as in (Reeke, Sporns, & Edelman, 1990; Edelman, Reeke, & Gall, 1992), however, we concentrate
solely on classification, but attack real classification tasks with overlapping input patterns. The fact
that both networks are learning makes this approach significantly harder than approaches where
one modality trains another (Munro, 1988; Carpenter, Grossberg, & Reynolds, 1991; Tan 1995) or
others that combine two already trained networks (Yuhas, Goldstein, & Sejnowski, 1988; Stork,
Wolff, & Levine, 1992).
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Figure 3: The idea behind the self-supervised algorithm.

To start we give some of the biological motivation behind the idea of using the cross-modality
structure.

2.1 Psychophysics

The coincidence between auditory and visual events is pervasive throughout our experience. From
just after birth, babies are able to turn crudely toward sounds. Over time we develop a rather
precise auditory-visual spatial map. This enables us to be able to pick up correlations between
auditory and visual sensations. For example, with sound localization we are able to notice that
mooing comes from cows.

Another example of information picked up in this way is the ability to read lips. Anyone who has
conversed in a noisy environment, is aware of the improved speech recognition achieved when the
speaker’s face (particularly the lips) is visible. (This has also been demonstrated in more controlled
experimental conditions (Sumby, & Pollack, 1954).) The visual signal from the motion of the lips,
jaw, and tongue help the auditory system to understand the speech.

This ability to recognize relationships between lip movements and emitted sound develops early.
By four and a half months of age infants are able to recognize that particular lip motions go with
particular sounds. Kuhl and Meltzoff (1984) showed that infants looked significantly longer at the
matching face when presented with the sound /a/ or /i/. Their preference was specific to the
actual speech information as they did not show this effect when the speech signals were replaced
with tones that followed the duration, amplitude envelope and onset/offset timing of the original
speech sounds (Kuhl & Meltzoff, 1984).

The effect of lip movement on speech recognition is even more prominent when the stimuli
are experimentally manipulated so that the visual and acoustic signals are discordant. In the



experiments of (McGurk & MacDonald, 1976; MacDonald & McGurk, 1978) subjects are presented
with acoustic stimuli of various consonant-vowel pairs and simultaneously shown images of faces
speaking a different consonant with the vowel. Thus for example when presented acoustically with
a /ba/ syllable and visually with a face speaking /ga/, 98% of adult subjects hear /da/ (McGurk
& MacDonald, 1976). The result is very striking and not subject to conscious control. It shows
that visual and auditory stimuli are able to interact to produce a unified percept, different from
the stimuli actually given to either modality. Furthermore it seems that the ability of visual signals
to influence acoustic classification is at least partially learned. Pre-school and school children show
significantly less of the effect than do adults (McGurk & MacDonald, 1976).

Another example of experienced auditory-visual correlations affecting an auditory perception
is given as an anecdote in Howells (1944). Howells reports that a driver who was familiar with an
intersection that made a concurrent whistle sound as the lights changed for stop and go, failed to
notice when the whistle was later disabled.

On the next trip to the crossing, in spite of counter suggestions recently received, the
driver reported a distinct hallucination of the whistle (Howells, 1944, p.89).

In another anecdotal example where the frequencies of the whistles were different for lights
changing to the stop or go signal. Howells reports

Few drivers noticed that there was a difference in the tones, or even that a whistle
sounded at all, until the wires controlling the whistles were accidentally crossed by a
repairman, so the usual combinations of color and tone were reversed. The result was
general confusion and a collision at the crossing (Howells, 1944 p. 90).

Under more controlled conditions, Howells (1944) trained subjects with tones followed by colored
screens. On 95% of the trials, the color-tone pairing was consistent and on the other 5% of trials
it was reversed. After an initial period, half the presentations were at full saturation and the
other half much paler. Subjects showed increasing errors (on the pale screens preceded by the
inconsistent tone) with training. Subjects tested with white stimuli after conditioning reported
always the color associated with the co-occurring sound and subjects instructed to produce a white
color in the presence of the high or low tone were offset in the direction opposite to that imposed
during training.

A similar example of auditory events influencing visual perception is demonstrated in a cross-
modal experiment in (Durgin, 1995; Durgin & Proffitt, 1996). The experiment involved repeated
brief presentations of random dot patterns in two rectangular areas of a screen. On each presenta-
tion, one of the two areas received 25 dots/deg? and the other 2 dots/deg?. The visual presentations
were paired with auditory tone stimuli such that the pitch of the tone was perfectly correlated with
the side of the denser dot pattern. After 180 flashed presentations, a staircase procedure was used
to determine the perceived density equivalence (for test patterns with dot densities between the
two trained densities) between the two areas when presented with each of the two tones. The ex-
periment showed that there was a significant effect of the tone on the perceived density relationship
between the patterns in the two areas. The simultaneous presentation of the tone associated with
a denser texture in one area during training, lead to an impression of greater dot density in that
area during testing. To match a constant density, the difference between the density required in
the presence of the high pitch and that with a low pitch was 10% (Durgin, 1995).

Hefferline and Perera (1963) have shown that correlated proprioceptive (an invisibly small
thumb twitch detected electromyographically ) and auditory events (tone) can lead to a subject
later reporting that he “still heard it (the tone)” to subsequent proprioceptive events in the absence
of the tone.



Zellner and Kautz (1990) have also shown that color can affect odor perception. In their
experiments, colored solutions were perceived as having a more intense odor.

Even after being told the solutions were of equal concentrations, they [subjects] insisted
that the solutions were not the same intensity (Zellner and Kautz, 1990, p. 396)

It is clear that the co-occurrence of multi-sensory signals can assist or interfere with processing.
There is also evidence that after experience with cross-modal correlations, a uni-modal discrimi-
nation can be affected by a stimulus to the other modality. We would like to go one step farther
and hypothesize that this multi-modality integration is important not only for improved recogni-
tion but is useful for the development of recognition features in both individual modalities. Along
these lines, there is some evidence that exposure to auditory-visual co-occurrences is important for
normal attentional development. Quittner and colleagues (Quittner, Smith, Osberger, & Mitchell,
1994) report that deaf children show reduced visual attention (in a non-auditory task) than hearing
children. The authors conclude that though auditory information is not used in their tested task the
development of focused visual attention is helped by auditory experience (presumably coincident
with visual experience).

2.2 Neurobiology

The previous section examined results showing that information from different sensory modalities
is combined in determining our perception. Often, the combination is not subject to conscious
control. It is as if the results are not simply being combined at a high-level output stage but are
able to influence each other in the individual processing stages. This is corroborated by neurophys-
iological studies which have found responses of cortical cells in primary sensory areas that respond
to features from other sensory modalities. For example Spinelli, Starr and Barrett (1968) found
sound frequency specificity in cells in primary wvisual cortex of the cat and Fishman and Michael
(1973) found that these bimodal cells tend to be clustered together. As support for the unified
percept observed in psychophysical studies, the stimuli are able to affect the same cell. In fact
acoustic responses in a single cell could be inhibited by inhibitory visual stimuli (Morrell, 1972).
More recently Maunsell and colleagues (Haenny, Maunsell, & Schiller, ?; Maunsell, Sclar, Nealey,
& DePriest,1991) have shown responses in visual neurons in Area V4 to oriented tactile stimuli
that the animal has been trained to match to subsequently presented oriented visual gratings.

Sams and colleagues, (Sams, Aulanko, Himéaiinen, Hari, Lounasmaa, Lu,& Simola, 1991) have
also shown effects of visual input on auditory processing in humans. Using magnetoencephalo-
graphic (MEG) recordings, they showed that although a visual signal by itself did not result in a
response over the auditory cortical area, different visual signals changed the response to the auditory
signal. They again used the McGurk effect stimuli. Subjects were trained with a higher percentage
of either agreeing or disagreeing stimuli. Significantly different neuromagnetic measurements were
made to the frequent and infrequent stimuli. As no similar difference occurred when two different
light stimuli occurred with the sounds, they argue that this shows that the visual information from
the face is reaching the auditory cortex.

The neurophysiological and psychophysical evidence must be reconciled with the fact that
anatomically the information from the different sensory modalities goes to spatially separate, segre-
gated cortical areas. Retinal input goes to occipital cortex whereas auditory input goes to auditory
cortex in the temporal lobe. Even within the auditory and visual cortex there are many different
areas which seem to be specialized to processing different parts of the signal. For instance color
processing seems to be mostly separate from motion processing (Merigan & Maunsell, 1993; Des-
imone & Ungerleider, 1989). There is a significant restriction on the amount of cross-modality



interaction that can occur. This is thought to be due to restrictions on connectivity; it is not phys-
ically possible to have all neurons connected to all other neurons (or even any significant fraction).
Therefore input from each modality and submodality must be processed separately, at least in the
early stages, with little cross-talk.

As there are no direct afferent (feed-forward) connections from one input modality to another,
the information from other modalities could either be coming bottom-up from shared subcortical
structures such as the superior colliculus or alternatively top-down from the multi-sensory integra-
tion areas such as entorhinal cortex and other limbic polymodal areas. This idea has been suggested
before (for example Rolls, 1989) and seems to be supported by the evidence from visual cortex. As
stated by Spinelli et al. (1968)

non-visual stimuli affect the activity of ganglion cells only minutely (Spinelli, Pribram,
& Weingarten, 1965; Spinelli & Weingarten, 1966; Spinelli, 1967; they affect that of the
geniculate cells to a greater extent (Meulders, Colle, & Biosacq-Schepens, 1965) and
very markedly affect cortical cells (Murata, Cramer, & Bach-y-Rita, 1965). Even more
interaction appears to be present in prestriate cortex (Buser & Borenstein, 1959).(p.
82)

Thus we know from psychophysical studies that information from different modalities is com-
bined and that information from one modality can assist or interfere with classification in another.
The physiological evidence supports this finding in showing that input to other modalities can
influence processing in another sensory pathway. This combined with the anatomical evidence that
shows no direct input from one modality’s transducers to another pathway, suggests that this in-
formation is coming top-down through feedback pathways from multi-sensory areas. Furthermore
we suggest that this integration may not just affect the properties of developed systems but play
an important role in the learning process itself. Just as lip-reading is a learned classification ability,
correlations between inputs to different sensory modalities may affect other classification learning in
the individual modalities. In this section we will investigate the power that this kind of integration
might provide to learning classifiers in the individual modalities.

2.3 Using Cross-Modality Information for Self-Supervised Learning

Following the anatomical evidence presented earlier and acting under the assumption that it is
infeasible to have neurons receiving input from the sensory transducers of all the senses, we propose
an architecture such as that schematized in Figure 3 in which each modality has its own processing
stream (or classification network) but access to each other’s output at a high level. This information
can reach the lower levels within each processing stream through feedback within the stream.

One way to make use of the cross-modality structure in a network like this is to cluster the
codebook vectors in their individual spaces, but use the joint structure to learn to label co-occurring
codebook vectors with the same label. After clustering in the input space, the activity patterns in
the resulting hidden unit (codebook) activation space (the space of dimensionality equal to the sum
of the number of codebook vectors in each space) can be clustered. For example using Competitive
learning on the second layer of weights in a network such as that in Figure 4, will tend to cluster the
codebook vectors. Fach codebook vector is given the label of the output neuron in whose cluster
it belongs (the neuron to which it projects most strongly); thus these weights can be considered
implicit labeling weights.

The above use of cross-modality structure is useful and we will use it to initialize our algorithm
(calling it the initial labeling algorithm), however a more powerful use of the extra information is
for better placement of the codebook vectors themselves. The insight in this algorithm is that we
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