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ABSTRACT
We consider a new paradigm for EEG-based brain computer
interface (BCI) cursor control involving signaling satisfac-
tion or dissatisfaction with the current motion direction in-
stead of the usual direct control of signaling rightward or left-
ward desired motion. We start by assuming that the same
underlying EEG signals are used to either signal directly
the intent for right and left motion or to signal satisfac-
tion and dissatisfaction with the current motion. We model
the paradigm as an absorbing Markov chain and show that
while both the standard system and the new interactive sys-
tem have equal information transfer rate (ITR) when the
Bayes optimal classification boundary (between the under-
lying EEG feature distributions used for the two classes)
is exactly known and non-changing, the interactive system
is much more robust to using a suboptimal classification
boundary. Due to non-stationarity of EEG recordings, in
real systems the classification boundary will often be subop-
timal for the current EEG signals. We note that a variable
step size gives a higher ITR for both systems (but the same
robustness improvement of the interactive system remains).
Finally, we present a way to probabilistically combine clas-
sifiers of natural signals of satisfaction and dissatisfaction
with classifiers using standard left/right controls.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov processes; F.1.2
[Computation by Abstract Devices]: Modes of Compu-
tation —Interactive and reactive computation

Keywords
brain-computer interface, BCI, Markov chain, non-stationarity,
interactive, EEG, information transfer rate, ITR

1. INTRODUCTION
Brain-computer interface (BCI) systems typically require

user training to generate reproducible and distinct brain
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waves. One popular class of EEG-driven BCI systems is
based on imagined movement. In these systems the user in-
teracts with a computer through performing motor imagery
such as imagination of hand versus foot movement. The
signal is then band-passed to the mu (8-13Hz) and beta (12-
30Hz) frequency ranges which are known to show decreased
power prior to and during real and imagined movement.
Spatial filtering is also used to increase the discriminability
between the two classes [2]. The ability of users to control
such a BCI is very variable and all the factors involved are
not fully understood.

One of the most critical issues in practical BCI use is non-
stationarity of the EEG signals [19]. A paper by Shenoy et.
al. [19] shows drifts of the optimal classification boundary
during online feedback runs on the order of one standard
deviation of the individual class densities (see Figure 6 in
[19]). Changes between offline training and online use can
be much larger due to changes in the user state evoked by
the feedback. Online changes are thought to be due to state
changes in the user, sweating, movement, and other factors.
Drift in EEG can lead to loss of control of the BCI which
leads to frustration and a vicious cycle of further drift of
EEG signals from their training baselines [10].

Classification boundaries may be sub-optimal due to non-
stationarity changing the optimal boundary over time but
they may also be non-optimal due to having a small amount
of training data with which to train the classifier (and es-
timate the optimal classification boundary). Thus even if
the EEG was stationary, due to finite training set sizes, it is
unlikely that the optimal classification boundary is found.

In a standard online BCI, the user receives sensory feed-
back. For example, if the user is trying to control a 1-
Dimensional cursor movement, he would see the progress
of the cursor. The feedback is important to inform him of
his progress but does not usually or strongly influence his
next command (if the cursor is moving left or right, the user
will try to give a left signal if he desires a leftward movement
regardless of the current feedback until the trial end).

We propose and analyse a more interactive way of control-
ling the BCI where the user changes their intended brain sig-
nal depending on the feedback received from the computer.
For simplicity we consider the case of binary cursor con-
trol, though the ideas could be extended to more complex
systems. Rather than imagining “right hand movement” to
move the cursor right and “foot movement” to move the cur-
sor left, we consider these same two signal classes to mean
instead ‘I approve of the current direction, CONTINUE in
the same direction’ and ‘I don’t like the current direction,



CHANGE direction’. We will call such a system a D/S (dis-
satisfaction/satisfaction) system and call the first system
a R/L (right/left) system. Note that while it may seem
strange to use hand and foot movement to mean continue
and change direction, R/L motor imagery systems often will
pick the most discriminable signals for each user from be-
tween “imagine moving your right hand”, “imagine moving
your left hand”, “imagine moving your foot”, and “imagine
moving your tongue”. Once the two most discriminable sig-
nals are found, one is mapped to right cursor movements and
the other to left cursor movements. There is no reason that
these signals could not be mapped to the intentions continue
moving the cursor in the same direction and change cursor
direction. So initially we will assume that the pdfs of the
two classes of signals is the same for each system but that
they can be used, either in the standard direct (R/L) way,
or in a new interactive (D/S) way.

2. BCI SYSTEMS AS MARKOV CHAINS
While EEG signals are high dimensional, they are often

represented by just a few features before classification. Clas-
sification is then usually performed with a linear classifier
(often linear discriminant analysis (LDA) or linear support
vector machine (SVM)). The relevant dimension for a lin-
ear classifier is then the normal distance to the classification
boundary. For the numerical computation, we assume that
the EEG signals are generated from 1-Dimensional Gaussian
probability density functions (pdfs) with different means
(µ1, µ2) and the same projected variance (σ2) along this
normal dimension. In this formulation, we can represent
different discriminabilities thru a single parameter

d′ =
|µ1 − µ2|

σ
. (1)

The exact form of the probability distributions, however,
does not affect the main qualitative findings in the paper.

Single-trial EEG signals are very noisy and it is rare to be
able to unambiguously classify a brain state (even from only
two options) with a single classification. A common option
to increase classification accuracy for online BCIs is to ac-
cumulate evidence over several classifications performed on
overlapping or adjacent windows of the data. In this work
we will consider adjacent windows (of length 500ms). We
will assume that these windows are conditionally indepen-
dent (given the intended class), though this is unlikely to
be strictly true. The end result however will show that the
D/S system is more robust to non-stationarities that under-
lie these dependencies and so this independence assumption
should only decrease the full effect of the possible improve-
ment with a D/S system.

One common and effective way of combining information
between windows is to start with the cursor in the middle
of the screen and take a step (left or right) according to
the classification of each window of data. When the cursor
reaches either of two targets equidistant (left and right) from
the starting point, the trial ends. Accuracy can be greatly
improved by chaining trials together in this way, though the
time to determine an output increases.

The graphical model for state evolution in such a system
is shown in Figure 1. As the next position of the cursor
depends only on the current position and the classification of
the window (which depends probabilistically on the subject’s
desired goal, the discriminability of their EEG signals, and

the classification boundary), the performance of the subject
can be considered as a discrete-time Markov process or a
Markov chain [8] that takes each step according to a single
window classification. As the process will eventually reach
one of the endpoints, it is considered an absorbing Markov
chain [12]. Once the walk reaches either endpoint the trial
terminates and the absorbing (terminating) state determines
the classifier output.

When viewed as an absorbing Markov chain, the analysis
of the performance of the system is easily obtained [8, 12].
Consider the transition matrix P where pij is the probability
of transitioning from state i to state j (and can be read
off from the graphical model). With the transition matrix
arranged so that the absorbing states are all at the top, P
has the following form

P =

24 I 0

R Q

35 .
If there are r absorbing states from which there are no exter-
nal transitions (the two end-states in Figure 1) and t tran-
sient (non-absorbing) states (5 in Figure 1) then I is an
r-by-r identity matrix and 0 is an r-by-t zero matrix. An

entry p
(n)
ij of Pn gives the probability of being in state j

after n steps after starting in step i.

Pn =

24 I 0Pn−1
i=0 Q

iR Qn

35 .
In an absorbing Markov chain we are guaranteed that ac-
tivity will eventually settle in one of the absorbing states
which means that Qn → 0 as n → ∞. Let N =

P∞
i=0Q

i,
then nij gives the expected number of times that the process
is in transient state j when started in transient state i. Also
note that N can be easily computed using N = (I − Q)−1.
This allows for easy analysis of expected accuracy rates for
chains with different numbers of cursor positions and for dif-
ferent transition probabilities (which are a function of the
discriminability of the signals and the current classification
boundary). Nk where k is a column of t ones gives the ex-
pected number of steps before the chain is absorbed for each
starting state. The entries vij from the equation V = NR
give the probability that the chain will be absorbed in ab-
sorbing state j when started in transient state i.

As there is a tradeoff between accuracy and number of
steps (time) to completion, it is important to deal with a
measure that incorporates both, such as the information
transfer rate (ITR). ITR measures the number of bits of
information learned about the user’s desired class per unit
time. For the case of equal accuracy for each class, and equal
proportions of each class, the information transfer rate, can
be computed using [20]:

ITR = (log2(C)+p log2(p)+(1−p) log2((1−p)/(C−1)))/T

where p is the classification rate of each class and C is the
number of classes to be distinguished and T is the length
of time for the computation. We wish to investigate how
the ITR varies as the class pdfs drift due to nonstationarity
of the EEG. In this work we simulate this with static pdfs
but a moving classification boundary. This also simulates
the problem of a non-optimal classification boundary due to
a noisy estimate of the classification boundary. When the
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Figure 1: LEFT: The graphical model for system evolution for the standard R/L system. The spatial layout
of the states corresponds to spatial cursor location. The rightmost/leftmost state represents hitting the
rightmost/leftmost target. The numbers and variables on the arrows represent the transition probabilities
between states. For best performance the chain is started in the center state (pointed to by the vertical
arrow). This particular model shows a chain with 7 possible cursor positions (NCP=7). RIGHT: Sample 1-D
probability density functions (pdfs) show how the transition probabilities a and b relate to the pdfs for the
different classes and the classification boundary (shown by the vertical lines separating the hatched areas a
and b). When the user intends to give a left signal, with probability a he will succeed and the chain will move
left, and with probability b he will fail and the chain will move right. The bottom set of pdfs show how a
and b are computed in a trial where the user desires to move the cursor right. Note that the classification
boundary is shown in the Bayes optimal position. Our analysis investigates how the system performs as the
classification boundary moves slightly to the left or right (changing the probabilities a and b).

classification boundary (or the class pdfs) shift the classifi-
cation rates will differ for the right and left classes with the
standard R/L system. In this case, a more general equation
for the ITR is used [6]:

ITR =

 
CX
j=1

−p(yj)log2(p(yj))

+

CX
i=1

CX
j=1

p(xi)p(yj |xi)log2(p(yj |xi))

!
/T

where p(yj) =
PC
i=1 p(xi)p(yj |xi) and xi represents intended

class i and yj represents decoded class j. (For our example
C = 2). In order to compare information transfer rates for
our systems with different numbers of steps, it is important
to also consider the overhead time in setting up the trial
(including preparation time and interstimulus interval) thus
the time component (T ) consists of the sum of the times for
each step plus the overhead time in setting up the trial. For
this paper we use an overhead time of 5 steps (2.5 seconds).
Other reasonable overhead times lead to similar results.

Accuracy, number of steps, and ITR were computed for
Markov chains with different numbers of cursor positions
(NCP). The results are shown in Figure 3. The black dashed
curves represent the performance of R/L systems as the clas-
sification boundary is varied over the range shown. Each
curve shows the result for a system with a different NCP.
Several things can be immediately noticed with the regular
R/L system. Accuracy increases with the number of cur-
sor positions between the two absorbing states. Expected
time to completion also increases. The best option for max-
imal information transfer rate, depends on the overhead
time. For a d′ of 1 and an overhead time of 5 computation
steps, the maximal information transfer rate, is achieved for
NCP=9. Changing d′ for the simulated signals, changes the

numeric values and may change the optimal NCP but does
not change the general pattern of results. The optimal chain
NCP for the best ITR, depends on d′ and the overhead.

An analogous D/S system can also be created. In this case
the user tries to control the cursor movement with control
signals that are not right and left but continue (satisfaction)
and change (dissatisfaction). In this case we find that the
next cursor position (state) depends not only on the previ-
ous cursor position (state) but also the direction the cursor
was moving (which can be determined from the state before
that). This means that when states represent only cursor
positions a D/S system can be considered as a second-order
Markov chain since the next state (cursor position) depends
on the two previous states. If, however, we duplicate the in-
terior transient states and let a state represent both cursor
position and incoming direction, then we once again have
a first-order Markov chain where the next state (cursor po-
sition and direction) depends on the current state (cursor
position and direction) as well as the subject’s desired goal,
the classification boundary, and the discriminability of their
signals. That is, for the the D/S system, the Markov chain
is a second order system if only cursor position is considered,
but can be considered a first order chain if the state includes
the movement direction. The graphical model for this first-
order D/S system is shown in Figure 2. The states at the
top of the figure represent previous motion from the right
and the bottom states represent states that had previous
motion from the left. The transitions between the top and
bottom rows correspond to cursor direction changes and are
triggered by an interpreted dissatisfaction (change) signal.
Interpreted satisfaction (continue) signals result in continu-
ing movement along the current track. For this interactive
system, if the subject intends to move the cursor to the right
then the subject should give a satisfaction signal for right-
ward movements and a dissatisfaction signal for leftward
movements. The probabilities for the different transitions
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Figure 2: LEFT: The graphical model for system evolution for the proposed D/S system. The horizontal
layout of the states corresponds to spatial cursor location. The rightmost/leftmost state represents hitting
the rightmost/leftmost target. The numbers and variables on the arrows represent the transition probabilities
between states. The vertical layout of the states corresponds to cursor motion direction. The top row of
states correspond to states that have cursor movements to the right. The bottom row are the analogous states
for cursor movement to the left. The initial cursor direction is randomly selected from between rightward
and leftward (with end of first step ending at the center). These two starting states are indicated with the
vertical arrows. This particular model shows a chain with 7 possible cursor positions (NCP=7). RIGHT:
Sample 1-D pdfs show how the transition probabilities a, b, c, and d relate to the pdfs for the different classes
and the classification boundary (shown by the vertical lines separating the hatched areas a and c from b and
d). In a trial where the subject desires leftward motion, she generates a signal from the continue (satisfied)
distribution when the cursor is already moving left (bottom states). This will be correctly detected with
probability a and fail to be correctly classified with probability b (resulting in a change in cursor direction).
When the cursor is going right and the subject desires leftward movement, the user generates a signal from
the change distribution. This will be correctly classified with probablity d and incorrectly classified with
probability c. When a subject desires rightward cursor movement, she should generate a signal from the
continue distribution when the cursor is already moving right (top-states) and from the change distribution
when the cursor is already moving left (bottom states). Note that the classification boundary is shown in
the Bayes optimal position. Our analysis investigates how the system performs as the classification boundary
moves slightly (changing the probabilities a,b,c and d).

are again derived from the assumed pdfs and are shown on
the right of Figure 2 for both trials with desired leftward
and desired rightward cursor movements.

Performance results for the D/S system are also shown in
Figures 3 and 4. The range of high performance is much
larger (as a function of classification boundary shift) for the
D/S system than the R/L system. The curves show far less
sensitivity to the exact boundary in the D/S method. Peak
information transfer rates can also be better and are not
always at the Bayes optimal classification boundary for dis-
tinguishing individual signals for the continue and change
classes. It is interesting to analyze this difference. The R/L
system depends crucially on the location of the classification
boundary. If the boundary is too far towards the right dis-
tribution (so that too many windows are classified as left),
then more left trials are classified correctly but fewer right
trials are. The cost to the right trials is larger and the over-
all accuracy of the classifier goes down. In the D/S method,
the classification boundary does not reflect the boundary be-
tween right and left classifications, but between continue and
change classifications. When the classification boundary is
moved so that continue (satisfaction) is more likely to be
interpreted, we decrease the accuracy but also the expected
completion time (there are less changes of cursor direction).
Note that when the boundary is moved so that dissatisfac-
tion/change is made more prevalent, the accuracy actually
increases as more decisions are needed to be combined be-
fore the cursor reaches a target endpoint. By moving the
classification boundary so that change is more likely we in-
crease both the convergence time and accuracy. This is very

similar to increasing the chain’s NCP. Similarly moving the
boundary to make continue more likely is similar to mak-
ing the chain shorter. For chains with smaller than optimal
NCP for a given d′, ITR can be increased by moving the
classification boundary so that change is more likely to be
output. For chains that have a larger than optimal NCP for
a given d′, ITR can be increased by moving the classification
boundary so that continue is more likely to be output. This
can be seen in the right panel of Figure 3 and the right panel
of Figure 4. Note that this means that improvements in the
system ITR (for reaching left and right targets) are pos-
sible for classification boundaries removed from the Bayes
optimal boundary for separating individual signals from the
continue and change classes. Figure 4 also clearly shows
that the D/S curves are more parallel to the ITR contours
and the R/L curves are more perpendicular which is another
way of seeing that the D/S system is much more robust to
classification boundary drift. (ITR does not change drasti-
cally as the classification boundary drifts). Also note from
the state diagram that areas a and d are pushing the cursor
right and areas b and c are pushing the cursor left. As the
continue/change classification boundary is moved, a and d
trade off to some extent, as do b and c.

To summarize, in all the simulations, if the classification
boundary is optimal (at the crossing point between the class
pdfs), the expected number of steps, accuracy, and ITR are
the same for both the R/L and D/S system. For the R/L
system as the boundary drifts relative to the class pdfs the
system will end up over classifying right or left and the av-
erage classification error falls off. In the D/S system differ-
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Figure 3: The blue dotted curves at the bottom of each panel show the simulated probability density functions
(pdfs) for left and right for the R/L simulation. They do not have the same units as the other curves but are
plotted on the same plot (with the same numeric scaling) so that the classification boundary placement can
be seen with respect to the class pdfs. These same pdfs are also used for continue and change for the D/S
simulation (with change on the right.) In the left panel, the black dashed curves show the accuracy for the
R/L system as a function of classification boundary placement. (Note that optimal placement for a single
window classification is at the crossing point of the class pdfs). Positive values for boundary placement mean
that the classifier is more likely to output left. The magenta curves show the accuracy for the D/S system as
a function of the classification boundary placement (between the continue and change pdfs). Positive values for
boundary placement in these curves means that the classifier is more likely to output continue. The different
curves in each color are for chains with different NCP (5, 7, 9, 11, 13, 15) with the higher accuracies resulting
from chains with larger NCP. Note that in the D/S case, system accuracy actually increases as the system is
more likely to classify change for the observed cursor movement. The middle panel show the number of steps
for the same simulations (black dashed R/L, magenta D/S). The curves with more steps are for larger NCP.
The final panel shows ITR for the same simulations. In the D/S simulations, for NCP larger than optimal,
better ITR is associated with the classifier being more likely to output continue; for smaller NCP, better ITR
is achieved with the classifier being more likely to output change.
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Figure 4: The left plot shows accuracy vs steps for the chains with NCP=7. The black dashed curve
shows the values for the standard R/L algorithm as the classification boundary is moved by ±0.5σ from
the optimal boundary with a d′ of 1. The magenta curve shows how the D/S values change for the same
boundary movement (this time when considered as the boundary between continue and change). The place
where the curves meet represents the values at the optimal classification boundary for distinguishing the
single window class pdfs (for left/right or change/continue). The R/L algorithm performs symmetrically with
respect to movements in either direction from this boundary so the curve falls down in the same way as the
boundary is moved to the right and left. The thin curves in green show the contours of information transfer
rate for an overhead of 5 steps (with higher ITRs in lighter colors and towards the top left corner) and equal
classification rates for both classes. The right panel shows the same plots for chains with different NCP (5,
7, 9, 11, 13, and 15) with chains with larger NCP showing more steps and greater peak accuracy. This plot
shows the same data presented in Figure 3. For all NCP as the boundary moves away from the single-window
optimal boundary, the D/S system does not suffer as much in ITR (and sometimes improves - this is possible
because the boundary is only optimal for the single window classification).



ent behavior is experienced if the boundary drifts. If the
boundary drifts so that continue/satisfaction is more likely,
accuracy decreases a little and the expected number of steps
also decreases. Note that accuracy falls off much slower than
for the R/L system. If the boundary drifts so that change
(dissatisfaction) is more likely, accuracy will improve and
the expected number of steps increases.

2.1 Variable step size is better
A variable step size may be used, so that if the classifier

is more confident, the cursor takes a bigger step. This can
still be modeled with an absorbing Markov chain where the
number of cursor positions is made very large (even the num-
ber of pixels between targets) and the probabilities are more
finely computed. See for example in Figure 5 a four part op-
tion in the R/L system (with NCP=7). Note that analogous
modifications can easily be made to the D/S system (Fig-
ure omitted because of its visual complexity). Information
transfer rate improves with the variable step size for both
the standard R/L and interactive D/S system. The equality
of the solutions at the Bayes optimal classification bound-
ary and the superior robustness of the D/S system are also
maintained.

Good performance is obtained with an update rule that
performs

x = x + k

 
1

1 + exp(− ( s−θ)d′
σ

)
× 2− 1

!
where x is the cursor position, (s -θ) is the signed normal
distance of the sample EEG feature vector from the clas-
sification boundary. k is a scale variable that can be set
optimally for the given chain NCP. 1

1+exp(− ( s−θ)d′
σ

)

com-

putes the probability that the observed sample belongs to
the class with larger mean (between µ1 and µ2) (assuming
Gaussian pdfs with means µ1, and µ2, equal class variances
of σ2 and disciminability d′ given by Equation (1)). The
multiplication by 2 and subtraction of 1 converts the prob-
ability into a scaled value from -1 to 1 which can then be
multiplied by k to obtain a step size (and direction given by
the sign).

3. TOWARDS USING A NATURAL DISSAT-
ISFACTION/SATISFACTION SIGNAL

We have shown theoretically that if the satisfaction and
dissatisfaction signals were as equally distinguishable as stan-
dardly used signals for right and left desired motion (for ex-
ample if the same brain states were used to represent these
controls), the D/S system would be more robust to error
in estimating the optimal boundary and to shifts in this
boundary. In a real online system there are other issues. It
has been found that users’ ITRs decrease with longer tri-
als (possibly due to fatigue or loss of attention) [15]. This
means that keeping trials shorter (smaller NCP) may be pre-
ferred. The D/S method of control is also not natural for
most human users and may be a bit difficult for them at
first. Real-time performance can also be strongly affected
by feedback. It has been found that a run of bad perfor-
mance can lead to a much longer term loss of control, possi-
bly due to frustration and the change in signals this causes
[10]. Based on these findings, it may be more useful to use
a natural dissatisfaction signal instead of co-opting a stan-

dard motor imagery signal. This dissatisfaction signal may
involve emotional changes as well as error signals generated
in response to seeing the computer incorrectly interpreting
their desired signal. It may also have a more active aspect
in encoding internal thoughts of “No!” (or a stronger word
or expression).

Thus a dissatisfaction signal could arise from both ac-
tive signals (thinking “No!” including the emotion and the
phonation of the word) and passive signals (automatic emo-
tion, error responses). Potentially this may lead to a richer
more discriminable signal than the more commonly investi-
gated motor imagery signals (at least for some users). A D/S
system using natural dissatisfaction/satisfaction signals (as
opposed to co-opting the motor imagery of feet and hands)
would have the advantage that loss of control should be less
of a problem as the system is specifically trained to recog-
nize the frustration and dissatisfaction resulting from loss
of control and so natural frustration responses should help
the system perform better, rather than working against the
system by introducing new untrained factors.

Finally the natural dissatisfaction signal could be com-
bined with other more actively generated signals to create a
stronger more robust signal. In the next section we briefly
discuss a possible hybrid system with a standard R/L sys-
tem being actively controlled and a more passive D/S system
running simultaneously to look for some subset of frustra-
tion, errors, and imagined negative words.

4. A HYBRID SYSTEM
Several studies have been performed that use various EEG

error (including the error-related negativity (ERN) and other
error potential brain signals [18]) to improve performance [9,
5]. Error signals have been used to improve performance on
a speeded motor task where the subject physically pushes a
button [17], to correct machine-induced errors [11, 21] and
to modify the policy (probability of selecting actions) of an
automatic agent [3]. Error related signals have also been in-
vestigated in motor-imagery based BCIs [7, 1, 13] to change
the BCI response after a trial is over [1] or to cancel individ-
ual movements [7]. We are not aware, however, of a system
that has explored treating error and active signals equiva-
lently and combining the signals in a Markov-chain-like way
as we suggest below.

In Section 2 we compared an interactive D/S system to
a standard R/L system, assuming that both could be used
with the same underlying motor imagery signals just used
and interpreted differently (as continue/change instead of
right/left). It is also possible to combine the standard active
R/L control signal with a passive and reactive D/S signal.
In this case the user would be actively controlling the cur-
sor movement to the right and left with motor imagery but
passively detected satisfaction or frustration and reactively
generated error signals could be used as well. In this sys-
tem, it is important to weight the signals according to their
confidences. This can be done in an online manner using the
following formula:
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Figure 5: A more fine-scaled R/L Markov chain to allow for variable step size. Larger steps are taken when
the classifier is more sure of the class decision. In this figure, the a and b probabilities from Figure 1 are
each subdivided into four parts a1, a2, a3, a4 and b1, b2, b3, and b4. They are drawn at equal intervals along
the projected input space but would actually be positioned at equal steps of change in estimated probability
for each class. Only the probabilities for a leftward desiring trial are shown to save space. An analogous
fine-scaled markov process can be used for a D/S system (not shown due to space limitations).
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where x is the current cursor position on the screen, (s−θ), is
the signed normal difference of the EEG R/L feature vector
from the left/right classification boundary and (sds− θds) is
the signed normal difference of the EEG D/S feature vector
from the continue/change classification boundary. r is a bi-
nary variable (-1/+1) that represents the current direction
of the cursor (r=1, for cursor moving right, r=-1 for cursor
moving left). Scale factors k and kds may be set equal or op-
timized on a per-subject basis with cross-validation. Further
work will be required to compare this method of integrating
natural D/S signals with the previously used approaches.

5. DISCUSSION
The D/S idea works naturally with a two class system

and in this paper we have restricted our analysis to a bi-
nary cursor control task. It has been found that informa-
tion transfer rates for people in online systems tend to not
improve beyond three or four classes [4, 14]. Kronegg et.
al. (2007) state that “increasing the number of mental tasks
from two only produces a very limited improvement in terms
of information-transfer rate... This observation is in accor-
dance with Dornhege et al. theoretical model [4]...Even if
increasing the number of tasks would lead to an increase in
ITR, the small gain might not justify the added complexity
in terms of protocol design.”

Omar and colleagues [16] have shown how to combine bi-
nary BCI control signals to generate text and curved trajec-
tories (made from non-binary alphabets). The binary sig-

nals in their case are generated from combined evidence from
right/left motor imagery. Our paper deals with how best to
generate those binary signals.

Though less natural, the D/S idea could be expanded to
work with a slightly larger number of classes. A 3 or 4 target
D/S system could be set up where the cursor starts to move
towards one of the targets at random. It would continue if it
interprets a continue and it would start towards the clock-
wise next one when it interprets a change. It could also be
used for 1-Dimensional cursor control with several targets in
a line. Standard R/L systems of 1-Dimensional cursor con-
trol with more than two classes in a line have an interactive
aspect in that to get to a middle target the command is dif-
ferent depending on whether the cursor is currently to the
right or left of that target. However this is not the same as
a full D/S system because if the classification boundary (on
the right/left control signals) has moved so that left is over-
classified, it will be very hard to hit the rightmost targets.
In the D/S system, if the classification boundary has moved
so that continue is overclassified, accuracy and convergence
time will decrease as in the binary system, but ITR will not
be as drastically affected. If the boundary has moved so that
change is overclassified, error rate will decrease and conver-
gence time will increase, and again as in the binary case, the
ITR will not be as drastically affected. The D/S system is
interactive based on both position and direction of motion.
A R/L system with three or more classes in a line is just
interactive based on position.

The D/S system has another possible advantage. We can
recognize drift by noticing that either the average classifica-
tion time has gone up or down and in each case we know the
required direction of change. We also know that we should
expect at most one dissatisfaction per trial and this may
also be used in future work to keep the system tuned in an
unsupervised, automatic way.

We have seen that by interacting with the signal, the BCI
system can be much less harmed by non-optimal classifica-
tion boundaries (and thus non-stationarities). By building a



control signal that depends intimately on what has already
been transmitted, interpreted, and received (and using both
direction of motion and position) a much more robust sys-
tem can be achieved. Future work will involve investigating
natural D/S signals and testing both their use (and the use
of co-opted standard signals) in online D/S and hybrid BCIs.
Finally, while the finding that an interactive control signal
should result in greater robustness to classification boundary
placement was presented in the context of a motor-imagery
EEG-based brain computer interface, the result is applica-
ble for any situation where the control signals are noisy (and
the optimal classification boundary is unknown or changing)
and windows of classification are combined (with feedback
of the current progress provided).
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