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Abstract

Reverse-correlation is the most widely used method for mapping receptive ,elds of early
visual neurons. Wiener kernels of the neurons are calculated by cross-correlating the neuronal
responses with a Gaussian white noise stimulus. However, Gaussian white noise is an ine1cient
stimulus for driving higher-level visual neurons. We show that if the stimulus is synthesized by
a linear generative model such that its statistics approximate that of natural images, a simple
solution for the kernels can be derived.
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1. Introduction

Reverse-correlation is a system analysis technique for quantitatively characterizing
the behavior of neurons. The mathematical basis of reverse correlation is based on
the Volterra/Wiener expansion of functionals: If a neuron is modeled as the functional
y(t)=f(x(t)), where x(t) is the (one dimensional) stimulus to the neuron, any nonlinear
f can be expanded by a series of functionals of increasing complexity. The parameters
in the terms of the expansion, called kernels, can be calculated by cross-correlating
the neuronal responses to the stimulus, provided that the stimulus is Gaussian and
white [4].
One of the many limits of this technique is that Gaussian white noise is an ine1-

cient stimulus for driving higher-order neurons, since visual features that are known to
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Fig. 1. The stimuli (vector x, upper row) are synthesized by linearly transforming a white noise cause (vector
s, lower row) via a linear generative model: x = As. Matrix A is learned from samples of natural images.

activate these areas appear very rarely in Gaussian white noise. The goal of this paper
is to show that if we generate more “interesting” stimuli by training a linear generative
model from natural images, solutions to the kernels can be obtained easily. Computer
simulation is used to show that this stimulus design converges faster than white noise.
We are currently collecting physiological data using this stimulus.

2. Stimulus synthesis

Instead of using Gaussian white noise for reverse correlation, we can linearly trans-
form white noise such that the statistics of the transformed images approximate those
of natural images. This should produce a better stimulus for higher-order visual neurons
since it contains more features found in nature.
More speci,cally, let the stimulus x(t) = (x1(t) : : : xn(t))T be synthesized by

x(t) = As(t);

where s(t)=(s1(t) : : : sn(t))T is white. The vector s(t) is called the cause of the stimulus
x(t). The constant matrix A can be learned from patches of natural images by various
algorithms, for example, infomax independent component analysis (Infomax ICA) [1].
In this case, the distribution of the causes s1(t) : : : sn(t) is required to be supergaussian.
We use the Laplace distribution.
Examples of the synthesized stimuli are illustrated in Fig. 1. Visual features that oc-

cur very rarely in white noise, such as localized edges, corners, curves, and sometimes
closed contours, are much more common after the A transformation.

3. Kernel calculation

To calculate the kernels, one can follow Wiener and orthogonalize the Volterra
series with respect to the distribution of the new stimulus, instead of Gaussian white
noise. Here we provide a much simpler solution, using a trick that is similar to the
treatment of non-white inputs in [3]. Instead of directly solving for the kernels of
system f, we consider system f′, which is formed by combining system f with the
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linear generative model: f′ = f ◦ A. The kernels of system f′ can be calculated by
the standard cross-correlation method, because its input s(t) is white. 1 After f′ is
identi,ed, we consider a new system f′′, formed by combining f′ with the inverse
of the generative model: f′′ = f′ ◦ A−1. The kernels of system f′′ can be easily
obtained by plugging s(t) = A−1x(t) into the kernels of f′, and expressing the kernels
as functions of x(t) instead of s(t). But since f′′ =f′ ◦A−1 =f ◦A ◦A−1 =f, system
f′′ is equivalent to f. We therefore calculate kernels of f by transforming the kernels
of f′.
Let the column vector 
(�) = (
1(�) : : : 
n(�))T be the ,rst-order kernels of f′,

obtained by cross-correlating system response with white noise s(t). The ,rst-order
kernels of the original system f, h(�) = (h1(�) : : : h2(�))T, are simply

h(�) = A−T
(�):

The second-order kernels of system f,

hij(�1; �2); i; j = 1 : : : n; hij(�1; �2) = hji(�1; �2)

can be calculated from 
ij(�1; �2), kernels of system f′, by the following equation:


c11h11(�1; �2) : : : c1nh1n(�1; �2)

...
...

cn1hn1(�1; �2) : : : cnnhnn(�1; �2)




=A−T




c11
11(�1; �2) : : : c1n
1n(�1; �2)

...
...

cn1
n1(�1; �2) : : : cnn
nn(�1; �2)


A

−1;

where cij = 1 if i = j, and cij = 1
2 if i �= j. A useful technique for studying nonlinear

system is to inspect the eigenvectors of the spike-triggered covariance matrix [5,6].
This equation gives the correct way to calculate the spike-triggered covariance matrix
with respect to the synthesized stimulus. Higher-order kernels can also be derived with
the same procedure.

4. Simulation results

Fig. 2 shows the results of linear reverse correlation, using a simulated simple cell.
The simple cell is modeled as a linear gabor ,lter, followed by recti,cation, a static
sigmoid nonlinearity, and gaussian additive noise. Spikes are generated by a Poisson
spike generator. Although this version of synthesized noise elicited less spikes than
m-sequence, the reconstructed receptive ,elds are better. The m-sequence took much
more spikes to establish clear inhibitory (dark areas) sub,elds. Fig. 3 shows some

1 Note that s(t) is Laplacian distributed, instead of Gaussian distributed. Kernels higher than the ,rst order
need to be calculated according to [2].
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Fig. 2. Examples of learned receptive ,eld of a simulated simple cell. Upper row: traditional reverse correla-
tion with respect to a m-sequence. Lower row: reverse correlation with respect to the synthesized naturalistic
noise.

Fig. 3. Example of second-order kernels. See text for more detail. Upper: m-sequence reconstruction 3000
frames, 11,072 spikes. Lower: synthesized noise reconstruction. 3000 frames, 12,862 spikes.

examples of second-order kernels. Recall that there is a second-order kernel for each
pair of pixels. To simplify visualization, we picked four reference points (pixel number
103 to 106, on the central row of the 16-by-16 stimulus), and calculate the second-order
kernels between the reference points and every other point in the stimulus. The Upper
row displays the second-order kernels using m-sequence (3000 frames, 11,072 spikes).
The lower row displays the second-order kernels calculated using the synthesized noise
(3000 frames, 12,862 spikes). It is very clear that the structured approach to stimulus
synthesis and reconstruction make the algorithm much more resistant to noise.

5. Discussions

In this paper, we demonstrated that if we linearly transform white noise by a
linear generative model trained to approximate natural images, ,rst-order kernels
(spike-triggered average) and second-order kernels (spike-triggered covariance) can be
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calculated very easily. It is possible to use natural images directly for reverse correla-
tion and calculate the kernels by regression. However, regression requires the inversion
of the correlation matrix of natural images, which is sometimes not invertible. The syn-
thesis matrix A is almost always invertible. Compare to the storage and manipulation
of natural images, it is also a lot easier to generate stimuli and estimate kernels during
experiments.
The synthesis model is motivated by our knowledge of the receptive ,eld structure

of simple cells. The vector s (the “causes”) can be interpreted as a representation of
the stimulus x in the cortex. Kernels calculated with respect to s might oMer a diMerent
way of analyzing reverse correlation data.
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