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ABSTRACT: BCI Spellers for end-users utilize
numerous different techniques, but many require that
stimuli in different areas of the screen be foveated for
best performance. Spatial independence, however, is of
considerable value for patients suffering from locked-in
syndrome, which significantly attenuates their capacity
for voluntary movements. To this end, we have designed
a 10-segment library of letter subsets, which
combinatorially create the letters of the alphabet.
Segments can thus be centrally presented, allowing
letters to be cued in parallel while maintaining the spatial
independence of RSVP-style spellers. A 68% segment-
classification accuracy yields a reasonably rapid speller,
with several avenues for maximizing accuracy and
information transfer rate.

INTRODUCTION

Neurodegenerative diseases have an increasingly
significant impact on public health as life expectancies
and treatment strategies improve. Locked-in syndrome
(LIS) in particular — whether caused by injury or illness
— poses significant challenges for patient and healthcare
professionals. While the inability to communicate needs
or discomforts can have a deleterious effect on one’s
health, the lack of social interaction can also pose a
significant issue. P300 BCI spellers are a popular
technique for ameliorating these challenges. In the
original P300 system developed by Farwell and Donchin
[1] the user observes a screen with a grid of symbols;
individual rows and columns are flashed pseudo-
randomly and the user is told to count the times their
target symbol flashes. Due to the large size of the letter
grid and the small size of the flashed letters, eye
movements must be made to the vicinity of the desired
letter.

This can be a problem for late-stage ALS patients who —
even if they have some residual voluntary eye movement
capacity — are not always able to make voluntary gaze
shifts to direct overt attention [2,3]. To address this issue,
rapid serial visual presentation (RSVP) spellers have
been developed, which serially present whole letters
flashed in the center of the screen [4,5]. While alleviating
the problem of eye movements, the lack of
simultaneously  flashed items results in less
combinatorial efficiency and a lower information transfer
rate for these systems [5]. In this paper we describe
preliminary experiments to develop a hybrid system with

the benefits of combinatorial efficiency as well as
centrally presented stimuli. As segments occur in many
letters, we have the combinatorial advantage of one flash
probing for many letters.

MATERIALS AND METHODS

Segment Library: Our stimuli or segment library was
similar to the work of Minett et al. [6], wherein Chinese
stroke-based text systems are used as the basis of a BCI.
Since English letters are not composed of a series of
ordinal strokes, a new system needed to be designed.
Moreover, since our segments would by definition be
arbitrary, it was important to design segments that are
both simple to visualize, yet sufficiently distinct to allow
easy comparison. To this end, we projected all 26 letters
of the English alphabet onto a 7x5 grid of circular nodes,
using a derivative of the scoreboard font. This allowed us
to reduce the spatial complexity of characters into more
general elements.

Our speller used a 10-segment library (Fig. 1) of letter
subsets as query stimuli. Each segment consisted of 2-5
contiguous nodes on the 7x5 grid. The segments were
assigned a specific color, which — along with their
positions on the grid — was invariant. The color-segment
mapping allowed participants to identify segments either
through their colors or their relative spatial positions,
minimizing the difficulty in making a correct
discrimination. Not all nodes were contained within a
segment; said independent nodes were colored white (see
Fig 1).

Relative to a given letter, segments could be classified as
“targets” or “non-targets”, based on whether they are
subsections of that letter (Figure 1). As most letters are
made of a unique combination of segments, the responses
to individual stimulations can be used to predict the target
letter probabilistically via Bayesian inference. With our
current library, O and D cannot be discriminated purely
through segments, which could be a challenge in a
standalone system. Language modeling and other
techniques (see “Output-Letter Checks”, Discussion) can
easily resolve this shortcoming.

Experimental Paradigm: At the start of each block, the
participant was assigned a random letter of the alphabet.
For this initial test of the system, we excluded I, V, X,
and Y from the list of potential targets due to their



Figure 1: The segment library consists of 10 unique,
invariant letter subsets. Each letter can be spelled with
its own combination of segments. Depending on the letter
to be spelled, component segments are deemed ‘targets’,
whereas all others are ‘non-targets’.

unique morphologies. The target letter was displayed for
2.5 seconds, with the component segments colored
appropriately. This served to inform the subject of their
target letter and target segments (shape and color).
Afterwards, individual segments were presented serially,
with a stimulus duration of 390 ms, and an inter-stimulus
interval of 180 ms (total stimulus onset asynchrony 570
seconds).

The experiment consisted of an offline “training” phase,
wherein data were collected to train a classifier, and an
online “testing” phase, wherein the users’ responses were
analyzed and fed back to the system in real time. During
the training phase, target segments were presented 30%
of the time, and a total of 30 segments were presented
before a block ended. During the analysis of the testing
phase, stimuli were flashed until a) a letter was identified
by the segment model or b) a total of 30 segments had
been presented. During the experiment, incorrect letter
selections were not a block-stopping criterion, in order to
acquire more data for pseudo-online analysis.

Data Collection and Analysis: Data were collected from
6 undergraduates (4 Female, 1 Left-handed, mean age
19.5.) Stimulus presentation and timing were coordinated
via the Simulation and Neuroscience Application
Platform (SNAP, SCCN). The subjects’ EEG data were
collected using a BrainAmp (BrainVision) 64-channel

active electrode system. Data were
collected at 5 kHz. The marker and data
streams  were synchronized via
LabRecorder, a Lab Streaming Layer
derivative. Offline data analysis was
performed using EEGLAB v 13.6.5b[7].
Data were downsampled to 500 Hz. For
the topographic plots, the Artifact
Subspace reconstruction designed by
Christian Kothe [8] (clean_rawdata,
EEGLAB) was used to clean artifactual
data, and data were bandpass filtered
from .1 to 5 Hz using EEGLABs
hamming window sinc FIR filter
(implemented in  pop_eegfiltnew,
EEGLAB). For visualizing plotted
traces (Figure 2), data were re-
referenced to the mastoids, and
bandpass filtered from .1 to 10 Hz using
the same filter.

Classifier: To train the classifier, class
means were specified using 5 windows
(100ms length) from 300ms to 800ms
post-stimulus. For training of the
classifier, data were downsampled to
100 Hz and bandpass filtered from .1 to
5 Hz using BCILABs [9] built-in FFT filter. The FFT
filter has a much shorter length; beneficial for online
filtering of 100 Hz downsampled data. LDA with
automated shrinkage determination [10] as implemented
in BCILAB was used. Due to the 30% target rate, a
random subset of the nontarget trials were used to train
to the classifier, in order to avoid erroneous solutions
derived from imbalanced training classes. While the
exact number of target trials (and thus nontarget trials)
used for training varied slightly between subjects, about
320 trials for each class were used as training data.

Segment Model: During the online phase, a probability
vector keeps track of the probabilities given to each
possible letter of the alphabet. At the beginning of a
block, the system assumes a uniform probability over all
letters. In an end-user’s speller application, this can be
replaced with the probability mass function for initial
letters in the language of the user; future letters can be
initialized by a conditional probability function
conditioned on the previous character.

Given the responses and results of the trained classifier
on the serially presented segments, the model updates the
letter probabilities based on the classifier response. In
the case of a “target” decision by the classifier:

P("target"|seg,l) x P(I)
P("target"| seg)
where P(“target”|seg,l) = target segment hit rate for
letters (I) with segment seg in them and
P(“target’|segl) = target segment false alarm rate

P(l |"target", seg)=



for letters (I) without segment seg in them, P(l) is the
prior probability for letter | before receiving the
response to the flashed segment seg.

P("target"|seg) is the normalizing factor that keeps the
total probabilities over all letters summed to 1.

Likewise in the case of a “non-target” decision by the
classifier:
P("nontarget"|seg,l) x P(I)

P("nontarget"|seg)

P(/|"nontarget" ;seg) =

where P(“nontarget”|seg,l) = target miss rate

for letters () with segment seg in them and
P(“nontarget”|seg,l) = target correct rejection rate

for letters (I) without segment seg in them.

P(llseg) = P(I|"target" seg)when a target is detected and
P(/|"nontarget" ,seg) when the classifier declares a non-
target. These can be updated in parallel for all letters.
Letter selection can be based on P(/|seg) exceeding a
given threshold (e.g. 0.5) or P(/;|seg) being more than a
threshold above P(l,|seg) where l;is deemed the most
probable letter, and l,the second most probable. For
these experiments, we used this latter rule with threshold
of .2.

Note that for the purposes of these analyses (and the
segment selection discussed below), we assume that the
hit rates are the same for all segments that are present in
the letters and the false alarm rate is also the same for all
segments that are not present in the letters. For this work,
we assumed a hit rate of 65% and a false alarm rate of
35%. This is very close to what was observed in the
training data.

Given the letter probabilities and the mapping of
segments to letters as well as estimates of the false-alarm
and miss rates, the expected information gain acquired by
receiving the response to each flashed segment can be
computed. Segments are chosen to maximize:
Egeo(KL(P("targ"|seg)P(l|"targ" seg) +
P("nontarg"|seg)P(l|"nontarg,seg),P(l))

That is, we maximize the expected Kullback-Leibler
divergence between the expected letter probabilities after
the response and the current letter probabilties.

Table 1: Per-subject global segment accuracy (acc), as
well as class confusion performance (T/F — True, False;
P/N — Positive, Negative) from the online testing phase.
acc TP TN FP FN

S1| 0628 0.625 0.630 0.370 0.375

S2 | 0.664 0.639 0675 0.325 0.361

S3| 0692 0.647 0.718 0.282 0.353

S4| 0712 0.740 0.697 0.303 0.260

S5 0.723 0.689 0.740 0.260 0.311

S6 | 0597 0559 0.615 0.385 0.441
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Figure 2: Grand average traces for the target (blue) and
nontarget (red) classes, with the difference in black.
Shaded regions reflect regions of significant difference
between classes (p < .01, without correction).

Note that in the case of ties, the segment with the lowest
index was selected. This does not hold true, however, if
said segment was presented within the last two trials.
Instead, the segment with the next lowest index was
chosen.

Pseudo-Online Letter Selection: To probe the 21x25
class letter selection accuracy (Table 2), we decided to
merge each subject’s offline and online data, roughly
doubling the number of blocks evaluated. As the
experimental design between the offline and online phase
is — to the participant — identical, this should be a
reasonable approach. For training the pseudo-online
classifier, we balanced the classes by splitting nontargets
trials into two disjoint sets, and trained these sets
separately, using all target-class trials. Using the same
classifier, we split the data into 10 folds, using 2 folds of
the data for testing.

Classifier outputs were yielded for each trial, reflecting
P(“target ”’|seq) vs P(“nontarget”|seg). As each nontarget
trial was in the test set twice, and each target trial was in
the test set four times, the classifier outputs for each
given trial are averaged. Then, seperately for each block,
classifier outputs are fed into the segment model to infer
the expected target. Table 2 reflects selections made a)
when P(/;|seg) more than .2 P(/,|seg) or b) at end of a
block, where P(/,|seg) is selected as the model’s output.

RESULTS

Offline analyses: Comparing responses from the target
class (class 1) and the nontarget class (class 2), we see
the expected significant difference in subject responses
at Pz, averaged across all subjects (Figure 2). While the
onset time of this stimulus is significantly longer than the
300ms that lends its name, it is not an unreasonable onset
latency for a visual task [11]. A distinct N2 can be seen
for the time-locked stimulus, as well as for the prior and
subsequent letter stimulations. The N2 appearing at a
typical latency improves our confidence in our observed
high-latency P3. Fig, 2 also hints at a potential issue for
the current system. The offset latency of the positive-



trending difference wave is — relative to
stimulus onset — later than the onset of the
following stimulus.

The per-subject topographic plots show an
interesting trend. Excluding subject 4, all
show a positive-amplitude posterior signal,
reflecting a higher class 1 response amplitude
consistent with a P300. The low amplitude of
signal shown in Subject 6’s (S6) plots may
explain the poor classification results (Table
1). S4 shows a significantly different response
pattern, relative to all other subjects. While
some very posterior, positive-trending
activity can be noticed in windows 2-4, its
spatial pattern is distinct, with no immediately
apparent dipole.

Online analyses: As seen from Table 1 the
true negative rate was equal to or greater than
true positive rate for most subjects. The one
exception — S4 — also possessed a unique
spatial pattern in their [target - nontarget]
class responses (Fig. 3). S6 also has a
somewhat unique topography; the differences
between the class means appear attenuated in
this subject. This could explain the uniquely
poor classification results for S6.

Of the actual online blocks using the threshold
method, 61.4% ended with the segment model
outputting a potential letter. Of those output letters,
31.7% matched the blocks target. Letter  selection
accuracies could be improved by increasing the
threshold for selection of an “output letter”. Implemented
along with more segment presentations per target, correct
target accuracy could increase dramatically.

Pseudo-Online Results: As can be seen from Table 2, the
incorrectly selected output-letters tend to share common
characteristics. Sums along the columns — especially
relative to diagonals — reflect high false selection rates
for a given letter. Of the 261 letters selected output by the
model, 88 (33.7%) matched the target letter for their
given block.

We can see from this array (Table 2) that dense-segment
letters — particularly B, E, G, and R — suffer from poor
selection accuracies. Erroneous outputs tend to share
many shape characteristics with the true target, however,
and each of said letters shares at least 2 segments. Longer
trials or a more conservative threshold could lead to
increases in ITR, even at the cost of increasing time.

DISCUSSION

Spatially independent spellers pay a non-trivial cost as
they restrict themselves to specific regions of the visual
field [3,5]. In many cases this cost must be assessed, as
directing overt attention towards a target is not feasible

300-400ms 400-500ms 500-600 ms 600-700 ms 700-800 ms

Figure 3: Per-subject topographic plots for the offline
phase. Each row of plots is a scrolling average (100 ms
window, 100 ms step between plots) extending from 300
ms to 800 ms. Due to the planar depiction of the 3-D
electrode locations, electrodes further down the head
extend beyond the head model.

for all end-use scenarios [2]. Moreover, BCls that require
accurate eye movements must compete with eye trackers
that overcome many of an EEG BCI’s shortcomings. Our
system was designed with patients suffering from LIS in
mind. A high information transfer rate despite the spatial
independence is nevertheless important, especially when
designing a channel of communication.

The classifier’s discrimination of subject responses
benefits from the distinct class-specific posterior
potential, which we believe to be a P300. In this case of
S5, however, no significant posterior response is elicited.
Despite this, the online accuracy of the subject is slightly
above the rest of the participant cohort’s average. It is
possible that the anterior negativity present in the second
and third windows nevertheless allows the classes to be
discriminated. Alternatively, the ocular activity in the
prefrontal channels, or other artefactual sources may
be responsible. The 5 Hz lowpass attenuates most of the
muscle activity, but it is also possible that unconscious
reflexes elicited in some class-specific manner could be
driving classification. These peripheral signals should be
more salient in the topographic plots, however, so we



find this unlikely. Increasing N=
single-segment classification &
is an obvious goal moving
forward. A Markov Chain,
coding previous trial class as
state could be fruitful, as the
duration of the subjects’
responses to targets are longer
than the SOA. This would be
especially useful if stimulus
rates grow faster than 2 Hz;,
with a 300 ms SOA, theonsets s
of the preceding P3 (here,
latency 500 seconds) and the w
subsequent  N200  would
overlap.
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Output-Letter Checks: Letter selection accuracies could
be improved by increasing the threshold for selection of
an “output letter”. We have previously tested output letter
feedback via full letter presentations. These presentations
can either be timed identically to the segment stimuli, or
the output-letter checks can be flashed with longer
preceding and anteceding inter-stimulus intervals.
Preliminary tests on small numbers of trials suggest that

Table 2: This confusion matrix reflects all output-letters
selected by the segment model. The rows correspond to
target stimulus, and the columns correspond to classifier
output. ‘Blocks’ reflects the number of time a given letter
was a target. Shaded version in Fig. 4.
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Figure 4: Visualization of the confusion matrix shown in
table 2. Rows represent the target letter for a given block,
whereas columns represent the letter output by the
segment model. Thus, (1,1)/ (A,A) is the sum of all A’s
output by the segment model while A was the target.

both yield responses distinct from the segments. This is
not surprising, as while the segments are subsets of
letters, the complete letter arrays are — by design —
relatively complex images [11].

Consequently, a second independently-trained classifier
will be the most appropriate implementation. It is
possible that responses to these flashed “test letters”
would be more like an error-related response than a P300
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response.

Furthermore, given the letter selection frequency in the
30-trial online blocks, a larger maximum trial cap is an
obvious change going forward. As the discrimination
difficulty and input fatigue make the task somewhat
strenuous, brief breaks may be necessary as blocks
lengthen. Current, trials last no longer than 20 seconds,
and responses may grow increasingly non-stationary due
to fatigue if that duration significantly increases.

One advantage of the segment speller is that errors tend
to be to visually similar letters (letters with similar
subsets of segments) as opposed to neighboring letters in
the grid for standard P300 grid and hexagonal spellers.
This means that perfect selection of letters may not be
necessary for typed words to be readable, as replacing
letters by visually similar ones can still be quite legible.

An important question to consider is whether the
combinatorial advantage of using segments justifies the
increase in task difficulty. The complexity of the oddball
task increases significantly when moving from letters to
segments, and the chances of misidentification also
increase. Moreover, task difficulty has been shown to
attenuate P3 amplitude [12], especially that of the more
frontal P3a [13]. It is possible that the high latency,
posterior distribution of our responses is a consequence
of this difficult categorization task. Consequently, future
experiments could compare responses to an easier
oddball task, to help contextualize the data.

CONCLUSION

The online classification of target vs nontarget segments
proved possible for all subjects, with an average segment
accuracy of 68%. The segment model — designed to
probabilistically infer the target letter based on segment
classification — outputs a target 61.4% of the time. Of
these output targets, the correct letter was selected 31.7%
of the time. As only 30 segments could be queried per
target letter, we expect a longer selection block paired
with a higher threshold should significantly improve final
letter accuracy and rate.
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