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ABSTRACT: In this paper we propose, describe, and
evaluate a novel deep learning method for classifying bi-
nary motor imagery data. This model is designed to per-
form CSP-like feature extractions. It can be seen as a
neural network with a specifically designed architecture
where the latent space corresponds naturally to the fea-
tures found in CSP methods. Our model allows for easy
generalization from spatial filters to spatio-temporal fil-
ters. It also allows for the feature extraction and filtering
stages to be optimized jointly with the classifier. This
allows standard regularization methods to include the fil-
tering stage. In addition the network provides the expres-
siveness and robustness of deep learning to improve upon
the efficiency of CSP filtering methods.

INTRODUCTION

Motor-imagery (MI) brain-computer interfaces (BCIs)
work by detecting decreases in power in the mu (7-13
Hz) and beta (13-30 Hz) frequency bands. Decreases
in power in those frequencies are known to occur both
prior to and during movement, as well as during imagined
movement [1]. The relevant decreased power or desyn-
chronization is spatially localized over the motor cortex.
Any body part, when imagined to be moving, has a cor-
responding region of cortex.
Spatially discriminative mu-desynchronization is recog-
nized using a filter that emphasizes the spatial differences
between the different motor-imagery classes.
The most commonly used method is the Common Spatial
Patterns, or CSP, [2] which finds a set of filters that max-
imizes the projected variance (power) for one class while
minimizing it for the other. Applying CSPs to band-pass
filtered signals can greatly emphasize the spatially segre-
gated power differences between the different classes and
is common in MI-based BCIs [2].
Let a column vector xt ∈ RC be the band-passed EEG
signal for time t where C is the number of EEG channels
on the scalp and R indicates the set of real numbers. The
estimate of the covariance matrix for a two-class experi-
ment can be calculated from the training data using tra-
ditional methods. Let the covariance matrix for the two
classes 1 and 2 be specified as:

Σy ∈ RC×C y ∈ {1, 2} (1)

CSP aims to find a projection w ∈ RC which maximizes
the variance of signals for one condition and at the same
time minimizes the variance of signals of another condi-
tion. One can find w for class 1 by solving the following
Rayleigh quotient:

R(w) =
wT Σ1w

wT (Σ1 + Σ2)w
(2)

The solution for this problem can be found by solving the
generalized eigenvalue problem given in the form:

Σ1w = λ(Σ1 + Σ2)w (3)

There are C generalized eigenvectors where w1 corre-
sponding to the largest eigenvalue maximizes the vari-
ance for class 1 while minimizing for class 2 and wc cor-
responding to the smallest eigenvalue maximizes the vari-
ance for class 2 while minimizing for class 1. It is com-
mon in the CSP algorithm to select some number (often
3) of the top and bottom eigenvectors as the discrimina-
tive spatial filters [3].
Once the CSP filters have been learned, the data are trans-
formed according to the CSP filters, and the class band-
power is computed (via the sum of the squared filtered
data, or equivalently, the variance of filtered, zero-mean
data). The logarithm of this power output is often taken
as the log-power is more normally distributed. These log
powered features are then fed into a simple linear clas-
sifier such as linear discriminant analysis (LDA) with
shrinkage, step-wise LDA, logistic regression, or linear
support vector machines. These simple algorithms have
been preferred because of their robustness to the large
amounts of noise in, and scarcity of, EEG data. Many
studies with shallow non-linear algorithms have failed
to beat these simple linear algorithms However, recent
advances in deep convolutional neural networks (CNNs)
have transformed the fields of handwriting recognition,
speech recognition, computer vision, and video analy-
sis [4, 5], and are rapidly transforming machine learning
more generally. We aim to leverage the advantages cen-
tral to all of these results for the task of improving MI
classification.



There have been other variants on the basic CSP al-
gorithm, some of which are reviewed in [6]. Com-
mon spatio-spectral patterns (CSSP) [7] uses the tem-
poral structure information to improve CSP. Spectrally
weighted common spatial patterns (Spec-CSP) [8] learns
the spectral weights as well as the spatial weights in
an iterative way. Invariant CSP (iCSP) [9] minimizes
variations in the EEG signal caused by various artifacts
using a pre-calculated covariance matrix characterizing
these modulations. Stationary CSP (sCSP) [10] regular-
izes CSP filters into stationary subspaces. Local tem-
poral common spatial patterns (LTCSP) [11, 12] uses
temporally local variances to compute the spatial fil-
ters. Canonical correlation approach to common spa-
tial patterns (CCACSP) incorporates the temporal struc-
ture of the data to extract discriminative and uncorrelated
sources [13].
A neural network implementation of CSP filtering easily
allows for the development of new spatio-temporal ex-
tensions to CSP. We note that these extensions may be
implementable in a standard filtering pipeline, but that
implementing them as part of a neural network allows for
easy, quick extensions to well-studied variations of CSP,
and, moreover, allows for testing novel architectures that
may not be intuitive in the framework that CSPs are typ-
ically studied and used in. By considering CSP filtering
as a special case of convolutional neural networks, one
can quickly run through entirely novel CSP extensions,
and optimize them in tandem with the classifier, simply
by modifying a few canonical parameters.
Also because the CSP filters are typically trained with
non-iterative algorithms, and without validation, they are
prone to overfitting. Implementing both filtering and clas-
sification in one framework allows for joint monitoring
and regularizing, to combat overfitting.
A major advantage of CNNs over traditional neural net-
works is that they are a special case of the latter. Convolu-
tional networks are motivated by, and based on, the struc-
ture of the visual system [14–17]. Convolutional neural
networks have a shared weight structure – local recep-
tive fields are learned and the learned structure is shared
throughout the input [17]. This means that each training
sample provides many windows of training data for the
same (shared) sets of weights which greatly increases the
effective training data.
CNNs can be seen as an architectural constraint on neu-
ral networks in general, specifically, they are constrained
such that they perform operations that have traditionally
been used, in a non-machine learning setting, to great ef-
fect on the same task. This approach allows us to op-
timize the filters and classifier together, and to transpar-
ently leverage a validation set.
We hypothesize four explicit advantages to employing
the CSP filtering as part of the classification network.
First, early stopping or other, more advanced, deep learn-
ing regularization techniques can be used to prevent the
spatial filters from overfitting. Second, the filtering and
classification being optimized together may result in im-

proved performance than performing these separately, as
our filters are going to differ from CSP in that they are
sensitive to classification accuracy as opposed to just
class variance. Third, the CSP algorithm finds linear spa-
tial filters whereas the neural network extension would
be able to find smooth non-linear extensions. Finally,
once implemented in a neural network, the network may
be modified, in the common ways described in the deep
learning literature, to improve on the CSP algorithm. The
natural extensions to both can be leveraged to extend and
strengthen the basic model described here. For exam-
ple, the network’s architecture can be easily extended, via
weight-sharing, to allow for natural structurally-restricted
spatial filters.

MATERIALS AND METHODS

EEG data were recorded from 6 healthy participants re-
cruited from the UC San Diego student population. Par-
ticipants were naive to BCI and signed a consent form
approved by the University Institutional Review Board
before participating in the experiment. Participants were
instructed to perform kinesthetic motor imagery of their
right or left hand to control a cursor to hit a target on
a monitor in front of them. The cursor and the target
were each represented by a circle having 2 cm diame-
ter and colors blue and white respectively. The cursor
moved discretely, one second at a time. Each trial began
with the cursor at the center of the screen and the tar-
get at either end - the center was three cursor steps away
from each end. After 1.5 seconds the target disappeared
to minimize distraction for the participant and the cursor
began moving towards or away from the target. Partic-
ipants were lead to believe that they were in control of
the cursor; however, in order to provide consistent cursor
movements between participants, the cursor was moved
based on a pre-programmed sequence. There were a total
of 10 blocks and each block consisted of 20 trials [18].
Data were collected with a 64-channel EEG system
(Brain Products GmbH). The electrodes were arranged
based on the 10-20 international system. Data were col-
lected at 5000 Hz sampling rate and were down-sampled
to 500 Hz. Pre-processing of the data was done in MAT-
LAB [19] and EEGLAB [20] where the data were first
bandpass filtered with an FIR filter of order 500 in 1 to
200 Hz. Then clean-line [21] which is an EEGLAB plug-
in, was applied to remove the line noise. Then up to five
channels with high power in frequencies above 60 Hz -
indicating muscle artifacts - were removed. Next, the
EEG on each channel was re-referenced to the common
average over the remaining channels. Data were visually
inspected for large muscle artifacts and less than 10% of
the trials were removed. Independent component anal-
ysis (ICA) was applied and ICA components regarding
muscle and eye were removed. The pre-processed data
were bandpass filtered with FIR filters with 500 taps in
the following eleven frequency bands: 1-3, 2-5, 4-7, 6-
10, 7-12, 10-15, 12-19, 18-25, 19-30, 25-35, and 30-40



Hz and epoched from 150 to 950 ms after each cursor
movement.
As baseline, we used CSP in combination with regular-
ized linear discriminant analysis (LDA). CSP is trained
on data from each filter and the top 3 filters for each im-
agery class is selected to be passed into an LDA. Fig. 1
shows the structure of CSP+LDA classifier. We ran 3 in-
stances of 5-fold cross-validation

Figure 1: Conventional CSP+LDA method.

We have created two methods inspired by the success of
CSPs. First we introduce a hybrid CSP/Deep Net model,
which will serve as a control or reference, that learns and
feeds CSPs of our eleven pass bands into a fully con-
nected neural network with 500 hidden units. Second,
we introduce the proposed model, a fully deep net with
CSP-like architectures. This network’s architecture has
been structured such that its latent space naturally en-
codes for the same variance-optimizing spatial transfor-
mations described above. Similar to the hybrid net, our
CSP like Neural Network, or CSP-NN, is trained on all
eleven passbands of a signal.
The convolutional network computes the equivalent of a
convolution of a “receptive field” with the input. It is im-
plemented by having local connectivity between a neuron
in the convolutional layer and the lower input layer. This
neuron is then replicated with shifted input connectivity.
The key feature is that the weights are shared between all
of the neurons within a map in the layer, so that they are
all forced to learn the same receptive field/kernel. At the
same time many maps may be learned in parallel. These
convolutional layers are commonly followed by pooling
layers that combine the input from several nearby neu-
rons within the same map. Common pooling operations
are max-pooling where the maximum value of the com-
bined inputs are output, average-pooling, where the av-
erage value of the combined inputs are output. There is
also norm-pooling where the Lp norm of the combined
inputs is output [22].

Hybrid CSP Net
Our hybrid model performs a standard D-dimensional
CSP on each passband. treating each epoch as a data
point. D is necessarily an even number, as we choose
the first D/2 and last D/2 vectors of the CSP solution.The
CSP filtered signals are then fed as inputs to a densely
connected neural network which performs binary classi-
fication. This densely connected neural network is com-
posed of 500 neurons fitted with hyperbolic tangent acti-
vation. We used a dropout mask with a probability of .5
in this dense layer as decided for the proposed networks
discussed next. We selected binary cross-entropy as our
objective function due to the binary classification nature
of our network. The activations are fed into a single sig-
moid output unit. The dense layer was implemented and
trained in Keras [23], using Theano [24] as a backend.
Fig. 2 shows the architecture of this network.

Figure 2: Structure of the hybrid CSP network.

CSP-NN
Our CSP-NN takes the 11 chosen passbands, and feeds
each into one of 11 parallel 1-D convolution layers. We
use D convolution kernels, where D is analogous to the
number of CSP dimensions described above. Thus, we
generate 11 × D feature maps per data point. Each of
these feature maps are element-wise squared and globally
summed, analogous to the process of extracting variance
in CSP, creating 11×D positive scalars. Note this oper-
ation corresponds to using norm 2 pooling instead of the
commonly used max pooling, and it simulates the opera-
tion of extracting variance from CSP projections.
Interestingly, max pooling was originally motivated in
the classical deep learning architectures [15, 16] moti-
vated by complex cells and their translation invariance.
However, the energy model of complex cells [25], “the
de facto standard description of complex cells in primary
visual cortex (Adelson and Bergen 1985)” actually mod-
els them as computing the sum of squared simple cells,
and this has been found to produce a better fit [26]. These



pooled output scalars are fed into a fully connected net-
work, identical to the net used in the hybrid-model, which
generates our predictions. This process is detailed below.
By building a net of this architecture, and by differenti-
ating through a global sum of squares (norm 2 pooling),
we create a model that learns convolution kernels that are
analogous to the CSP filter solutions found in traditional
approaches. Initially, we use convolutional kernels of
length one. These convolutions apply the same set of spa-
tial weights across all time points as in the standard CSP
spatial filters. Details of our models can be found in Fig.
3. We also tested kernels with some temporal sensitivity,
replacing the length-1 filter with a length-T or T-degree
convolution through time. These later convolutions can
be said to apply a spatio-temporal filter with a T-point
temporal resolution, which is analogous to common spa-
tial temporal patterns, or CSTP filtering methods [27,28].
CSTP-NN is based on sensitivity to temporal dependen-
cies between windows of successive points. CSTP-NN
is an example of a simple extension, a single parameter
change in fact, to the CSP-NN that corresponds to a major
class of CSP extensions in the traditional BCI literature.

The parameters learned by our proposed method code for
similar features to the traditional CSP and CSTP meth-
ods. However they are not trained to maximize vari-
ance/power for one class and minimize it for the other,
but aim to discover the set of kernels that provide optimal
classification performance for the network as a whole.
This latter advantage increases the possibility of overfit-
ting, which we handle with a very strict early-stopping
schedule as described above and detailed below. Within
our method, an epoch is bandpassed into 11 separate band
signals, which are concatenated into an 11 by C by T
array, where C and T are number of channels and time-
points, respectively. Each level of this array is fed into
one of eleven separate 1-D convolutional layers, each
containing D unique feature kernels, where D is chosen
to always be even, and is 6, 10, or 16 in our analysis.
The length of each kernel is 1, and the width of each is
equal to the number of EEG channels in our data, which
is 64. These kernels are convolved through time, and are
functionally similar to applying a CSP-like spatial filter
to each time-point in our 11 signal bands. This yields
11 × D feature maps, or filtered signals, each of which
is element-wise squared and globally summed, or norm-
2 pooled. This operation yields 11 × D feature scalars,
and is functionally similar to extracting variance of the
first and lastD/2 spatial filters in CSP. These features are
concatenated and fed as an 11×D input vector into dense
neural network layer, which always has 500 hidden units
with hyperbolic tangent activation. This layer is fed into
a single sigmoid unit. The network is trained end-to-end
using stochastic gradient descent, with Nesterov momen-
tum of .9 and training rate of .0001. We use dropout in
the 500 hidden units, setting a random half of them to 0 at
each training epoch. The CSP-NN, and by extension, the
CSTP-NN, are both implemented in Theano [24], using
the Lasagne library [29]. Again, CSTP-NN differs from

CSP-NN by only a single parameter in our implementa-
tion.
The training duration was set to a maximum of 5000
epochs with early stopping. If 50 of the last 100 epochs
resulted in worse validation accuracy, then early stopping
was triggered, and the weights were set to those that pro-
duced the recorded best validation results. We searched
over the following hyperparameters for participant 1 in
the CSP-NN and kept the parameters the same for every
other participant: Dropout (p = .5) vs non-dropout, learn-
ing rate, .001 vs .0001, number of kernels, 6 vs 10 vs 16
and kernel lengths, 1, 5,10, and 15. We tested hyperbolic
tangent vs. rectified linear (ReLU) as activation function
in the hidden layer and found that hyperbolic tangent per-
formed better. We selected binary cross-entropy as our
objective function due to the binary classification nature
of our network.

Figure 3: Structure of the CSP-NN or CSTP-NN, depend-
ing on kernel length (1 vs. > 1).

RESULTS

Results are reported for 5-fold cross-validation in Tab. 1.
The rate for the baseline method, i.e. CSP+LDA, and the
hybrid CSP method are reported as the average of 3 in-
stances of 5-fold cross-validation. In each instance, the
number of trials in right and left classes were balanced
by dropping trials from the class with more trials.
The proposed methods, i.e. CSP-NN and CSTP-NN,
were also tested in a 5-fold cross-validation scheme. We
applied this cross-validation scheme to each participant
individually, and we report the mean accuracy across all
five folds per participant. Again, we made sure that the
right and left classes were balanced. Our proposed meth-
ods outperformed on certain participants (P-2, P-3 and
P-6), but underperformed on P-4. We also found that
the increasing the length of the 1-D convolution also im-
proves performance, but also increases the error bounds
significantly. This is consistent with the small size of our
data. We found that 16 kernels per convolution layer, as
well as a kernel length, (or temporal sensitivity) of 5 pro-
duced the strongest results from among the values tried



in Participant 1 (and was used for all subjects). Consid-
ering only length-1 kernel instances, the best results were
found with the same parameters in Participant 1, includ-
ing 16 kernels per convolution layer.

Table 1: Results - Classification accuracy. Note that *
is used for CSP-NN and CSTP-NN for P-1 as results for
this participant may be overfit due to parameter tuning.

ID CSP+LDA Hybrid NN CSP-NN CSTP-NN
P-1 0.8629 0.8307 0.8297∗ 0.8459∗

P-2 0.6482 0.6381 0.7311 0.7041
P-3 0.6485 0.6553 0.6351 0.7243
P-4 0.6526 0.6571 0.6069 0.5250
P-5 0.7173 0.7104 0.7125 0.6750
P-6 0.7105 0.6970 0.7338 0.7730

The standard error among 5-fold for the results reported
in Tab. 1 is at most 0.025.

DISCUSSION

The CSP-NN and CSTP-NN methods perform compa-
rably to standard methods. It is possible that the pro-
posed methods would have even stronger performance,
with tighter error bounds, if given a larger corpus of data.
Grand averages across all participants show that CSTP-
NN and CSP-NN are the highest performing methods that
we attempted however there is large variability between
participants.

CONCLUSION

CSP-NN style approaches perform similarly to standard
non end-to-end models, and can be easily extended when
implemented. They can also be regularized more trans-
parently. We find that this class of model suffers from
the same dependence on large corpus of data as all CNN
models, but offers a stronger method when that data is
available, and we will further study the advantages and
disadvantages of this class of model in the future.

ACKNOWLEDGMENTS

This work was supported by the NSF grants IIS 1219200,
SMA 1041755, IIS 1528214, and UCSD FISP G2171.

References
[1] Wolpaw, Jonathan R., and Dennis J. McFarland.

”Control of a two-dimensional movement signal by
a noninvasive brain-computer interface in humans.”
Proceedings of the National Academy of Sciences
of the United States of America 101, no. 51 (2004):
17849-17854.

[2] Müller-Gerking, Johannes, Gert Pfurtscheller, and
Henrik Flyvbjerg. ”Designing optimal spatial filters
for single-trial EEG classification in a movement

task.” Clinical neurophysiology 110, no. 5 (1999):
787-798.

[3] Blankertz, Benjamin, Ryota Tomioka, Steven Lemm,
Motoaki Kawanabe, and K-R. Muller. ”Optimizing
spatial filters for robust EEG single-trial analysis.”
IEEE Signal processing magazine 25, no. 1 (2008):
41-56.

[4] Karpathy, Andrej, George Toderici, Sanketh Shetty,
Thomas Leung, Rahul Sukthankar, and Li Fei-Fei.
”Large-scale video classification with convolutional
neural networks.” In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition,
pp. 1725-1732. 2014.

[5] Donahue, Jeffrey, Lisa Anne Hendricks, Sergio
Guadarrama, Marcus Rohrbach, Subhashini Venu-
gopalan, Kate Saenko, and Trevor Darrell. ”Long-
term recurrent convolutional networks for visual
recognition and description.” In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pp. 2625-2634. 2015.

[6] Lotte, Fabien, and Cuntai Guan. ”Regularizing com-
mon spatial patterns to improve BCI designs: unified
theory and new algorithms.” IEEE Transactions on
biomedical Engineering 58, no. 2 (2011): 355-362.

[7] Lemm, Steven, Benjamin Blankertz, Gabriel Curio,
and K-R. Muller. ”Spatio-spectral filters for improv-
ing the classification of single trial EEG.” IEEE trans-
actions on biomedical engineering 52, no. 9 (2005):
1541-1548.

[8] Tomioka, Ryota, Guido Dornhege, Guido Nolte,
Benjamin Blankertz, Kazuyuki Aihara, and Klaus-
Robert Müller. ”Spectrally weighted common spatial
pattern algorithm for single trial EEG classification.”
Dept. Math. Eng., Univ. Tokyo, Tokyo, Japan, Tech.
Rep 40 (2006).

[9] Blankertz, Benjamin, Motoaki Kawanabe, Ryota
Tomioka, Friederike U. Hohlefeld, Vadim V. Nikulin,
and Klaus-Robert Müller. ”Invariant Common Spa-
tial Patterns: Alleviating Nonstationarities in Brain-
Computer Interfacing.” In NIPS, pp. 113-120. 2007.

[10] Samek, Wojciech, Carmen Vidaurre, Klaus-Robert
Müller, and Motoaki Kawanabe. ”Stationary com-
mon spatial patterns for brain–computer interfac-
ing.” Journal of neural engineering 9, no. 2 (2012):
026013.

[11] Wang, Haixian, and Wenming Zheng. “Local tem-
poral common spatial patterns for robust single-trial
EEG classification.” IEEE Transactions on Neural
Systems and Rehabilitation Engineering 16, no. 2
(2008): 131-139.



[12] Wang, Haixian. ”Discriminant and adaptive exten-
sions to local temporal common spatial patterns.”
Pattern Recognition Letters 34, no. 10 (2013): 1125-
1129.

[13] Noh, Eunho, and Virginia R. de Sa. ”Canonical cor-
relation approach to common spatial patterns.” In
Neural Engineering (NER), 2013 6th International
IEEE/EMBS Conference on, pp. 669-672. IEEE,
2013.

[14] Hubel, D., and Wiesel, T. Receptive fields, binocu-
lar interaction and functional architecture in the cat’s
visual cortex. Journal of Physiology, 160:106, 1962.

[15] Fukushima, Kunihiko. ”Cognitron: A self-
organizing multilayered neural network.” Biological
cybernetics 20, no. 3-4 (1975): 121-136.

[16] Fukushima, Kunihiko, and Sei Miyake. ”Neocogni-
tron: A self-organizing neural network model for a
mechanism of visual pattern recognition.” In Com-
petition and cooperation in neural nets, pp. 267-285.
Springer Berlin Heidelberg, 1982.

[17] LeCun, Y., Boser, B, Denker, J.S., Henderson, D.,
Howard, R.E., Hubbard, W., and Jackel, L.D. Hand-
written digit recognition with a back-propagation
network. In Advances in Neural Information Process-
ing Systems 2, pages 396-404. Morgan Kaufmann,
1989.

[18] Mousavi, Mahta, Adam S. Koerner, Qiong Zhang,
Eunho Noh, and Virginia R. de Sa. ”Improving motor
imagery BCI with user response to feedback.” Brain-
Computer Interfaces (2017): 1-13.

[19] MATLAB and Statistics Toolbox Release 2012b,
The MathWorks Inc., Natick, Massachusetts, United
States (2012).

[20] Delorme, Arnaud, and Scott Makeig. “EEGLAB: an
open source toolbox for analysis of single-trial EEG

dynamics including independent component analy-
sis.” Journal of neuroscience methods 134.1 (2004):
9-21.

[21] Available here: http://www.nitrc.org/
projects/cleanlin

[22] Gulcehre, Caglar, Kyunghyun Cho, Razvan Pas-
canu, and Yoshua Bengio. “Learned-norm pooling
for deep feedforward and recurrent neural networks.”
In Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pp. 530-
546. Springer Berlin Heidelberg, 2014.

[23] François Chollet. Keras. 2015. Available from:
https://github.com/fchollet/keras

[24] Theano Development Team (2016). Theano: A
Python frame-work for fast computation of mathe-
matical expressions. arXiv e-prints, abs/1605.02688.

[25] Adelson, Edward H., and James R. Bergen. ”Spa-
tiotemporal energy models for the perception of mo-
tion.” JOSA A 2, no. 2 (1985): 284-299.

[26] Vintch, Brett, J. Anthony Movshon, and Eero P. Si-
moncelli. ”A convolutional subunit model for neu-
ronal responses in macaque V1.” Journal of Neuro-
science 35, no. 44 (2015): 14829-14841.

[27] Krusienski, D.J., Sellers, E.W., and Vaughan, T.M.
”Common Spatio-Temporal Patterns for the P300
Speller” in Proceedings of the 3rd International IEEE
EMBS Conference on Neural Engineering, Kohala
Coast, Hawaii, USA, May 2-5, 2007, 421-424.

[28] Jun, Sung Chan. ”Common Spatiotemporal Pat-
tern (CSTP)”, International Journal of Bioelectro-
magnetism. 2011; 13(1): 22-23.

[29] Sander Dieleman, Jan Schlüter, Colin Raffel, Eben
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