
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

�Correspond
E-mail addr
Neurocomputing 69 (2006) 1183–1186

www.elsevier.com/locate/neucom
A self-organizing map with homeostatic synaptic scaling

Thomas J. Sullivana,�, Virginia R. de Sab

aDepartment of Electrical and Computer Engineering, University of California, San Diego, USA
bDepartment of Cognitive Science, University of California, San Diego, USA

Available online 7 February 2006
Abstract

Hebbian learning has been a staple of neural-network models for many years. It is well known that the most straight-forward

implementations of this popular learning rule lead to unconstrained weight growth. A newly discovered property of cortical neurons is

that they try to maintain a preset average firing rate [G.G. Turrigiano, S.B. Nelson, Homeostatic plasticity in the developing nervous

system, Nat. Rev. Neurosci. 5 (2004) 97–107]. We use this property to control the Hebbian learning process in a self-organizing map

network. In this article, the practicality of this type of learning rule is expanded by deriving a scaling equation for the learning rates for

various network architectures.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Self-organizing map; Homeostasis; Weight normalization; Synaptic scaling
1. Introduction

Self-organizing maps (SOM) [2] have been a useful tool
in the field of neural networks and have been proposed in
various forms as models of cortical development [3,2]. In
these models Hebbian learning is used to strengthen
associations between input stimuli and active output
neurons, but unchecked, this can result in unconstrained
weight growth. To counteract this problem, typically
weight normalization is employed: after each learning
iteration all the weights are divided by the sum of the
magnitude of the weights coming into each neuron. While
this sounds within the realm of biological possibility, and is
obviously helpful in keeping Hebbian learning in check,
little evidence from the experimental literature is available
to support it. A more plausible mechanism for controlling
the Hebbian process has recently emerged. Turrigiano and
others [5] have shown that neurons in the cortex actively
maintain an average firing rate by scaling their incoming
weights. This homeostatic synaptic scaling mechanism is an
interesting candidate to constrain weight growth.
e front matter r 2006 Elsevier B.V. All rights reserved.

ucom.2005.12.071

ing author.

ess: tom@sullivan.to (T.J. Sullivan).
In our SOM, the commonly used weight normalization is
exchanged for a more biologically realistic homeostatic
weight scaling. The new mechanism is capable of keeping
Hebbian learning in check and leads to the usual self-
organization. This type of mechanism can maintain firing
rates in the face of large-scale neuron proliferation and die-
off [4]. The main focus of this article is the issue of setting
the learning parameters for networks of various size with
various input data sets. This practical matter is crucial for
generating models without being bogged down in para-
meter tweaking.
2. SOM with homeostatic synaptic scaling

The SOM model is trained with a series of episodes in
which randomly selected input vectors are presented. At
each step, the input vector, ~x, is first multiplied by the
feedforward weights, WFF. In order to get the SOM effect,
this feedforward activity is then multiplied by a set of
lateral connections, W lat. After the output activity is set,
the feedforward weights are updated with a Hebbian
learning rule. In the following, wij are individual elements
of the feedforward weight matrix WFF (the subscript FF is
dropped for convenience), and ~wij is a weight after Hebbian

www.elsevier.com/locate/neucom

ARTICLE IN PRESS
T.J. Sullivan, V.R. de Sa / Neurocomputing 69 (2006) 1183–11861184
learning, but before weight normalization.

~y ¼ f ½W latðWFF~xÞ�; ~wt
ij ¼ wt

ij þ axt
jy

t
i . (1)

Here f ½a� ¼ maxð0; aÞ and W lat is preset to a Mexican hat
shape. a is the Hebbian learning rate, xj is the presynaptic
activity and yi is the postsynaptic activity. Since each
update is positive, there is nothing to limit the growth of
the weights. Normally, a weight normalization is used that
is based on the sum of the magnitude of the weights coming
into each neuron. In our case, we normalize the weights
with a value based on the recent activity of the neuron

wtþ1
ij ¼

~wt
ij

ActivityNormt
i

,

ActivityNormt
i ¼ 1þ bN

At
avg;i � Atarget

Atarget

 !
. ð2Þ

Here, Atarget is the internally defined activity level for the
neurons, Aavg;i is a running average of recent activity for
each neuron, i, and bN is the homeostatic adaptation rate.
0 10 20 30 40 50 60
0.09

0.1

0.11

0.12

Time Sample

A
ct

iv
ity

 (
R

un
ni

ng
 A

ve
ra

ge
)

Average Neuron Activities

20 40 60 80 100

2

4

6

8

10
Learned Map

Input Number

W
in

ni
ng

 O
ut

pu
t

Fig. 1. Typical behavior. 100 inputs, 10 outputs, a ¼ 8:3� 10�4, bN ¼ 3:3� 10

the target value over time. (Left bottom) Every possible input was presented to

highest output rate) was then recorded for each input. The input number is show

good map since similar inputs (inputs whose center is located on neighboring in

outputs are arranged in a ring configuration to eliminate edge effects. (Right

measures, the entropy test and the discontinuity test, are used (see text). The ra

The network with initial weight biases has a wider valid range.
The above rules lead to self-organized maps. A small
model was created to illustrate typical operation. This
network consists of 100 inputs and 10 output neurons
arranged in a one-dimensional (1-D) string (a ring
arrangement was used to avoid edge effects). The input
vector activities are specified by a 1-D gaussian shape
(standard deviation, s, of N=30 ¼ 3:3 units). The input
gaussian is centered on one of the input units, selected at
random. Plots of typical network behavior are shown on
the left side of Fig. 1. The top-left plot shows that the
average activity of the output neurons converge to the
target activity level. The bottom-left plot shows an
input–output map that has formed after training has
ended.
Two measures of map quality were created to measure

performance of a trained network. First, the number of
discontinuities in a given input–output map (as shown in
Fig. 1) were counted and subtracted from the number of
output units. This measure is called the discontinuity test
and a smooth map that utilizes all the outputs will have a
10-4 10-3 10-2
0

0.5

1

1.5
Entropy Test

10-4 10-3 10-2
-5

0

5
Discontinuity Test

With Weight Bias

No Weight Bias

Criterion

Biased Weights

No Bias

α

�4, and Atarget ¼ 0:1. (Left top) The average neuron activities are driven to

the network, one at a time. The winning output neuron (the one with the

n on the x-axis, and the corresponding winning output is plotted. This is a

put units) correspond to nearby winning output units. Both the inputs and

) Determination of valid a parameter ranges. Two different performance

nge of valid parameters is determined by setting criteria on these measures.

ARTICLE IN PRESS
T.J. Sullivan, V.R. de Sa / Neurocomputing 69 (2006) 1183–1186 1185
discontinuity test score of 0. The second performance
measure, the entropy test, used a large number of randomly
selected input data vectors. For each input example, the
output unit with the highest activation was called the
winner. For the input data set, the winning probability of
each output unit was computed. The entropy over these
output probabilities was then computed and subtracted
from the highest possible entropy (all outputs winning an
equal number of times). The best score for this test is 0. By
these measures, good performance is shown over a wide
range of Hebbian learning rate ðaÞ on the right of Fig. 1.
We can set cut-off criteria to define the useful range of a. In
this case we use 0.2 times the maximum entropy for the
entropy test and 0.2 times the number of output units for
the discontinuity test. In the normal case, the initial weights
of the model are selected uniformly at random from a
range between 0 and 1. In a second case, the weights were
biased according to location, with nearby neurons getting
bigger weights. This is modelled after structured initial
connectivity set up in the cortex during development
through chemical gradients. From the figure we see that
the network with the biased initial weights converges for a
wider range of a values.
3. Learning rate parameter scaling

While creating networks of different sizes, we noticed
that different learning rate parameters were required for
good performance. This was also true when different
magnitudes of input vectors were used. In order to make
this homeostatic technique practical, these types of
architecture-specific dependencies should be removed. We
do not propose that in the natural world, each network
must compute its proper learning rate. Rather, for
networks of a given size, finding a good learning rate
could be a problem left for evolution over a long period of
time. We address it now to increase the practicality of our
algorithm.

Learning rate parameter scaling has been taken up
before by Bednar and others [1]. The relevant parameters in
our model are somewhat different (for example Atarget and
the magnitude of the input vectors), so new equations had
to be derived. Additionally, we introduce an intuitive
method for validating the effectiveness of the derived
scaling equation. This is particularly important since
approximations are used in the derivation.

For various networks, we would like the rate of change
in the system due to the Hebbian update to be constant,
regardless of the number of inputs (N) and outputs (M) or
the magnitude of the input vectors (k~xk1, which denotes the
L1 norm). Through a series of rough approximations, we
can see how the effective learning rate depends on
these factors. Noting that the input values xj, output
values yi, and weight values wij are all positive, we can start
by approximating the change in the system for each
iteration as the average relative change in weights for all
the output units.

Change in System

Iteration
¼

PM
i¼1Avgjð

Dwij

wij
Þ

Iteration
�

M
Avgij ðDwij Þ

Avgij ðwij Þ

Iteration
. (3)

From the learning rules we can (roughly) approximate the
average weight change and average weight value per
iteration by using AvgðxjÞ and AvgðyiÞ in place of xj and
yi, respectively:

Avg
ij

ðDwijÞ � aAvgðxjÞAvgðyiÞ,

and

Avg
ij

ðwijÞ �
AvgðyiÞ

NAvgðxjÞ
, (4)

Change in System

Iteration
� aMN AvgðxjÞ

2
� aMN

k~xk1
N

� �2

¼
aMk~xk21

N
. ð5Þ

The above equation tells us that in order to achieve a
constant rate of system change per iteration, we would
need to scale a by M, N, and k~xk21. Also, we should notice
that various problems with different complexities might
present a different number of data examples to learn. We
can call the number of data examples for a given problem
an epoch, and strive to keep constant the ‘‘Change in
System’’ per epoch, rather than per iteration. Assuming
there are K data examples per epoch for a given problem
(and thus K iterations per epoch) we can incorporate this
term into our equation. We now set the ‘‘Change in
System’’ per epoch to a constant value and solve for a. For
convenience, we will call the constant 1=ak

a ¼
N

akKMk~xk21
. (6)

The learning rate is now split into a factor that can be
chosen by the user ðakÞ, and one that scales with the
architecture of the network. Practically speaking, we will
choose an ak, calculate a, and use a as the learning rate of
our network. Doing this should mean that the networks
learn and converge at similar rates, regardless of archi-
tecture.
To demonstrate the usefulness of this learning rate

parameter scaling, several simulations were performed for
networks of various architectures (with K constant). The
same network as above was used as a baseline: it has 100
inputs, 10 outputs, Atarget ¼ 0:1, and k~xk1 ¼ 1. The range
of valid learning rate parameter, a was measured as
illustrated previously in Fig. 1. This range is shown in the
left panel of Fig. 2 on the second line from the bottom. The
previously discussed case of biased weights is shown on the
bottom line. The baseline architecture was changed in
various ways to generate other networks (one change per
network), and the resulting ranges of valid learning rate
parameter are shown on the left panel. The changes were
(1) an increase in the number of outputs to 40 (third from

ARTICLE IN PRESS

Valid Learning Rate Parameter Ranges

10-4 10-3 10-2 1 10 100

Biased

100x10

100x40

400x10

Atarget = 0.4

||x||1 = 4

�k�

Fig. 2. Valid learning rate parameter ranges. For various networks, the valid range of a values is shown on the left. On the right, the corresponding ak

values are shown. See text for descriptions of network architectures.

T.J. Sullivan, V.R. de Sa / Neurocomputing 69 (2006) 1183–11861186
bottom), (2) an increase in the number of inputs to 400
(third from top), (3) an increase in Atarget to 0.4 (second
from top), and (4) an increase in k~xk1 to 4 (top). Using the
scaling equation, the corresponding ak values are computed
and plotted in the right panel. The ranges of valid ak line
up very well, making the job of changing network
architecture much easier. A user merely needs to set a
good ak learning rate parameter. When the architecture
changes, the parameter will likely not need to be changed.
This eliminates the need for many iterations looking for a
valid learning rate.

In this work, we have used a homeostatic synaptic
scaling rule in place of the standard weight normalization
within an SOM algorithm. This biologically plausible
mechanism still results in a proper map. Here, the
usefulness of this type of mechanism is expanded by
deriving a scaling equation for the learning rate for various
network architectures.

Acknowledgments

This material is based upon work supported by the
National Science Foundation under NSF Career Grant no.
0133996 and was also supported by NSF IGERT Grant
#DGE-0333451 to GW Cottrell.

References

[1] J.A. Bednar, A. Kelkar, R. Miikkulainen, Scaling self-organizing maps

to model large cortical networks, Neuroinformatics 2 (3) (2004)

275–302.

[2] T. Kohonen, Self-Organizing Maps, third ed., Springer, Berlin, NY,

2001.
[3] J. Sirosh, R. Miikkulainen, Topographic receptive fields and patterned

lateral interaction in a self-organizing model of the primary visual

cortex, Neural Comput. 9 (3) (1997) 577–594.

[4] T.J. Sullivan, V.R. de Sa, Homeostatic synaptic scaling in self-

organizing maps, in: M. Cottrell (Ed.), Workshop on Self-Organizing

Maps, Paris, 2005.

[5] G.G. Turrigiano, S.B. Nelson, Homeostatic plasticity in the develop-

ing nervous system, Nat. Rev. Neurosci. 5 (2004) 97–107.

Thomas J. Sullivan studied electrical engineering

at the University of Arizona and graduated in

1996. Afterwards, he worked as an analog circuit

designer for Burr–Brown Corporation and Gain

Technology in Tucson, Arizona. He is currently a

Ph.D. student at the University of California, San

Diego. His research interests include computa-

tional models of the brain, computer vision

systems, and circuit design.
Virginia R. de Sa received her Ph.D. in Computer

Science in 1994 from the University of Rochester.

She then performed postdoctoral work in Com-

puter Science at the University of Toronto on an

NSERC fellowship and then at the University of

California at San Francisco in Theoretical

Neurobiology as a Sloan fellow. She joined the

Department of Cognitive Science at the Uni-

versity of California at San Diego in 2001. She is

a member of the interdisciplinary programs in
Neuroscience, Computational Neuroscience, and

Cognitive Science. Her current research combines theoretical and

experimental approaches to investigate vision and learning in humans

and machines. Specific interests include studying the computational

properties of early visual neurons, cortical feedback, and multi-sensory

integration.

	A self-organizing map with homeostatic synaptic scaling
	Introduction
	SOM with homeostatic synaptic scaling
	Learning rate parameter scaling
	Acknowledgments
	References

