
Using Feature Selection to Find Inputs

that Work Better as Extra Outputs

Rich Caruana

Just Research and

Carnegie Mellon University

Pittsburgh, PA 15213

caruana@cs.cmu.edu

Virginia R. de Sa

Sloan Center for Theoretical

Neurobiology, Dept. Physiology

UCSF, San Francisco CA 94143-0444

desa@phy.ucsf.edu

Abstract

In supervised learning there is usually a clear distinction between in-

puts and outputs | inputs are what you measure, outputs are what you

predict from those measurements. The distinction between inputs and

outputs is not this simple. Previously, we demonstrated that on synthetic

problems some input features are more useful when used as extra outputs

than when used as inputs[6]. This paper shows the same e�ect on a real

problem, and presents a means of determining what features can be used

as extra outputs. We show that the feature selection method devised

by Koller and Sahami[11] can be used to select features to use as extra

outputs, and that using some features as as extra outputs instead of as

inputs yields better performance on the DNA splice-junction domain.

1 MOTIVATION

The goal in supervised learning is to learn functions that map inputs to outputs

with high predictive accuracy. The common practice in backprop nets is to use

all features that will be available for test cases as inputs, and use as outputs

only features that need to be predicted. On real problems, where there may be

many redundant or irrelevant features, using all the available features as inputs

is often suboptimal. Many algorithms learn better given a carefully selected

subset of the features to use inputs[3, 10, 11].

If feature selection is used to �nd the features to use as inputs, what should

be done with the features not selected? Usually, features not selected for use

as inputs are discarded. But, there are other ways to bene�t from features

without using them as inputs. One way to bene�t from features not used as

inputs is multitask learning. Multitask learning (MTL) is an inductive transfer

method where extra tasks are learned in parallel with the main task while using

a shared representation. Because the extra tasks share a hidden layer with the

main task, internal representations learned for the extra tasks can be used by

the main task outputs, often improving performance on the main task.

MTL in backprop nets is well documented[13, 1, 2, 4, 8, 9, 7]. Most appli-

cations of MTL are to problems where some features available for the training

set will not be available for future test cases[5]. We recently demonstrated that

there are problems where some features that could be used as inputs would be

1



more useful if used as extra outputs instead[6]. This demonstration was made

on problems carefully engineered to demonstrate this e�ect. It was clear in

those problems which features would be more useful as outputs than as inputs.

Do real problems have features that would bene�t learning more if used as ex-

tra outputs than if used as inputs? If they do, how would we determine which

features to use as outputs?

This paper shows that the DNA splice-junction domain contains features

that yield better recognition accuracy when they are used as extra outputs than

when they are used as inputs. We use the feature selection method developed

by Koller and Sahami [11] to select which features to use as inputs. They

showed naive bayes and C4.5 achieve better accuracy using just the selected

features as inputs than using all the features as inputs. We show a similar

result for backprop nets. We then show that it is better to use some of the

features not used as inputs as extra outputs instead of ignoring them. Best

performance is achieved by moving some of the input features to the output

side of the net. We suspect other real-world problems would bene�t from a

similar combination of feature selection and multitask learning.

2 FEATURE SELECTION

In real-world problems often there are many irrelevant and redundant features.

Because many learning algorithms have di�culty coping with large numbers

of redundant and irrelevant features, performance often improves when the

learning method is given only the subset of features most useful for the learning

task. Feature selection selects from the available features which ones to use as

inputs for learning.

Here we use the feature selection method developed by Koller and Sahami.

It uses information theoretic measures of feature importance to select the fea-

tures most likely to be useful as inputs. The theoretical motivation behind the

algorithm is to remove attributes which have Markov blankets in the remaining

attributes with respect to the prediction task. If an attribute has a Markov

blanket in the other attributes, this attribute provides no additional information

and the class decision is independent of the value of this attribute conditioned

on the values of the other attributes in the blanket. Finding Markov blankets is

not practical given a large number of attributes. The Koller-Sahami algorithm

makes several simplifying approximations that allow the degree to which an

attribute is blanketed by other attributes be estimated in reasonable time.

The Koller-Sahami algorithm is a greedy feature selector. The preferred

way of using it is backward-elimination. Start with all features in the set,

and remove attributes one-at-a-time, at each step removing the attribute most

covered by the other attributes remaining in the set (i.e., remove the attribute

that provides the least additional information for the class given the other

remaining attributes).



3 DNA SPLICE-JUNCTION PROBLEM

DNA contains coded information that is used by cells to construct proteins.

In the process of building a message RNA template to use as a sca�old on

which to build a protein, large sections of the original DNA coding are ignored.

The coded sequences that are used are known as \exons", while the ignored

sequences are known as \introns". The nature of the boundaries between exons

and introns, known as \splice junctions", is a subject of active research.

The DNA Splice-Junction Problem we use is from the UCI machine learn-

ing repository[12]. For each case in the database there is a sequence of 60

nucleotides. The goal is to predict if the center of the nucleotide sequence

codes for an exon-to-intron boundary, an intron-to-exon boundary, or neither.

25% of the cases are EI boundaries, 25% are IE boundaries, and 50% are neither

EI or IE boundaries. For compatibility, we use the nucleotide coding scheme

used by Koller and Sahami, which codes each of the 60 nucleotides using 3

bits. This yields 180 boolean attributes that can be used as inputs. Typical

performance on this problem is 92-94% accuracy when trained on training sets

containing 1000-2000 cases.

4 EXPERIMENTS

We've run two experiments with DNA Splice-Junction. In the �rst, we de-

termine what size net performs best. In the second, we determine if using

some features as extra outputs improves performance. All our experiments use

backprop nets composed of sigmoid units. We train the nets using conjugate

gradient and use an independent halt set to determine when to stop training.

The performance of the net is then measured on an independent test set not

used for training or early stopping. The dataset contains 2000 cases. We ran-

domly split this set into train, halt, and test sets containing 667, 666, and

667 cases, respectively. We repeatedly sample the dataset this way to generate

multiple trials.

Our coding for the main splice-junction task uses three outputs, one for IE,

one for EI, and one for neither. We use a normalized cross-entropy loss function

for the outputs for the main task. The classi�cation of the net prediction is

done by �nding which of the three outputs has the highest activation. When

boolean attributes are used as extra outputs, we use a non-normalized cross-

entropy loss function to train them.

4.1 Experiment 1: Performance vs. Net Size

The purpose of this experiment is to determine what net size yields best per-

formance. We tried nets containing 5, 20, 80, 320, and 1280 hidden units. The

nets have 3 outputs that code for the main task.

Figure 1a shows the test set cross-entropy error for nets of di�erent sizes

trained with all 180 input features, and trained with the 30 input features

selected by the Koller-Sahami feature selector. (These are the same 30 features



0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10 100 1000

C
ro

s
s
-E

n
tr

o
p

y
 L

o
s
s
 o

n
 T

e
s
t 

S
e

t

Number of Hidden Units (logscale)

180 INPUTS

30 INPUTS

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

10 100 1000

P
e

rc
e

n
t 

A
c
c
u

ra
c
y
 o

n
 T

e
s
t 

S
e

t

Number of Hidden Units (logscale)

30 INPUTS

180 INPUTS

Figure 1: Cross-Entropy (left) and Accuracy (right) of Di�erent Size Nets With

All 180 Inputs and 30 Selected Inputs.

Koller and Sahami selected for this problem.) Figure 1b shows the prediction

accuracy of the nets. Each point is the average of 12 trials; the vertical bars

are 95% con�dence intervals.

Better performance is achieved with 80, 320, or 1280 hidden units. Also,

performance is signi�cantly better for nets that use only 30 selected features

as inputs as compared to nets that use all 180 features as inputs. We conclude

from this experiment that the optimal net size is about 320 hidden units, and

that training nets with the 30 features selected with the Koller-Sahami feature

selector yields better performance than using all 180 inputs.

4.2 Experiment 2: Unused Features as Extra Outputs

In the previous experiment, the 150 features not selected for use as inputs were

thrown away. In this section we use some of the features not used as inputs as

extra outputs for multitask learning.

Because the Koller-Sahami feature selector is a greedy algorithm that re-

moves attributes one-at-a-time and is told how many features to remove, it can

be used to order the attributes. We ran Koller-Sahami and had it remove all

180 attributes in the DNA problem. As above, we use the last 30 attributes

removed as inputs. Rather than ignore the remaining 150 attributes, we use

the next 30 attributes as extra outputs for multitask learning. These are the

attributes of the remaining 150 that the feature selector considers most useful.

The multitask net has 30 inputs, 3 outputs for the main task, and an addi-

tional 30 outputs for 30 attributes not selected for use as inputs. The multitask

net has 800 hidden units (instead of 320) because it is learning many more

tasks. We have not attempted to �nd the optimal number of hidden units for

the multitask net, and suspect it would perform better with more than 800 hid-

den units. This biases our experiments in favor of nets that do not use extra

outputs because we use a near optimal number of hidden units on those nets.



Table 1 shows the cross-entropy and accuracy for four nets. Net1 has 320

hidden units and uses all 180 inputs. This is a traditional net trained without

feature selection. Net2 also has 320 hidden units, but uses only the 30 features

selected by feature selection as inputs. Net3 is the MTL net. It has 800 hidden

units and uses the same 30 inputs as Net2. Net3, however, also uses the next

best 30 attributes as extra outputs. These are attributes ignored by Net2. Net4

has 320 hidden units and uses as inputs both the 30 attributes used by Net2

as inputs, and the 30 attributes used by Net3 as extra outputs. Net4 uses all

attributes used by Net3, but Net4 uses them as inputs. It has no extra outputs.

Table 1: Cross-Entropy and Accuracy of Di�erent Combinations of Inputs and

Outputs. Net3 is the MTL Net that Uses Some Features as Extra Outputs.

Net Inputs XtraOutputs CrossEntropy StdErr Accuracy

Net1 180 0 0.257 0.006 90.98%

Net2 30 0 0.180 0.009 94.16%

Net3 30 30 0.167 0.006 94.32%

Net4 60 0 0.187 0.006 93.66%

Net1 is clearly the worst performer. Using all 180 attributes as inputs is not

the best thing to do. Using only the 30 features selected by Koller-Sahami as

inputs (Net2) yields signi�cantly better performance. Net3, however, performs

even better. It is best to use some of the features not used as inputs as extra

outputs instead of ignoring them. Net4, which uses all features used by Net3

as inputs, does not perform as well as Net3 (nor even as well as Net2).

1

In

DNA splice-junction it is better to use some of the features as extra outputs

than as inputs. Moreover, in this domain the Koller-Sahami feature selector is

an e�ective way of selecting which features to use as inputs and which features

are candidates for use as extra outputs.

5 DISCUSSION

This paper shows that DNA splice-junction contains features that improve

recognition accuracy if used as extra outputs instead of as inputs. This con-

�rms our expectation from previous work that there are real problems where

some features could be better used as extra outputs than as inputs. This shows

that the bene�t of using a feature as an extra output is di�erent from the ben-

e�t of using that feature as an input. As an input, the net has access to the

feature's values on the training and test cases. As an output, however, the net

is instead biased to learn a mapping from the other input features in to that

output. What is learned for this mapping is sometimes more useful than the

feature value itself, particularly if the value of the feature as an additional input

is marginal or harmful.

1

Although there is overlap between the 95% con�dence intervals for Net2 and Net3, paired

t-tests show Net3 performs better than Net2 at p = 0:05. Much of the variance results from

di�erent trials. Net3 consistently outperforms Net2.



The Koller-Sahami feature selector does not automatically determine how

many features to use as inputs. We use cross validation to �nd the appropriate

number of inputs. We do not know how many of the features not used as inputs

should be used as outputs and are currently examining if this number depends

on the number of unused features used as extra outputs. We are also trying

to develop an output selection algorithm that would do feature selection for

outputs instead of inputs. We suspect that many real-world problems would

bene�t from a similar combination of feature selection and multitask learning.

Acknowledgements

R. Caruana was supported by ARPA grant F33615-93-1-1330, NSF grant BES-9315428,

and Agency for Health Care Policy grant HS06468. V. de Sa was supported by post-

doctoral fellowship from the Sloan Foundation. We thank the University of Toronto

for the Xerion Simulator, and D. Koller and M. Sahami for their feature selector.

References

[1] Abu-Mostafa, Y. S., \Learning from Hints in Neural Networks," Journal of Com-

plexity, 1990, 6(2), pp. 192{198.

[2] Baxter, J., \Learning Internal Representations," COLT-95, Santa Cruz, CA,

1995.

[3] Caruana, R. and Freitag, D., \Greedy Attribute Selection," ICML-94, 1994,

Rutgers, NJ, pp. 28-36.

[4] Caruana, R., \Learning Many Related Tasks at the Same Time with Backprop-

agation," NIPS-94, 1995, pp. 656-664.

[5] Caruana, R., \Applications and Algorithms for Multitask Learning," ICML-96,

Bari, Italy, 1996, pp. 87-95.

[6] Caruana, R. and de Sa, V. R., \Promoting Poor Features to Supervisors: Some

Inputs Work Better As Outputs," NIPS-96, 1997.

[7] Caruana, R., \Multitask Learning," Ph.D. thesis, Carnegie Mellon University,

CMU-CS-97-203, 1997.

[8] Dietterich, T. G., Hild, H., and Bakiri, G., \A Comparison of ID3 and Backpropa-

gation for English Text-to-speech Mapping," Machine Learning, 18(1), 1995, pp.

51-80.

[9] Ghosn, J. and Bengio, Y., \Multi-Task Learning for Stock Selection," NIPS-96,

1997.

[10] John, G., Kohavi, R. and P
eger, K., \Irrelevant Features and the Subset Selec-

tion Problem," ICML-94, 1994, Rutgers, NJ, pp. 121-129.

[11] Koller, D. and Sahami, M., \Towards Optimal Feature Selection," ICML-96,

Bari, Italy, 1996, pp. 284-292.

[12] Noordewier, M., Towell, G. and Shavlik, J., \Training Knowledge-Based Neural

Networks to Recognize Genes in DNA Sequences," NIPS-90, 1990.

[13] Suddarth, S. C. and Holden, A. D. C., \Symbolic-neural Systems and the Use of

Hints for Developing Complex Systems," International Journal of Man-Machine

Studies, 1991, 35(3), pp. 291-311.


