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Abstract— Brain-computer interface (BCI) systems read and
infer the user brain activity directly from the brain providing a
means of communication and rehabilitation for patients in need.
However, brain signals are known to be non-stationary and
existing systems are not reliable and robust enough to be taken
outside of the laboratory. Often times long calibration and re-
calibration of the system is required which can be tiresome and
frustrating to the user. In this study, we compare the method
of common spatial patterns (CSP) with two of its variants,
namely, the canonical correlation analysis approach to common
spatial patterns (CCACSP) and the common spatio-spectral
patterns (CSSP) in detecting the motor imagery signal when
trained on calibration data with sham feedback and tested in
online control. We show that the motor imagery performance is
significantly better with CSSP and CCACSP compared to CSP
and hence, these methods are able to provide a more reliable
transfer of the classifier from calibration to online control.

I. INTRODUCTION

Electroencephalography (EEG)-based BCIs are high-
speed, non-invasive, inexpensive and portable interventions
that enable real-time control of a computer by analyzing
electrical brain activity at the scalp [1]. This work focuses
on motor imagery BClIs, in which the user imagines moving
different parts of her/his body such as the right or left
hand or foot, tongue, etc. without actually moving them
[2]. Motor imagery BClIs are based on the user’s internal,
self-initiated patterns of motor imagery. Imagining different
body parts results in somewhat different spatial patterns in
various frequency bands in the EEG signal [3], [4], [5].
The goal of the BCI is to correctly detect these movement-
specific patterns, and translate them into different commands,
to allow a user to interact with the world, e.g. to move a
prosthetic arm or to move a cursor on a screen.

The viewing of the command to which the BCI output
is mapped, i.e., the BCI feedback, can itself modify the
state of the user’s brain and provide classifiable information
[6], [7], [8], [9], [10]. In previous work, we proposed a
hybrid BCI to integrate the user brain response to the BCI
feedback with the motor imagery classifier [11]. Our results
showed significantly better performance compared to a motor
imagery BCI that does not use the effect of BCI feedback
on the user brain activity. Furthermore, we showed that the
trained motor imagery classifier based on the method of
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common spatial patterns, did not transfer well to the online
control as seen in other studies as well [12]. In contrast,
we showed that the classifiers trained on the user’s brain
response to the BCI feedback (that recognized when the BCI
made an error) transferred well from calibration to the online
control [11].

In this work, we focus on the motor imagery classifier
and further study its performance when transferred from
calibration to online control. We compare the method of
common spatial patterns to two of its variants, namely the
canonical correlation analysis approach to common spatial
patterns (CCACSP) [13] and the common spatio-spectral
patterns (CSSP) [14] in their generalizability from calibration
to online control.

II. METHODS

A. Experiment

Data were recorded from 12 participants who were naive
to BCI (7 females, 1 left-handed, average age = 20.4+1.0).
Prior to their participation, all participants signed an in-
formed consent form that was approved by the Institutional
Review Board at UC San Diego. The experiment was com-
prised of two phases. In the first phase, participants were
introduced to motor imagery and performed 30 trials to
practice right and left hand motor imagery [15].

In the second phase, participants used right and left hand
motor imagery to control a cursor on a screen in front of
them. Only the data of the second phase were analyzed in this
study. During this phase, in each trial, the cursor appeared at
the center of the screen and the target was located three steps
away from the cursor to the right or the left. There were a
total of 9 blocks in this phase, with 20 trials in each block.
In the first 3 blocks, participants were provided with sham
feedback but were lead to believe that they were in control of
the cursor movements. The recordings of these 3 blocks were
used for calibration. The calibrated classifiers were then used
in the latter 6 online blocks where the participants actually
controlled the movement of the cursor.

Data were recorded using a 64-channel BrainAmp system
(Brain Products GmbH) originally at 5000 Hz and downsam-
pled to 100 Hz for analysis. MATLAB [16] and EEGLAB
[17] were used to load and epoch the EEG data as well as for
plotting. Python was used for stimuli presentation and data
analysis during the experiment as well as the offline analysis
of the data. For more details about the study please refer to
[11].



B. Classification

In the original study [11], three different classifiers were
trained on the calibration data: one motor imagery classifier
and two error-related brain activity classifiers. In this study,
we focus on the right/left hand motor imagery classification
of each cursor movement or step.

Data from calibration and online blocks were epoched 0-
1 seconds after each cursor movement excluding the last
cursor movement. This is because the last cursor movement
corresponds to the end of a trial and participants were
instructed to stop motor imagery by then. Epochs were
filtered in 7-30 Hz with a 6th order Butterworth filter and
labelled right/left (R/L) depending on the location of the
target.

The original study used the method of common spatial
patterns (CSP) for classification of the motor imagery signal
during online control. However, in this study, we compare
CSP with CCACSP and CSSP in a ‘simulated’ online fash-
ion. To do so, we used the calibration data to train either
of the three methods and tested them on the epoched steps
from the online data.

Classifiers were trained and tested in three different con-
ditions: 1) trained and tested on the calibration data using 5-
fold cross-validation — called ‘calibCV’, 2) trained and tested
on the online data using 5-fold cross-validation — called
‘onlineCV’, and 3) trained on the calibration data and tested
on the online data — called ‘online’.

Right and left steps were balanced in both calibration
and online data to avoid challenges in interpretation of
the results. After balancing the classes, on average across
participants, there were a total of 136 and 272.74+38.4 steps
in the calibration and online blocks, respectively [11]. All
64 channels were used for classification.

Next we will briefly summarize the methods under study.

C. Common Spatial Patterns (CSP)

The method of common spatial patterns (CSP) [3], [5] is
widely used for feature extraction in motor imagery BCIL.

Let X;; € RO*T be the j — th bandpassed EEG data
epoch over C' channels with 7' time samples that belongs
to class ¢ € {1,2}. Let classes 1 and 2 be the two motor
imagery classes (e.g., the movement imagination of the right
and left hands). The covariance for each class i € {1,2} is
estimated as follows:
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where N is the population of each class. In our analysis, we
balanced the population of classes by subsampling the more
populated class. This is further explained later.

CSP finds a set of filters that maximizes the variance for
one class while minimizing it for the other by solving the
following optimization problem:
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Combining the above for both classes provides the CSP
filters which are the eigenvectors corresponding to the largest
and smallest eigenvalues of the following:
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We selected the top 3 CSP filters for each class. Features
were selected as the logarithm of the variance of the filtered
epochs through the selected 6 filters. Linear discriminant
analysis (LDA) with automatic shrinkage [18] was then
trained on the selected features.

D. Canonical Correlation Analysis Approach to Common
Spatial Patterns (CCACSP)

The CSP method considers spatial features of the signal
and ignores potential relevant temporal features. The canoni-
cal correlation analysis approach to common spatial patterns
(CCACSP) [13] generalizes CSP to consider the temporal
aspects of the signal as well.

Let X;; € RE*T be the j — th bandpassed epoch
corresponding to class i € {1,2}. Define X (=) ¢ ROxT
and X € RO*T similarly, representing the one-sample
backward and forward time-shifted epochs, respectively. The
time-shifted covariance for class ¢ is estimated as follows:
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CCACSP combines ideas from canonical correlation anal-
ysis (CCA) and CSP by solving the following set of opti-
mization problems:
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The solutions, also called the CCACSP filters, are the eigen-
vectors associated with the following generalized eigenvalue
problems:
Ysiw = )\(21 + Eg)w
ZSQU = )\(21 + 22)1]

We selected the top 3 CCACSP filters for each class
resulting in a total of 6 selected filters. Features were selected
as the logarithm of the variance of the filtered epochs
through the selected 6 filters. A linear discriminant analysis
(LDA) with automatic shrinkage [18] was then trained on
the selected features.

The code for CCACSP can be found here: https://
github.com/mahtamsv/CCACSP.

(6)

E. Common Spatio-Spectral Patterns (CSSP)

This method was proposed as a variant of the CSP method
that is capable of extracting robust and invariant features
[14].

Let X;; € RE*T be the j — th bandpassed epoch
corresponding to class ¢ € {1,2}. CSSP finds the set of
filters W and W7 such that the variance of the filtered epochs
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Fig. 1: Comparison of the R/L motor imagery classification accuracy when trained on calibration and tested on the online
data with CSP, CSSP and CCACSP. The red, blue and green bars are also presented in the last columns of Tables |1], |E| and

[} respectively.

Zj=WX;+ WO X _where X\ is the 7 time-shifted
version of X; — is maximized for one class while minimized
for the other class and vice versa.

Define a new epoch by concatenating each epoch with its
time-shifted version as follows:

X, = (20

By applying CSP to these newly defined epochs, one finds
W which can be divided into two submatrices W and WT.

The top and bottom 3 filters for each class from W and
W™ were selected and called W, W7 and , epochs were
fillered as W, X; + WX ](-T) and the logarithm of the
variance of the filtered epochs were selected as features. A
linear discriminant analysis (LDA) with automatic shrinkage
[18] was then trained on the selected features.

Note that the hyper-parameter 7 was trained using cross-
validation on the training data in the range 0—15 as suggested
by the authors in [14].

III. RESULTS

Tables Il [[T] and [[T]] show the performance of the R/L clas-
sifier on previously recorded EEG data with CSP, CCACSP
and CSSP under the 3 conditions stated earlier. Since bal-
ancing the right and left classes was done by randomly
subsampling the larger class 10 times, the first number for
each participant shows the average across the 10 instances
of balanced classes and the second number is the standard
deviation. For the last row, ‘AVR’ indicates the average
across participants where the first number is the mean and
the second number is the standard error.

Across participants, CCACSP online performance is sig-
nificantly better than the CSP online performance (Wilcoxon
signed rank test, p = 0.027) and similarly, CSSP online
performance is significantly better than the CSP online
performance (Wilcoxon signed rank test, p = 0.043). But
the difference between CCACSP online performance and
CSSP online performance is not significant (Wilcoxon signed
rank test, p = 0.13). For easier visualization, the online
performance or transferred accuracy (last columns of Tables)
of the three methods are also presented as bar plots in Figure
m

Note that the performance of the R/L classifier with CSP
in calibCV or onlineCV (middle two columns in Tables [T}
and [ITI) is not different from CCACSP nor CSSP (Wilcoxon
signed rank test, p > 0.06). This shows the calibration to
online generalization efficacy of the CSSP and CCACSP
methods compared to the CSP method. In effect, the CSSP
and CCACSP methods find classifiers that generalize better
from calibration to online control.

IV. DISCUSSION

Non-stationarity in brain activity limits the generalization
of the classifiers trained on calibration data to the online
control (test data) [12], [11]. In this work, we compared
the performance of the motor imagery classifier with the
commonly used CSP with two of its variants: CCACSP and
CSSP. In previous work, we showed that CSP performance
was significantly affected when trained on calibration and
tested during online control. In this work, we showed that
using CSSP [14] and CCACSP [13] could serve as a solution
to alleviate this issue and result in improved online motor



TABLE I: R/L classifier with CSP.

ID calibCV onlineCV online
P1 0.73/0.02 | 0.84/0.02 | 0.55/0.03
P2 0.74/0.02 | 0.70/0.02 | 0.56/0.03
P3 0.75/0.02 | 0.78/0.05 | 0.63/0.04
P4 0.87/0.03 | 0.72/0.02 | 0.72/0.02
P5 0.79/0.05 | 0.81/0.03 | 0.59/0.12
P6 0.60/0.05 | 0.57/0.02 | 0.50/0.01
P7 0.63/0.06 | 0.77/0.04 | 0.62/0.03
P8 0.67/0.04 | 0.70/0.04 | 0.57/0.02
P9 0.81/0.04 | 0.73/0.02 | 0.68/0.05
P10 | 0.73/0.04 | 0.65/0.02 | 0.49/0.02
P11 0.81/0.03 | 0.64/0.05 | 0.60/0.02
P12 | 0.67/0.04 | 0.59/0.02 | 0.47/0.03
AVR | 0.73/0.02 | 0.71/0.02 | 0.58/0.02

TABLE II: R/L classifier with CSSP.

ID calibCV onlineCV online
Pl 0.72/0.03 | 0.83/0.03 | 0.57/0.04
P2 0.72/0.05 | 0.71/0.02 | 0.56/0.05
P3 0.76/0.03 | 0.75/0.05 | 0.66/0.04
P4 0.87/0.03 | 0.72/0.02 | 0.72/0.02
P5 0.78/0.05 | 0.78/0.03 | 0.65/0.09
P6 0.59/0.03 | 0.58/0.02 | 0.51/0.03
P7 0.61/0.04 | 0.76/0.03 | 0.63/0.04
P8 0.68/0.04 | 0.70/0.04 | 0.57/0.03
P9 0.79/0.04 | 0.71/0.03 | 0.66/0.06
P10 | 0.72/0.03 | 0.63/0.02 | 0.50/0.02
P11 0.81/0.04 | 0.62/0.04 | 0.61/0.02
P12 | 0.67/0.03 | 0.59/0.02 | 0.48/0.04
AVR | 0.73/0.02 | 0.70/0.02 | 0.59/0.02

TABLE III: R/L classifier with CCACSP.

ID calibCV onlineCV online
Pl 0.74/0.03 | 0.82/0.02 | 0.74/0.03
P2 0.66/0.03 | 0.70/0.02 | 0.69/0.01
P3 0.74/0.04 | 0.77/0.04 | 0.61/0.06
P4 0.86/0.03 | 0.75/0.03 | 0.71/0.02
P5 0.58/0.07 | 0.65/0.04 | 0.56/0.07
P6 0.58/0.05 | 0.60/0.02 | 0.54/0.02
P7 0.63/0.05 | 0.75/0.02 | 0.68/0.02
P8 0.72/0.04 | 0.69/0.04 | 0.71/0.02
P9 0.83/0.03 | 0.75/0.02 | 0.73/0.02
P10 | 0.69/0.04 | 0.54/0.02 | 0.49/0.02
P11 0.79/0.01 | 0.61/0.06 | 0.64/0.03
P12 | 0.65/0.04 | 0.53/0.03 | 0.49/0.02
AVR | 0.71/0.03 | 0.68/0.03 | 0.63/0.03

imagery performance. In comparing CCACSP with CSSP,
we see that the CSSP mean is closer to the CSP mean, but
there is larger variability in the CCACSP results.

As future work, we will investigate better ways to extract
temporal information by emphasizing relevant sources. We
hope that by doing so, the gap in motor imagery performance
from calibration to online control will be reduced and the

overall BCI performance improved.
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