage LDA 0.62 0.71 0.69 0.75 0.78
2D —1D 0.58 0.66 0.59 0.62 0.74
2D% — L 0.61 0.68 0.62 0.70 0.76
3D-2D% - L 0.64 0.70 0.67 0.75 0.76
S(3D) — 2D — L 0.65 0.72 0.67 0.75 0.76

Tab. 1 and Tab. 2 reports the Area under the ROC curve
(AUC) for the baseline models and the proposed models
on Dataset 1 (4 subjects) and Dataset 2 (5 subjects) re-
spectively.

For the transfer learning in Dataset 1, we pretrain the
3D CNN network on all the subjects other than the cur-
rent subject, and finally freeze the 3D convolutional layer
and train the network on the current subject. For transfer
learning in Dataset 2, due to the discovery of one subject
(D2) with a very different "P300” signal (possibly more
of an error-related potential signal), using all other sub-
jects for transfer learning was not very successful, so one
subject (E2) was used as transfer for the other subjects
(A2-D2). For subject E2, all the other subjects (A2-D2)
were used for transfer learning. To provide an alternate
perspective, we replicated positive samples as done in [8]
instead of subsampling. The first 70% was used for train-
ing, and the next 15% for validation and the last 15% for
testing. The results comparing the performance of LDA
with shrinkage and S(3D) — 2D3 — L are presented in
Tables 3 and 4.

Table 3: Comparing AUC on Dataset 1
Sub. Al Sub. BI  Sub.C1 Sub. DI
Shrinkage LDA 0.67 0.58 0.7 0.59
S(3D)—2D*—L  0.68 0.69 0.7 0.7

Table 4: Comparing AUC on Dataset 2
Sub. A1  Sub. BI  Sub.C1 Sub. DI  Sub. E1

Shrinkage LDA 0.58 0.64 0.68 0.78 0.7
S(3D) —2D* — L 0.66 0.7 0.65 0.74 0.78
DISCUSSION

We measured and compared the performance of the pro-
posed and baseline models using a paired t-test.

On Dataset 1, Our S(3D) — 2D? — L performed signif-
icantly better than the stepwise LDA on all the subjects,
and performed significantly better (pairwise t-test) than
Shrinkage LDA on subjects B1 (p =2.32 x 10~7) and D1
(p=2.31x10~%). The results from the S(3D)—2D3—L
net did not differ significantly from the shrinkage LDA
results on subjects Al and C1.

On Dataset 2, S(3D) — 2D? — L performed significantly
better than 3D —2D3— L on a few subjects and performed
equally well on the other subjects. S(3D) — 2D — L
performed better than Shrinkage (p = 6.98 x 10~*) and
Stepwise LDA (p = 5.9 x 1073) on subject A2. Also,
it performed significantly better than stepwise LDA, (but
not Shrinkage LDA) on subjects B2 (p = 2.73 x 10~°
vs Stepwise LDA) and D2(p = 6.27 x 1072 vs Stepwise
LDA). However, the shrinkage LDA performed signifi-
cantly better than the S(3D) — 2D3 — L on subjects C2

(p=8.74 x 10~%) and E2 (p = 0.0324).

Overall, the proposed models work better than step-
wise LDA and work better than the best baseline model
(shrinkage LDA) on a few subjects and relatively lower
on some other subjects.

The 2D? — L architecture performed numerically bet-
ter than 2D3 — 1D for all subjects and the difference
reached statistical significance on 7 out of the 9 subjects
(p- values between 3.42 x 10~ and 0.0498). Thus it
appears that LSTM did better in dealing with temporal
patterns in the EEG signals compared to temporal con-
volution (1D-CNN) at least among the architectures we
tried. The LSTM has richer temporal dynamics and can
look at temporal patterns arbitrarily far back in time. 1D-
CNN just looks for specific patterns in time of length up
to the kernel length, while the LSTM understands and
keeps track on the previous patterns and perform back-
propagation through time [16].

From Tab. 1 and Tab. 2, we notice that the 3D —2D3 — [
architecture performs better than the 2D3 — L architec-
ture. Moreover, the difference reaches statistical sig-
nificance on 6 out of the 9 subjects (p-values between
1.17 x 1076 and 0.0016). Even though, the performance
gap is very small, it is a consistent difference. The 3D-
CNN model effectively learns spatio-temporal patterns of
the EEG signal.

Moreover, the transfer learning approach managed to
perform better than the 3D-CNN, which states that 3D
conv layer potentially learns spatio-temporal represen-
tations that are subject-independent, and the 2D-CNN
and LSTM are able to deal with the intra-subject spatial
and temporal patterns. The 3DConv layer captures the
underlying spatial and temporal information, which are
subject-independent.

Overall, the results suggest that deep learning may be
used as an alternative compared to traditional machine
learning techniques and that a 3D-CNN architecture is an
effective model for learning the nature of P300 EEG sig-
nals.

CONCLUSION

In this work, a new approach for P300-EEG signal clas-
sification is demonstrated. As opposed to the traditional
techniques, the proposed classifiers respect the inherent
spatial and temporal nature of the EEG signals. This
is accomplished by representing the multi-channel EEG
time series as a sequence of 2D image frames. Inspired
by the state-of-the-art video classification techniques, we
train a deep convolutional and recurrent neural network
on these sequence of 2D images. We proposed three dif-
ferent architectures. We discovered that using a 3D-CNN
in conjunction with 2D-CNN and LSTM performed bet-
ter than using 2D-CNN and LSTM. The 3D-CNN ap-
pears to most effectively model spatial and temporal in-
formation.

The best performance is obtained when using a transfer
learning approach, where we pretrain a network compris-



ing 3D Conv, 2D Conv and LSTM layers on different sub-
jects, freeze the 3D Conv Layers, and perform classifica-
tion training and then testing on a fresh subject. The clas-
sification performance of the proposed models are com-
pared with common best performing classifiers in this
field - Stepwise LDA and shrinkage LDA. The proposed
models perform relatively better than the base line mod-
els on a few subjects. However, there is plenty of scope
for improvement.

One of the benefits of the neural network approach is that
spatio-temporal generalizations arise naturally. Combi-
nations of 3D and 2D kernels could be used to optimally
extract all the spatio-temporal structure that distinguishes
the signals in P300 BClIs (or other temporal ERP signals).
As a future direction, we will work on further increasing
the performance, as improving the classification rates in
BCI systems would make many more applications feasi-
ble and could improve the quality of life for those that are
not able to communicate in other ways.
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