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Abstract

Behaviora experiments have demonstrated that people
encode knowledge of correlations among semantic prop-
erties of entities and that this knowledge influences per-
formance on semantic tasks (McRae, 1992; McRage, de Sa,
& Seidenberg, 1993). Independently, in connectionist the-
ory, it has been claimed that rel ationships among seman-
tic properties may provide structure that is required for
the relatively arbitrary mapping from word form to word
meaning (Hinton & Shallice, 1991). We exploredtheseis-
sues by implementing amodified Hopfield network (1982,
1984) to simulate the computation from word form to
meaning. The model was used asavehiclefor developing
explanationsfor therole played by correlated propertiesin
determining short interval semantic priming effectsand in
determining the ease with which a property is verified as
part of aconcept. Simulationsof the priming and property
verification experiments of McRae (1992) are reported. It
is concluded that correlations among properties encoded
in conceptual memory play a key role in the dynamics of
the computation of word meaning. Furthermore, a model
in which property intercorrelations are central to forming
basins of attraction corresponding to concepts may pro-
vide important insightsinto lexical memory.

Introduction

An important question in cognitive science involves
how entities such as dogs and chairs are represented in
memory. In the work reported in this article, we ex-
plored the role of correlations among properties in con-
ceptual memory. Behavioral experiments described in
McRae (1992) demonstrated that people encode correla
tions among properties of real-world entities. Below, we
present a connectionist model that was used to investigate
atheory inwhich property intercorrel ationsplay akey role
in the computation of concepts from words. Simulations
of the behaviora phenomena described in McRae are pre-
sented. A more complete description of the experiments
and simulationsis available in McRae et a. (1993).

The human empirical studies reported in McRae (1992)
investigated an important and basic aspect of people’'s
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knowledge of rea-world entities, namely, correlations
among properties (e.g., has fur and has a tail are corre-
lated in entities in the world). The studies demonstrated
aclear influence of correlated properties on peopl€'s per-
formance in semantic tasks. Specifically, Experiment 1
showed that the speed with which people indicate that a
property (e.g., hunted by people) is reasonably true of an
entity (e.g., DEER) can be predicted from how strongly
the property is correlated with other properties of that en-
tity. In Experiment 2, a short interval semantic priming
task, similarity defined in terms of overlap of individ-
ual and correlated properties was used to predict priming
effects. Similarity in terms of individual properties pre-
dicted priming effects for artifacts (things that are made
by humans), but similarity in terms of correlated property
pairs predicted priming effects for biological kinds (living
things). The resultsof these studiesas well as othersfrom
the artificial concepts literature (e.g., Medin et a., 1982;
Younger & Cohen, 1983) indicate that conceptua mem-
ory includesinformation about property intercorrel ations.

Connectionist models provideanatural vehicleto study
the notionthat stored property intercorrelationsare central
to concepts. A connectionist model that uses a corrdla
tional learning rule (e.g., aHopfield network, 1982, 1984)
can naturally be used to encode correlations among the
propertiesof entitiesinitsenvironment. Furthermore, this
type of model may shed light on the processes by which
property intercorrelationsinfluence peopl€' s performance
on semantic tasks. Our goal was to use an explicit com-
putational model to investigate atheory in which encoded
knowledge of the correlational structure of semantic space
plays a critical rolein computing concepts from words.

There is further independent motivation for hypoth-
esizing that encoded correlations may be important for
computing word meaning. The mapping from word form
to meaning contains few regularities, particularly at the
monomorphemic level. Thus, words that have similar
pronunciations or spelling do not tend to have similar
meanings (e.g., MAT, RAT, THAT, HAT, CAT, and SAT).
Aspointed out by Hintonand Shallice (1991), itisdifficult
for anetwork with distributed representations to map sim-
ilar inputs(e.g., the orthographic or phonol ogical forms of



Wik = Wy

conceptual units

word form units

Figure 1: Schematic of the model’s architecture. The implemented model contained 379 word form units and 646

conceptua units.

the wordslisted above) onto dissimilar outputs(e.g., their
meanings). This observation led them to suggest that the
computation of word meaning may consist of two over-
lapping stages. First, roughly, a computation from word
form putsthe system into the appropriate region of seman-
tic space (i.e., into the correct basin of attraction). Next,
encoded correlations among semantic properties are used
to drive the system to a stable state.

In the next section, we describe a modified Hopfield
network in which correlations among properties are nat-
urally encoded and are used to construct basins of attrac-
tion that are critical to itsability to compute the meaning
of words.

The Modd

Figure 1 shows the moddl’s architecture. The input was
a distributed representation of word form. Specificaly,
each of the 379 input units represented atriple of letters
(including leading and trailing blanks) that occurred in at
least one of theincluded concept words. Thisscheme pro-
vided a sparse distributed representation of word spelling
that encoded letter order and roughly preserved item sim-
ilarity. The critical theoretical aspect of the input was
that no systematic relationship existed between the input
patterns and conceptua representations. We assume that,
when all wordsare represented, because of thelack of reg-
ularity in the mapping from orthography or phonology to
meaning, concepts are not directly computed. Our model
possessed this characterigtic.

Output conceptual representations were based on se-
mantic property production norms that are described in
McRae et a. (1993). There was an output unit for each
property that occurred as part of oneor more of the 84 con-

cepts on which the model was trained (46 artifacts and 38
biological kinds). Output unitswere fully interconnected.
Each input unit was unidirectionally connected to each of
the 646 output units, but input units were not intercon-
nected.

The weights between the output units were calculated
using the modified Hopfield rule of Tsodyks and Feigel-
man (1988). That is

w5 = 2 310 = )5~ )]
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where wj;; represented the weight of the connection be-
tween uniti and unit j, n; was the number of output units
(646), U, was the number of properties possessed by con-
cept p expressed as a proportion of the total number of
properties, and x, was 1 if the p™ pattern possessed prop-
erty i and O otherwise.

This modified rule alows a network to store a greater
number of sparse patterns (Tsodyks & Feigelman, 1988).
Itisalsointuitively sensibleinthat it capturestheideathat
in a sparse conceptua space, the absence of a property
carries little meaning.

The connectionsfrom theinput to the output unitswere
caculated using a similar Hebbian (1949) style learning
rule. Specificaly

2= 2 3 (@) 45~ )
p

where z; represented the weight of the connection be-
tween input unit i and conceptual unit j, n, was the num-
ber of input units (379), u, and X, were as above, and
ajp was the normalized activation of the i input unit in
pattern p. Patterns were normalized to remove the effect



of word-length according to
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where uip is 1 if pattern p contains the triple of letters
represented by word form uniti and O otherwise; and [jup||
isthe Euclidean norm of the pattern vector of components
U|p.

To simulate the computation of word meaning, the ap-
propriate normalized word form pattern was clamped. To
simulate an arbitrary starting state, 60 randomly chosen
semantic unitswere initialized to 0.25 activation (al oth-
ersbegan at 0). Activationwasthen propagated according
to:

X(t+1) =gler ) (zia)+c2 ) (wix(®) - 6)
i i

where g([)) was a sigmoidal function defined by
0(x) = 0.5tanh(czx) + 0.5

X was the activation of the i" semantic unit, and a; was
the activation of thei™ input unit as above.

For the simulations presented below, we used the fol-
lowing values for the constants ¢; = 0.85, ¢, = 0.33,
c3 = 400, 6 = 0.0105, although similar results were ob-
tained with dight variations.

The mode can be understood as a Hopfield network
with the effect of the connections between the word form
and conceptual units as thresholds that are variable over
units and patterns. Thus the conceptual interconnections
determine the genera topology of the energy function
(which combinations of properties were stable). The con-
nections from the word form units lower the energy of
statesinvolving semantic propertiesthat occur with words
that activate those units. They also providean initia state
to the network.

The network learned to compute an appropriate con-
ceptual representation for 80 of the 84 trained patterns.
Because the model’s behavior was primarily driven by
encoded property co-occurrence information, intercorre-
lationa density of a concept’s properties influenced con-
vergence. The network made an error of omission on the
concept YAM, because it consisted of few and sparsely
intercorrelated properties. The network made a number
of other interesting “errors’. When computing a concept,
properties were sometimes activated that were not part of
the concept according to how the model was trained, but
were strongly intercorrelated with its properties. In the
vast mgjority of these cases, athough fewer than 5 of 30
subjects had listed the activated property for the concept
in the norms, it was nonethel ess true of the concept. The
model activated: has wings for BUDGIE, is an animal

for BUZZARD, CANARY, and EAGLE; islargefor CA-
NARY, CHICKEN, and DUCK; is dangerous for CAN-
NON; isediblefor CARROT, RADISH, and ZUCCHINI;
has leaves for CARROT; eats for HAWK; has four legs
for MOUSE; is loud for CANARY and MISSILE; and
worn by women for TROUSERS. With the exception of
islarge for CANARY, as well as bird-like properties that
were activated for CAT and JET (not listed above), these
propertiesare reasonably true of their respective concepts.

Simulating Semantic Priming

We simulated Experiment 2 of McRae (1992). In that
study, subjects made semantic decisions (e.g., isit an ob-
ject?) to atarget (e.g., CHANDELIER) when it was pre-
ceded by either a similar (e.g.,, LAMP) or a dissimilar
prime (e.g., GOOSE). On each tria, the prime was pre-
sented for 200 ms, followed by amask for 50 ms, and then
the target. The priming effect is the facilitation in deci-
sion latency to a target when it is preceded by a similar
as compared to a dissimilar prime. In McRae, the mag-
nitude of priming effects was predicted from prime-target
similarity in termsof individua and correlated properties.
Concept similarity in terms of individual properties pre-
dicted priming effects for artifacts, but similarity in terms
of correlated properties predicted priming effects for bio-
logicd kinds.

Short interval priming can be understood in terms of
inter-concept distance in semantic space (for similar pro-
posas, see Masson, 1992; Sharkey, 1989). Computing
the meaning of a word can be understood as driving the
semantic system from its present state to the desired end
state, which corresponds to the meaning of the word that
isbeing read or heard. In a short interval semantic prim-
ing task, because the prime determines the start state for
the computation of the target, prime-target similarity de-
termines amount of facilitation. A simulated trial began
by clamping the prime's word form pattern and comput-
ing its conceptua representation. With the prime's mean-
ing active, the word form representation of the target was
clamped and convergence latency was recorded for the
target concept.

The basic idea of this simulation was to determine if
the factors that influence priming in humans aso influ-
ence priming in the model. Specifically, it was important
to show theinteraction between type of representation (in-
dividua versus correlated properties) and type of entity
(artifact versus biological kind). To accomplish this, we
conducted regression analyses anal ogous to those of Ex-
periment 2 of McRae (1992). Predictions were again de-
rived from individua and correlated properties represen-
tations.

In the individua properties representation, each con-
cept was represented as a vector in which the value for



element i was the number of subjects who listed property
i for that concept in the norms. In the correlated proper-
ties representation, a concept was represented as a vector
in which each element corresponded to a property pair
that was significantly correlated as determined in an anal -
ysis of the norms. If a concept possessed both members
of the pair, the element was given a positive value; if it
possessed neither, it was given avalue of 0; if it possessed
one property but not the other (i.e,, it violated the corre-
lation), the element was given a negative value. Concept
similarity was computed as the cosine between the vectors
representing the prime and the target. Linear regression
analyses were used to predict priming effects (in terms of
convergence rates) for artifact and biological kind prime-
target pairs from concept similarity interms of individual
and correlated properties. Three measures of convergence
were used: the number of iterations for error (defined as
the sum of squared error between the target and computed
vectors over the conceptual units) to drop below 1.0, for
error to be within 0.1 of its value when the concept stabi-
lized, and for error to be within 0.01 of the stabilization
point. Only 40 of the 42 similar priming pairs were used
because, as described above, the model did not learn to
compute the meanings of CAT and JET. Convergencerate
for atarget preceded by a dissimilar prime was estimated
by averaging across three primesthat shared no properties
with the target. It was assumed that convergence latency
for a concept in the model was monotonically related to
thetimerequired for peopleto compute aword’smeaning,
and was therefore monotonically related to how quickly a
person could answer a question concerning its meaning.

In Experiment 2 of McRae (1992), individual proper-
ties predicted priming effects for artifacts (r? = .15), but
not for biological kinds (r?> = .04). In contrast, corre-
lated property pairs predicted priming effects for biolog-
ical kinds (r? = .21), but not for artifacts (r> = .00). The
model produced the same pattern of results. Concept sim-
ilarity as measured by overlap of individual propertiessig-
nificantly predicted priming effects for artifacts for each
of the three convergence measures: less than 1: r2 = .27,
F(1, 19) = 7.065, p < .02; within0.1: r? = .59, F(1, 19) =
27.074, p<.001; within0.01: r? = .58, F(1, 19) = 26.166,
p <.001. Individual properties did not predict biological
kind priming effects: less than 1: r2 = .07, F(1, 15) =
1.138, p > .3; within 0.1: r? = .04, F < 1; within 0.01:
r> = .01, F < 1. In contrast, after similarity in terms of
individual properties had been entered into the equation,
similarity in terms of correlated property pairs predicted
priming effects for biological kinds: less than 1: r? = .25,
F(1, 14) = 4.609, p < .05; within0.1: r? = .44, F(1, 14) =
10.925, p <.006; within 0.01: r? = .41, F(1, 14) =9.582, p
<.009. Correlated propertiesdid not predict artifact prim-
ing: less than 1: r? = .03, F < 1; within 0.1: r? = .17 in
the wrong direction; within 0.01: r? = .01, F < 1. More

detailed analyses of the human study and simulation data
can befound in McRae et d. (1993).

In summary, thissimulation demonstrated that the same
factors influence short interval semantic priming effects
in both humans and the model. Specifically, similarity in
terms of individual properties predicted priming effects
for artifacts, but similarity in terms of correlated property
pairs predicted priming effects for biological kinds. Note
that thisinteraction was found with amodel in which arti-
facts and biologica kindswere treated identically. These
results concur with Keil (1989) who has claimed that bi-
ologica kinds cohere around clusters of intercorrelated
properties but artifacts cohere around the intended func-
tion of the creator.

Simulating Property Verification

In this section, the model is used to guide an explanation
of the influence of property intercorrelations on verifica-
tion. In Experiment 1 of McRae (1992), a concept (e.g.,
DEER) was presented for 400 ms, followed by a target
property (e.g., hunted by people). Subjects indicated as
quickly as possible whether the target property was rea
sonably true of the entity to which the concept name re-
ferred. With normed production frequency equated, tar-
get propertiesthat were strongly intercorrel ated with other
properties within a concept (e.g., DEER-hunted by peo-
ple) were verified more quickly than matched targets that
were weskly intercorrelated (e.g.,, DUCK—hunted by peo-
ple).

We base our explanation on the assumption that pro-
duction frequency is less sensitive than verification la-
tency as a measure of a property’s activation by a con-
cept name. Production frequency measures the probabil -
ity that a property is one of the first few generated by a
subject when reading a concept name. For example, if
subjects list an average of eight properties for a concept,
production frequency for any property roughly indicates
the frequency (or probability) that it was generated as one
of the top eight. In contrast, in the property verification
task, a subject was asked to indicate, as quickly as possi-
ble, whether or not a specific property was reasonably true
of an entity. Thus, verification latency provided a more
direct, precise, and sensitive measure of the relationship
between a concept and a property. It might be assumed
that subtle differences existed in a target property’s ac-
tivation that were too small to influence production fre-
guency, but large enough to be detected in the property
verification task. It might further be assumed that these
differences resulted from encoded knowledge of property
co-occurrences. That is, propertiesthat were strongly in-
tercorrelated with a number of other properties within a
concept received a boost in activation when that concept
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Figure 2: Mean activation of target properties for the strongly and weskly intercorrelated groups. Propertiesthat are
more strongly intercorrel ated with others of a concept receive a boost in activation.

was computed.t

The model contained 14 itemsfrom the property verifi-
cation experiment of McRae (1992) that differed in terms
of the strength with which the target property was cor-
related with other properties of the concept. The groups
were also roughly equated on three variables: production
frequency, concept familiarity, and number of individual
properties listed per concept. For this subset of 14 items,
human verification latency was significantly faster for the
strongly intercorrel ated group (788 ms, 34 ms) than for the
matched weakly intercorrelated group (998 ms, 51 ms),
t(13) = 7.595, p < .001 by items.

To test the hypothesisthat propertiesthat were strongly
intercorrelated with a number of other properties within
a concept received a boost in activation when that con-
cept was computed, the word form representation of each
of the fourteen concepts was clamped and the network
was alowed to iterate 10 times. Activation of the tar-
get property was recorded after each iteration. Five runs
were used, each with a different random starting configu-
ration. Figure 2 showsthe mean activation of the fourteen
target properties as the concepts converged. A one-way
repeated measures anaysis of variance showed that the
activation of the target propertieswas significantly higher
when a concept from the strongly intercorrelated group
was being computed, F(1, 13) = 10.277, p < .008. Anin-
teraction between group and time step a so obtained, F(9,
117) = 5.057, p < .0001. Simple main effects reveaed
that target properties from concepts from the strongly in-

INotethat this explanationis different from the onein McRae (1992).
Both explanations are simulated in McRae et al. (1993).

tercorrelated group were not significantly more activated
after time step 1, but were after time steps 2 through 5 (p <
.05). The advantage was marginally significant through-
out time steps 6 to 10 (p < .07).

In summary, the model providesfor areasonable expla-
nation of theinfluence of correlated propertieson property
verification. When a property is highly intercorrelated
with other properties of a concept, it becomes more ac-
cessible. This increased accessibility is too subtle to be
picked up in a production task but facilitates verification
latency.

Discussion

The modeling presented here illustrates that a network
whose computational dynamics are dependent on attrac-
tor basins formed from encoding property intercorrela
tions captures some basic characteristics of human per-
formance on semantic tasks. The semantic priming and
property verification resultswere naturally modeled using
a connectionist framework, specifically, a modified Hop-
field (1982, 1984) network. Furthermore, although it was
not presented in this article, in McRae et a. (1993), we
empiricially verified aprimary characteristic of themodel,
that is, that intercorrelational density of a concept’s prop-
erties influences its convergence latency.

The most theoretically important aspect of the model
was the way in which basins of attraction resulting from
encoding the relationships among semantic properties
were central to the computation of conceptua representa
tionsfrom words. This characteristic is shared with other



recent connectionist models of word recognition (Hinton
& Shallice, 1991; Masson, 1992; Plaut 1991; Sharkey,
1989)°. The concept of attractor basins may be useful
in understanding a number of primary word recognition
phenomena. For example, the lexicon is typicaly con-
ceptualized as a set of nodes, each of which corresponds
to alexica item (eg., Morton, 1969). Alternatively, the
lexicon may be conceptualized as a set of attractor basins.
In this view, alexica item corresponds to a stable state
in representational space. Hinton and Shallice (1991) and
Plaut (1991) have used this approach to show that attrac-
tor basins are critica to understanding phenomena that
characterize deep dyslexia

Thisidea may also shed light on arecent issue of great
interest to word recognition researchers, mediated prim-
ing (McNamara, 1992). It has been shown that, although
two concepts are not directly associated according to free
association norms (e.g., LION and stripes), they may
prime one another (Balota & Lorch, 1986; McNamara
& Altarriba, 1988). McNamara interprets these results
within asemantic network theory such as Collinsand L of -
tus (1975). He claims that LION primes stripes because
activation of the LION node spreadsto TIGER and then to
stripes. Although the notion of association is not a prim-
itive in the conceptua system that our model represents,
it provides a plausible explanation for mediated priming
effects. LION shares propertieswith TIGER. These prop-
erties are intercorrelated. Therefore, when LION is com-
puted, stripeswill be dightly activated because properties
of LION are correlated with stripes. A small priming ef-
fect will result, as has typically been found in these stud-
ies. Thisexplanation is currently being explored.
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