Using Feature Selection to Find Inputs
that Work Better as Extra Outputs

Rich Caruana Virginia R. de Sa
Just Research and Sloan Center for Theoretical
Carnegie Mellon University Neurobiology, Dept. Physiology
Pittsburgh, PA 15213 UCSF, San Francisco CA 94143-0444
caruana@cs.cmu.edu desa@phy.ucsf.edu
Abstract

In supervised learning there is usually a clear distinction between in-
puts and outputs — inputs are what you measure, outputs are what you
predict from those measurements. The distinction between inputs and
outputs is not this simple. Previously, we demonstrated that on synthetic
problems some input features are more useful when used as extra outputs
than when used as inputs[6]. This paper shows the same effect on a real
problem, and presents a means of determining what features can be used
as extra outputs. We show that the feature selection method devised
by Koller and Sahami[l1] can be used to select features to use as extra
outputs, and that using some features as as extra outputs instead of as
inputs yields better performance on the DNA splice-junction domain.

1 MOTIVATION

The goal in supervised learning is to learn functions that map inputs to outputs
with high predictive accuracy. The common practice in backprop nets is to use
all features that will be available for test cases as inputs, and use as outputs
only features that need to be predicted. On real problems, where there may be
many redundant or irrelevant features, using all the available features as inputs
is often suboptimal. Many algorithms learn better given a carefully selected
subset of the features to use inputs[3, 10, 11].

If feature selection is used to find the features to use as inputs, what should
be done with the features not selected? Usually, features not selected for use
as inputs are discarded. But, there are other ways to benefit from features
without using them as inputs. One way to benefit from features not used as
inputs is multitask learning. Multitask learning (MTL) is an inductive transfer
method where extra tasks are learned in parallel with the main task while using
a shared representation. Because the extra tasks share a hidden layer with the
main task, internal representations learned for the extra tasks can be used by
the main task outputs, often improving performance on the main task.

MTL in backprop nets is well documented[13, 1, 2, 4, 8, 9, 7]. Most appli-
cations of MTL are to problems where some features available for the training
set will not be available for future test cases[5]. We recently demonstrated that
there are problems where some features that could be used as inputs would be

more useful if used as extra outputs instead[6]. This demonstration was made
on problems carefully engineered to demonstrate this effect. It was clear in
those problems which features would be more useful as outputs than as inputs.
Do real problems have features that would benefit learning more if used as ex-
tra outputs than if used as inputs? If they do, how would we determine which
features to use as outputs?

This paper shows that the DNA splice-junction domain contains features
that yield better recognition accuracy when they are used as extra outputs than
when they are used as inputs. We use the feature selection method developed
by Koller and Sahami [11] to select which features to use as inputs. They
showed naive bayes and C4.5 achieve better accuracy using just the selected
features as inputs than using all the features as inputs. We show a similar
result for backprop nets. We then show that it is better to use some of the
features not used as inputs as extra outputs instead of ignoring them. Best
performance is achieved by moving some of the input features to the output
side of the net. We suspect other real-world problems would benefit from a
similar combination of feature selection and multitask learning.

2 FEATURE SELECTION

In real-world problems often there are many irrelevant and redundant features.
Because many learning algorithms have difficulty coping with large numbers
of redundant and irrelevant features, performance often improves when the
learning method is given only the subset of features most useful for the learning
task. Feature selection selects from the available features which ones to use as
inputs for learning.

Here we use the feature selection method developed by Koller and Sahami.
It uses information theoretic measures of feature importance to select the fea-
tures most likely to be useful as inputs. The theoretical motivation behind the
algorithm is to remove attributes which have Markov blankets in the remaining
attributes with respect to the prediction task. If an attribute has a Markov
blanket in the other attributes, this attribute provides no additional information
and the class decision is independent of the value of this attribute conditioned
on the values of the other attributes in the blanket. Finding Markov blankets is
not practical given a large number of attributes. The Koller-Sahami algorithm
makes several simplifying approximations that allow the degree to which an
attribute is blanketed by other attributes be estimated in reasonable time.

The Koller-Sahami algorithm is a greedy feature selector. The preferred
way of using it is backward-elimination. Start with all features in the set,
and remove attributes one-at-a-time, at each step removing the attribute most
covered by the other attributes remaining in the set (i.e., remove the attribute
that provides the least additional information for the class given the other
remaining attributes).

3 DNA SPLICE-JUNCTION PROBLEM

DNA contains coded information that is used by cells to construct proteins.
In the process of building a message RNA template to use as a scaffold on
which to build a protein, large sections of the original DNA coding are ignored.
The coded sequences that are used are known as “exons”, while the ignored
sequences are known as “introns”. The nature of the boundaries between exons
and introns, known as “splice junctions”, is a subject of active research.

The DNA Splice-Junction Problem we use is from the UCI machine learn-
ing repository[12]. For each case in the database there is a sequence of 60
nucleotides. The goal is to predict if the center of the nucleotide sequence
codes for an exon-to-intron boundary, an intron-to-exon boundary, or neither.
25% of the cases are EI boundaries, 25% are IE boundaries, and 50% are neither
EI or IE boundaries. For compatibility, we use the nucleotide coding scheme
used by Koller and Sahami, which codes each of the 60 nucleotides using 3
bits. This yields 180 boolean attributes that can be used as inputs. Typical
performance on this problem is 92-94% accuracy when trained on training sets
containing 1000-2000 cases.

4 EXPERIMENTS

We've run two experiments with DNA Splice-Junction. In the first, we de-
termine what size net performs best. In the second, we determine if using
some features as extra outputs improves performance. All our experiments use
backprop nets composed of sigmoid units. We train the nets using conjugate
gradient and use an independent halt set to determine when to stop training.
The performance of the net is then measured on an independent test set not
used for training or early stopping. The dataset contains 2000 cases. We ran-
domly split this set into train, halt, and test sets containing 667, 666, and
667 cases, respectively. We repeatedly sample the dataset this way to generate
multiple trials.

Our coding for the main splice-junction task uses three outputs, one for IE,
one for EI, and one for neither. We use a normalized cross-entropy loss function
for the outputs for the main task. The classification of the net prediction is
done by finding which of the three outputs has the highest activation. When
boolean attributes are used as extra outputs, we use a non-normalized cross-
entropy loss function to train them.

4.1 Experiment 1: Performance vs. Net Size

The purpose of this experiment is to determine what net size yields best per-
formance. We tried nets containing 5, 20, 80, 320, and 1280 hidden units. The
nets have 3 outputs that code for the main task.

Figure 1la shows the test set cross-entropy error for nets of different sizes
trained with all 180 input features, and trained with the 30 input features
selected by the Koller-Sahami feature selector. (These are the same 30 features

0.45 0.96

- i 0.95 4
o 04 30 INPUTS
Q -
¢ & omf I I ,
5 C omt 4
o 03F 180 INPUTS g o
3 Iy
3 g ool]
2 =1
g o0 i/% 1 3
2 < ooLf / -
AT S S 1 s /En/
o [S g 09f g
[§) 180 INPUTS
015 30INPUTS 1 089 |- 1
0.1 L L L 0.88 I I L
10 100 1000 10 100
Number of Hidden Units (logscale) Number of Hidden Units (logscale)

Figure 1: Cross-Entropy (left) and Accuracy (right) of Different Size Nets With
All 180 Inputs and 30 Selected Inputs.

Koller and Sahami selected for this problem.) Figure 1b shows the prediction
accuracy of the nets. Each point is the average of 12 trials; the vertical bars
are 95% confidence intervals.

Better performance is achieved with 80, 320, or 1280 hidden units. Also,
performance is significantly better for nets that use only 30 selected features
as inputs as compared to nets that use all 180 features as inputs. We conclude
from this experiment that the optimal net size is about 320 hidden units, and
that training nets with the 30 features selected with the Koller-Sahami feature
selector yields better performance than using all 180 inputs.

4.2 Experiment 2: Unused Features as Extra Outputs

In the previous experiment, the 150 features not selected for use as inputs were
thrown away. In this section we use some of the features not used as inputs as
extra outputs for multitask learning.

Because the Koller-Sahami feature selector is a greedy algorithm that re-
moves attributes one-at-a-time and is told how many features to remove, it can
be used to order the attributes. We ran Koller-Sahami and had it remove all
180 attributes in the DNA problem. As above, we use the last 30 attributes
removed as inputs. Rather than ignore the remaining 150 attributes, we use
the next 30 attributes as extra outputs for multitask learning. These are the
attributes of the remaining 150 that the feature selector considers most useful.

The multitask net has 30 inputs, 3 outputs for the main task, and an addi-
tional 30 outputs for 30 attributes not selected for use as inputs. The multitask
net has 800 hidden units (instead of 320) because it is learning many more
tasks. We have not attempted to find the optimal number of hidden units for
the multitask net, and suspect it would perform better with more than 800 hid-
den units. This biases our experiments in favor of nets that do not use extra
outputs because we use a near optimal number of hidden units on those nets.

Table 1 shows the cross-entropy and accuracy for four nets. Netl has 320
hidden units and uses all 180 inputs. This is a traditional net trained without
feature selection. Net2 also has 320 hidden units, but uses only the 30 features
selected by feature selection as inputs. Net3 is the MTL net. It has 800 hidden
units and uses the same 30 inputs as Net2. Net3, however, also uses the next
best 30 attributes as extra outputs. These are attributes ignored by Net2. Net4
has 320 hidden units and uses as inputs both the 30 attributes used by Net2
as inputs, and the 30 attributes used by Net3 as extra outputs. Net4 uses all
attributes used by Net3, but Net4 uses them as inputs. It has no extra outputs.

Table 1: Cross-Entropy and Accuracy of Different Combinations of Inputs and
Outputs. Net3 is the MTL Net that Uses Some Features as Extra Outputs.

| Net | Inputs | XtraOutputs || CrossEntropy | StdErr || Accuracy |

Netl 180 0 0.257 0.006 90.98%
Net2 30 0 0.180 0.009 94.16%
Net3 30 30 0.167 0.006 94.32%
Net4 60 0 0.187 0.006 93.66%

Netl is clearly the worst performer. Using all 180 attributes as inputs is not
the best thing to do. Using only the 30 features selected by Koller-Sahami as
inputs (Net2) yields significantly better performance. Net3, however, performs
even better. It is best to use some of the features not used as inputs as extra
outputs instead of ignoring them. Net4, which uses all features used by Net3
as inputs, does not perform as well as Net3 (nor even as well as Net2).! In
DNA splice-junction it is better to use some of the features as extra outputs
than as inputs. Moreover, in this domain the Koller-Sahami feature selector is
an effective way of selecting which features to use as inputs and which features
are candidates for use as extra outputs.

5 DISCUSSION

This paper shows that DNA splice-junction contains features that improve
recognition accuracy if used as extra outputs instead of as inputs. This con-
firms our expectation from previous work that there are real problems where
some features could be better used as extra outputs than as inputs. This shows
that the benefit of using a feature as an extra output is different from the ben-
efit of using that feature as an input. As an input, the net has access to the
feature’s values on the training and test cases. As an output, however, the net
is instead biased to learn a mapping from the other input features in to that
output. What is learned for this mapping is sometimes more useful than the
feature value itself, particularly if the value of the feature as an additional input
is marginal or harmful.

L Although there is overlap between the 95% confidence intervals for Net2 and Net3, paired
t-tests show Net3 performs better than Net2 at p = 0.05. Much of the variance results from
different trials. Net3 consistently outperforms Net2.

The Koller-Sahami feature selector does not automatically determine how
many features to use as inputs. We use cross validation to find the appropriate
number of inputs. We do not know how many of the features not used as inputs
should be used as outputs and are currently examining if this number depends
on the number of unused features used as extra outputs. We are also trying
to develop an output selection algorithm that would do feature selection for
outputs instead of inputs. We suspect that many real-world problems would
benefit from a similar combination of feature selection and multitask learning.

Acknowledgements

R. Caruana was supported by ARPA grant F33615-93-1-1330, NSF grant BES-9315428,
and Agency for Health Care Policy grant HS06468. V. de Sa was supported by post-
doctoral fellowship from the Sloan Foundation. We thank the University of Toronto
for the Xerion Simulator, and D. Koller and M. Sahami for their feature selector.

References

[1] Abu-Mostafa, Y. S., “Learning from Hints in Neural Networks,” Journal of Com-
plezity, 1990, 6(2), pp. 192-198.

[2] Baxter, J., “Learning Internal Representations,” COLT-95, Santa Cruz, CA,
1995.

[3] Caruana, R. and Freitag, D., “Greedy Attribute Selection,” ICML-94, 1994,
Rutgers, NJ, pp. 28-36.

[4] Caruana, R., “Learning Many Related Tasks at the Same Time with Backprop-
agation,” NIPS-94, 1995, pp. 656-664.

[6] Caruana, R., “Applications and Algorithms for Multitask Learning,” ICML-96,
Bari, Italy, 1996, pp. 87-95.

[6] Caruana, R. and de Sa, V. R., “Promoting Poor Features to Supervisors: Some
Inputs Work Better As Outputs,” NIPS-96, 1997.

[7] Caruana, R., “Multitask Learning,” Ph.D. thesis, Carnegie Mellon University,
CMU-CS-97-203, 1997.

[8] Dietterich, T. G., Hild, H., and Bakiri, G., “A Comparison of ID3 and Backpropa-
gation for English Text-to-speech Mapping,” Machine Learning, 18(1), 1995, pp.
51-80.

[9] Ghosn, J. and Bengio, Y., “Multi-Task Learning for Stock Selection,” NIPS-96,
1997.

[10] John, G., Kohavi, R. and Pfleger, K., “Irrelevant Features and the Subset Selec-
tion Problem,” ICML-94, 1994, Rutgers, NJ, pp. 121-129.

[11] Koller, D. and Sahami, M., “Towards Optimal Feature Selection,” ICML-96,
Bari, Italy, 1996, pp. 284-292.

[12] Noordewier, M., Towell, G. and Shavlik, J., “Training Knowledge-Based Neural
Networks to Recognize Genes in DNA Sequences,” NIPS-90, 1990.

[13] Suddarth, S. C. and Holden, A. D. C., “Symbolic-neural Systems and the Use of

Hints for Developing Complex Systems,” International Journal of Man-Machine
Studies, 1991, 35(3), pp. 291-311.

