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Abstract

Crowdsourcing services like Amazon’s Mechan-
ical Turk have facilitated and greatly expedited
the manual labeling process from a large number
of human workers. However, spammers are often
unavoidable and the crowdsourced labels can be
very noisy. In this paper, we explicitly account
for four sources for a noisy crowdsourced label:
worker’s dedication to the task, his/her expertise,
his/her default labeling judgement, and sample
difficulty. A novel mixture model is employed
for worker annotations, which learns a prediction
model directly from samples to labels for effi-
cient out-of-sample testing. Experiments on both
simulated and real-world crowdsourced data sets
show that the proposed method achieves signifi-
cant improvements over the state-of-the-art.

1 INTRODUCTION

Supervised learning requires labels. However, the collec-
tion of labeled data from users is often expensive, tedious
and time-consuming. Recently, the use of crowdsourcing
allows this mundane process of obtaining manual labels
from a great number of human workers to be greatly expe-
dited. For example, in Amazon’s Mechanical Turk (AMT),
a “requester” can pose tasks known as HITs (Human In-
telligence Tasks). Workers then choose to complete any of
the existing HITs and get rewarded by a certain amount of
monetary payment set by the requester. Researchers in dif-
ferent areas, such as computer vision (Sorokin and Forsyth,
2008) and natural language processing (Snow et al., 2008),
have benefited from these crowdsourcing services and ac-
quired labels for large data sets.

However, in practice, the crowdsourced labels are often
noisy. On one hand, their quality depends on the labeling
task. For example, if the labeling task is not well designed
or not clearly described by the requester, the worker’s mo-
tivation to participate may decrease, and the noisy level of

the crowdsourced labels will increase (Zheng et al., 2011).
Moreover, different labeling tasks can have different diffi-
culties. If samples in one task are very challenging to anno-
tate, the obtained crowdsourced labels may be less reliable
(Whitehill et al., 2009; Yan et al., 2010; Zhou et al., 2012).
On the other hand, workers’ qualities can vary drastically
and lead to different noise levels in their annotations. For
example, their expertise differs due to their diverse knowl-
edge backgrounds (Whitehill et al., 2009; Welinder et al.,
2010). Moreover, their dedications to performing the task
can also greatly affect their annotation accuracies. In the
worst case, some workers may just randomly guess the
labels without actually looking at the samples (Welinder
et al., 2010). In particular, it is common to have “spam-
mers”, who provide wrong labels most of the time. The ex-
traction of “true” labels from a large pool of crowdsourced
labels is thus very important.

A popular and simple approach is to perform a majority
vote on workers. However, it implicitly assumes that all
workers are equally accurate, which is rarely the case in
practice. It can also be misleading when there is a sig-
nificant portion of spammers. To obtain a more accurate
consensus, a number of algorithms have been proposed
that model different aspects of the labeling noise (such as
worker expertise and sample difficulty) (Whitehill et al.,
2009; Welinder et al., 2010; Raykar and Yu, 2012; Liu
et al., 2012; Zhou et al., 2012). Interested readers are re-
ferred to the recent survey in (Sheshadri and Lease, 2013).
Yet, these models can only make estimations for samples
with crowdsourced labels. For out-of-sample testing (i.e.
prediction on an unseen test sample), the user has to first
crowdsource its labels before these algorithms can be run.

To alleviate this problem, one can build a prediction model
directly from the sample to the label. A popular approach
is the two-coin model (Raykar et al., 2010). It assumes that
each worker generates its label by flipping the ground-truth
label with a certain probability. Depending on whether the
true label being zero or one, the flipping probabilities are
in general different. A prediction model is then built on
the hidden “denoised” labels. This is further extended in



Table 1: Comparison between the existing methods and ours.
prediction model

method from samples to labels worker expertise sample difficulty worker dedication
majority voting × × × ×

Whitehill et al. (2009) × X X ×
Welinder et al. (2010) × X × ×

Liu et al. (2012) × X × ×
Zhou et al. (2012) × X X ×

Raykar and Yu (2012) × X × ×
Raykar et al. (2010) X X × ×

Yan et al. (2010) X X X ×
Kajino et al. (2012) X X × ×
Kajino et al. (2013) X X × ×
proposed method X X X X

(Yan et al., 2010) by allowing the flipping probability to be
different from sample to sample. Another approach is to
formulate the crowdsourcing problem as a multitask learn-
ing problem (Evgeniou and Pontil, 2004). Each worker is
considered a task, and the final prediction model is a lin-
ear combination of the worker models (Kajino et al., 2012,
2013). However, this may not be robust when many work-
ers are spammers or incompetent.

In this paper, we propose a novel model for the generation
of crowdsourced labels. Specifically, we assume that the
label noise can come from four sources: (i) the worker is
not an expert; (ii) the worker is not dedicated to the task;
(iii) the worker’s default label judgement is incorrect; and
(iv) the sample is difficult. Note that some of these have
been considered in the literature (Table 1). Moreover, they
can be highly inter-correlated. For example, if a sample is
easy, even an uncommitted non-expert can output the cor-
rect label. On the other side, if the sample is very difficult,
even a dedicated expert can only rely on his default judge-
ment. If his prior knowledge happens to be incorrect, the
label will be wrong.

With these various factors, we employ a mixture model
for the worker annotation of the crowdsourced data. If the
worker is dedicated to the labeling task or if he considers
the sample as easy, the corresponding label is generated ac-
cording to his underlying decision function. Otherwise, the
label is generated based on his default labeling judgement.
To model sample difficulty, we use the usual intuition that
a sample is difficult if it is close to the worker’s underly-
ing decision boundary, and vice versa. Obviously, we do
not know in which way the worker generates the label of a
sample. For inference, we use the expectation maximiza-
tion (EM) algorithm (Dempster et al., 1977).

The rest of this paper is organized as follows. Sec-
tion 2 presents our worker annotation model, and Section 3
presents the inference procedure. Experiments are pre-
sented in Section 4, and the last section gives some con-
cluding remarks.

2 PROPOSED MODEL

In this paper, we assume that the crowdsourced task is a
binary classification problem, with T workers andN query
samples. The ith sample x(i) ∈ Rd is annotated by the set
of workers Si ⊆ {1, 2, . . . , T}. The annotation provided
by the tth worker (with t ∈ Si) is denoted y(i)t ∈ {0, 1}.

2.1 GENERATION OF GROUND TRUTH

We assume that for each sample x(i), its ground truth la-
bel y∗(i) ∈ {0, 1} is generated by a logistic regression
model with parameter w∗. In other words, y∗(i) follows
the Bernoulli distribution

p(y∗(i) = 1|w∗,x(i)) = σ(w∗Tx(i)), (1)

where σ(z) = 1/(1 + exp(−z)) is the logistic function. To
avoid over-fitting, we assume a normal prior on w∗:

w∗|γ ∼ N
(
0,

1

γ
I

)
,

where γ > 0 is a constant (in the experiments, this is tuned
by the validation set). Other priors can also be readily
added. For example, if w∗ is expected to be sparse, the
Laplace prior can be used instead.

As will be seen later, training the model only requires ac-
cess to the features but not the ground-truth labels. This
is more realistic in many crowdsourced applications, as the
features can often be readily extracted using standard un-
supervised feature extraction.

2.2 WORKER ANNOTATION: EXPERTISE AND
DEDICATION

For worker t, we assume that his failure in correctly anno-
tating x(i) is due to two reasons according to his dedica-
tion to the queried sample x(i). First, he may have tried
to annotate with the best effort, but still fails because his
expertise is not strong enough. We model this by assuming



that worker t’s annotation y(i)t follows a similar Bernoulli
distribution as (1):

p(y
(i)
t = 1|wt,x

(i)) = σ(wT
t x

(i)), (2)

where wt is the worker’s “estimation” of w∗, and is sam-
pled from the following normal distribution

wt|w∗, δt ∼ N (w∗, δ2t I). (3)

A small δt means that wt is likely to be close to w∗, and
thus worker t is an expert, and vice versa. When no ad-
ditional information on the worker’expertise is available, a
uniform hyperprior on {δt}Tt=1 can be used.

The second reason for worker t’s failure in correctly anno-
tating x(i) is simply that he is not dedicated to the task and
has not even looked at x(i). In this case, he randomly an-
notates according to some default judgement. This can be
modeled by another Bernoulli distribution:

p(y
(i)
t = 1|bt) = bt, (4)

where bt ∈ [0, 1]. Again, when no additional information
on the worker’s default labeling judgement are available, a
uniform prior on {bt}Tt=1 will be used.

Combining these two causes, we have

p(y
(i)
t |x(i),wt, bt, z

(i)
t )

= p(y
(i)
t |x(i),wt)

z
(i)
t p(y

(i)
t |bt)(1−z

(i)
t ), (5)

where z(i)t ∈ {0, 1} determines whether (3) or (4) should be
used to generate y(i)t . Intuitively, an expert worker should
have an accurate prediction model (δt is small), and be ded-
icated to the task (z(i)t = 1 on most x(i)’s); whereas a
spammer either has a large δt or z(i)t = 0 most of the time.

2.3 INCORPORATING SAMPLE DIFFICULTY

The difficulty of a sample can greatly affect the annotation
quality (Whitehill et al., 2009; Yan et al., 2010; Zhou et al.,
2012). If a sample is vaguely described or too hard, even
an expert may have to make a random guess and thus acts
as if he has not looked at the sample. On the contrary, if
a sample is very easy, even a spammer (especially the lazy
ones) can quickly make a correct decision.

To model this effect on worker t, we incorporate the diffi-
culty of x(i) into the modeling of z(i)t . Intuitively, if x(i) is
difficult to annotate, z(i)t should be close to 0. From (5), the
annotation made is then independent of the decision model
of worker t. To measure sample difficulty, we use the pop-
ular notion that worker t will perceive x(i) as difficult if it
is close to his decision boundary (Tong and Koller, 2002;
Dong et al., 2013; Welinder et al., 2010). Thus, we arrive
at the following Bernoulli distribution on z(i)t :

p(z
(i)
t = 1|x(i),wt, λt) = 2σ

(
λt
‖wt

Tx(i)‖2

‖wt‖2

)
−1. (6)

Here, ‖wt
Tx(i)‖
‖wt‖ is the distance of x(i) from worker t’s de-

cision boundary wt
Tx = 0, and λt ≥ 0 models the sen-

sitivity of worker t’s annotation to sample difficulty. De-
pending on each worker’s expertise (as reflected by his wt),
one worker may consider sample x(i) difficult while an-
other worker may consider it easy. Moreover, a small λt
makes an easy sample (with a large ‖wt

Tx(i)‖
‖wt‖ ) look diffi-

cult and worker t will rely more on his default judgement,
and vice versa. As we are only interested in the value of
λt
‖wt

Tx(i)‖2
‖wt‖2 in (6), to simplify inference, we reparameter-

ize (6) as

p(z
(i)
t = 1|x(i),wt, λt) = 2σ(λt‖wt

Tx(i)‖2)− 1. (7)

After obtaining wt, the sensitivity of worker t’s annotation
to sample difficulty can be recovered as λt‖wt‖2.

A graphical model representation for the complete model
is shown in Figure 1.
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Figure 1: The proposed model incorporating sample diffi-
culty and two sources for worker annotation.

2.4 EXTENSIONS

When the crowdsourced task is a multiclass classification
problem, one can simply replace the Bernoulli distribution
with a multinomial distribution. Similarly, for regression
problems, the normal distribution can be used instead.

For ease of exposition, we use the linear logistic regres-
sion model in (1) and (2). This has also been used in
most previous works (Raykar et al., 2010; Kajino et al.,
2012). It can be easily replaced by any binary classifier.
For example, to use a nonlinear kernelized version, one
can replace w∗Tx(i) in (1) by

∑N
j=1 α

∗(j)k(x(j),x(i)),
where k(·, ·) is an appropriate kernel function. Similarly,
wT
t x

(i) in (2) is replaced by
∑N
j=1 α

(j)
t k(x(j),x(i)), where

αt = [α
(1)
t , . . . , α

(N)
t ] serves as worker t’s “estimation”



of the ground truth α∗ = [α∗(1), . . . , α∗(N)]T . Analo-
gous to (3), we can assume that each αt is sampled from
N (α∗, δ2t I).

3 INFERENCE

In this section, we use the Expectation Max-
imization (EM) algorithm (Dempster et al.,
1977) to obtain the model parameters 1 Θ =
{w∗, {wt}Tt=1, {δt}Tt=1, {bt}Tt=1, {λt}Tt=1}. Let the
samples X = {x(1), . . . ,x(N)} be independent. By
treating Y = {y(i)t } as the observed data and Z = {z(i)t }
as the missing data, the complete data likelihood can be
written as

L(Y,Z)

= p(Y,Z|X,Θ)

= p(Y|Z,X, {wt, bt}Tt=1)p(Z|X, {wt, λt}Tt=1)

=

N∏
i=1

∏
t∈Si

p(y
(i)
t |z

(i)
t ,wt,x

(i), bt)p(z
(i)
t |wt,x

(i), λt),(8)

by assuming that the workers annotate independently. The
posterior of Θ is then

p(w∗, {wt}Tt=1, {δt}Tt=1, {λt}Tt=1, {bt}Tt=1|X,Y,Z)

∝L(Y,Z)p(w∗)

T∏
t=1

p(wt|w∗, δt)p(δt)p(λt)p(bt).(9)

3.1 E-STEP

Taking the log of (8), we have

logL(Y,Z)

=

N∑
i=1

∑
t∈Si

(
z
(i)
t log p(y

(i)
t |wj ,x

(i))p(z
(i)
t = 1|wt,x

(i), λt)

+(1− z(i)t ) log p(y
(i)
t |bt)p(z

(i)
t = 0|wt,x

(i), λt)
)
.

The expected value of z(i)t , denoted z̄(i)t , is

z̄
(i)
t =

1

Q
(i)
t

p(y
(i)
t |wt,x

(i))p(z
(i)
t = 1|wt,x

(i), λt),

where Q(i)
t = p(z

(i)
t = 1|wt,x

(i), λt)p(y
(i)
t |wt,x

(i)) +

p(z
(i)
t = 0|wt,x

(i), λt)p(y
(i)
t |bt).

As can be seen, whether z̄(i)t is close to 1 is affected by
both the sample difficulty (i.e., p(z(i)t = 1|wt,x

(i), λt))
and the confidence of y(i)t generated from the current esti-
mated function wt (i.e., p(y(i)t |wt,x

(i))).
1In the kernelized version, Θ =

{α∗, {αt}Tt=1, {δt}Tt=1, {bt}Tt=1, {λt}Tt=1} and the EM proce-
dure is similar. In particular, the M-step updates α∗ and {αt}Tt=1

as w∗ and {wt}Tt=1.

3.2 M-STEP

Here, we use alternating minimization. At each step, one
variable is minimized while the other variables are fixed.

• wt’s: From (9), the various wt’s can be learned inde-
pendently. The optimization subproblem for wt is

minwt

1

δ2t
‖wt−w∗‖2−

∑
i:t∈Si

(
z̄
(i)
t y

(i)
t log σ(wT

t x
(i))

+z̄
(i)
t (1− y(i)t ) log(1− σ(wT

t x
(i))

+z̄
(i)
t log(2σ(λt‖wt

Tx(i)‖2)− 1)

+(1− z̄(i)t ) log(2− 2σ(λt‖wt
Tx(i)‖2))

)
.

This can be maximized by gradient descent, and the
gradient w.r.t. wt is

2

δ2t
(wt −w∗)−

∑
i:t∈Si

(
z̄
(i)
t (y

(i)
t − σ(wT

t x
(i)))x(i)

+
(z̄

(i)
t −2σ(v

(i)
t )+1)σ(v

(i)
t )λtwt

Tx(i)x(i)

2σ(v
(i)
t )− 1

)
,

where v(i)t = λt‖wt
Tx(i)‖2.

• w∗: The optimization subproblem for w∗ is

min
w∗

T∑
t=1

1

δ2t
‖wt −w∗‖2 + γ‖w∗‖2,

with the closed-form solution

w∗ =

∑T
t=1

1
δ2t
wt

γ +
∑T
t=1

1
δ2t

. (10)

Note that w∗ is a weighted average of all the wt’s,
with contributions from the experts (those with small
δt’s) weighted heavier.

• δt: The optimization subproblem for δt is

min
δt

1

δ2t
‖wt −w∗‖2 + log det(δ2t I)

= min
δt

1

δ2t
‖wt −w∗‖2 + 2d log δt,

where I is the d× d identity matrix, and d is the num-
ber of input features. By setting its derivative w.r.t. δt
to 0, we obtain

δt =
1√
d
‖wt −w∗‖.

• bt: The optimization subproblem is

max
bt

∑
i:t∈Si

(1− z̄(i)t )(y
(i)
t log bt+(1− y(i)t )log(1− bt)).



By setting its derivative w.r.t. bt to 0, we have

∑
i:t∈Si

(1− z̄(i)t )

(
y
(i)
t

bt
− 1− y(i)t

1− bt

)
= 0.

Rearranging gives the closed-form solution

bt =

∑
i:t∈Si

(1− z̄(i)t )y
(i)
t∑

i:t∈Si
(1− z̄(i)t )

.

Recall that z̄(i)t ∈ [0, 1] is the expectation of y(i)t gen-
erated by worker t’s default judgement. Hence, bt is
simply the average of worker t’s labels that are gener-
ated by his default judgement.

• {λt}Tt=1: The optimization subproblem is

maxλt

∑
i:t∈Si

z̄
(i)
t log(2σ(λt‖wt

Tx(i))‖2)− 1)

+(1−z̄(i)t )log(2−2σ(λt‖wt
Tx(i)‖2)).

Again, this can be solved by projected gradient (as
λt ≥ 0), with the gradient w.r.t. λt given by

∑
i:t∈Si

(z̄
(i)
t −2σ(v

(i)
t )+1)σ(v

(i)
t )‖wt

Tx(i)‖2

2σ(v
(i)
t )− 1

.

4 EXPERIMENTS

In this section, we perform two sets of experiments to
evaluate the performance of the proposed method. Sec-
tion 4.2 simulates a crowdsourced environment with syn-
thetic workers using a standard benchmark data set; while
Section 4.3 uses data sets with real labels crowdsourced
from the AMT.

4.1 SETUP

The proposed model will be compared with the following
groups of algorithms:

1. Algorithms that learn prediction models directly from
samples to labels (Table 1). In particular, we will com-
pare with

• MTL: The multitask formulation in (Kajino et al.,
2012). Each worker is considered as a task, and
the prediction model is a rescaled average of all
the learned worker models.

• RY: The two-coin model in (Raykar et al., 2010).
It considers the annotation generated by flipping
the ground truth label with a certain biased prob-
ability.

• YAN: This model is proposed in (Yan et al.,
2010), and an extension of (Raykar et al., 2010).
Its flipping probability is sample-specific and
varies with sample difficulty. However, unlike
ours, it does not have a clear connection with the
worker’s decision function.

2. Algorithms that do not learn a prediction model from
samples to labels (Table 1). In particular, we will com-
pare with

• GLAD (Whitehill et al., 2009) 2: It models each
sample’s difficulty level and each worker’s exper-
tise.

• CUBAM (Welinder et al., 2010) 3:: It considers
sample competence, worker expertise and bias.

• MV : Majority voting, a popular baseline which
essentially treats all the workers as equally accu-
rate.

For prediction on an unseen test sample, these algo-
rithms have to first crowdsource its labels. To avoid
this problem, we will proceed as follows: (i) Estimate
the “true” labels of the training samples using each
of these algorithms; (ii) Use the estimated labels to
train a logistic regression model; (iii) Use the trained
regression model to make predictions on the test sam-
ples.

3. We also include an ideal baseline (Ideal), which is
a logistic regression model trained using the training
samples with ground truth labels.

For performance evaluation, we follow (Raykar et al.,
2010) and report the area under ROC curve (AUC). The
ROC curve is obtained by varying the prediction thresh-
old. Parameters in all the models are tuned by a valida-
tion set (which is constructed by using 20% of the training
data). With the chosen parameters, a prediction model is
then learned using all the training data.

4.2 UCI DATA SET

Following (Kajino et al., 2012), we use the red wine data in
the UCI Wine-Quality data set4. There are a total of 1,599
samples, each with 11 features. The original multiclass la-
bels are binarized such that samples with quality levels be-
low 7 are labeled as 0, and 1 otherwise. 70% of the samples
are randomly chosen for training, and the remaining 30%
for testing. To reduce statistical variability, results are av-
eraged over 5 repetitions.

2Code is from http://mplab.ucsd.edu/˜jake/
3Code is from http://www.vision.caltech.edu/

welinder/cubam.html
4http://archive.ics.uci.edu/ml/datasets/

Wine+Quality



Table 2: Testing AUCs on the wine data set. The best results and those that are not statistically worse (according to the
paired t-test with p-value less than 0.05) are in bold.

#workers proposed MTL RY YAN GLAD CUBAM MV Ideal

set 1 20 0.81 ± 0.01 0.79 ± 0.04 0.38 ± 0.04 0.49 ± 0.03 0.52 ± 0.02 0.66 ± 0.05 0.48 ± 0.06 0.87 ± 0.02
40 0.79 ± 0.01 0.75 ± 0.07 0.51 ± 0.01 0.53 ± 0.03 0.51 ± 0.03 0.58 ± 0.04 0.34 ± 0.02 0.87 ± 0.03

set 2 20 0.81 ± 0.01 0.80 ± 0.01 0.50 ± 0.03 0.49 ± 0.03 0.49 ± 0.05 0.52 ± 0.04 0.49 ± 0.01 0.87 ± 0.01
40 0.73 ± 0.04 0.76 ± 0.02 0.49 ± 0.01 0.50 ± 0.03 0.50 ± 0.03 0.54 ± 0.03 0.50 ± 0.03 0.79 ± 0.02

set 3 20 0.80 ± 0.01 0.82 ± 0.01 0.80 ± 0.03 0.78 ± 0.03 0.84 ± 0.05 0.84 ± 0.04 0.48 ± 0.03 0.84 ± 0.01
40 0.80 ± 0.04 0.82 ± 0.02 0.80 ± 0.01 0.76 ± 0.04 0.84 ± 0.05 0.84 ± 0.03 0.59 ± 0.03 0.85 ± 0.02

4.2.1 Generation of Labels

We generate three sets of simulated crowdsourced labels
based on different model assumptions:

• Set 1: The crowdsourced labels are generated using
the proposed annotation process. The “optimal” w∗

is obtained by training a logistic regression model on
all the training and test samples. We generate differ-
ent numbers (20 and 40) of noisy workers. For each
worker, we generate wt as in (3) with different set-
tings of δt’s:

1. 1
4 of the workers have δt = 10 (high expertise);

2. 1
2 of the workers have δt = 100 (moderate exper-
tise); and

3. 1
4 of the workers have δt = 1000 (low expertise).

Sample difficulty is generated as in Section 2.3:

1. For the expert workers, we set λt = 10, 000, and
so most of the samples appear easy;

2. For workers with moderate expertise, set λt =
100; and

3. For workers with low expertise, set λt = 1 (and
so most of the samples appear difficult).

For each sample i, we set z(i)t = 1 with probability
given in (7). If z(i)t = 1, y(i)t is labeled 1 with proba-
bility defined in (2); otherwise, y(i)t is always labeled
1 (i.e., bt in (4) is set to 1).

In summary, 1
4 of the workers are experts, 1

2 of them
are non-experts but not very noisy; while the remain-
ing 1

4 are very noisy workers.

• Set 2: The crowdsourced labels are generated using
the MTL assumption in (Kajino et al., 2012). Specif-
ically, from the wt generated in Set 1, we generate
y
(i)
t = 1 with probability σ(wT

t x
(i)).

• Set 3: The crowdsourced labels are generated using
the two-coin assumption in (Raykar et al., 2010). For
worker t, let αt (resp. βt) be the probability that a
ground truth label with value 1 (resp. 0) is flipped.

1. For 1
4 of the workers, we set αt = βt = 0.05

(experts);
2. For 1

2 of the workers, set αt = βt = 0.25 (non-
experts but not very noisy); and

3. For 1
4 of the workers, set αt = βt = 0.55 (very

noisy workers).

4.2.2 Results on ROC Curves

Figure 2 shows the obtained testing ROC curves (with each
point averaged over the five repetitions). The correspond-
ing averaged AUC values are shown in Table 2. As can
be seen, the proposed model performs well under various
noise generation scenarios.

On Set 1, since the labels are generated using the proposed
annotation process, the proposed method performs signifi-
cantly better than the others as expected. MTL is the second
best, as it also builds a prediction model for each worker.
RY, YAN, GLAD, CUBAM and MV perform poorly, as
their model assumptions are very different from the under-
lying data generation process.

On Set 2, MTL is the best. The proposed model also yields
comparable performance; while the others do not perform
well.

On Set 3, MTL, RY, GLAD, CUBAM and the proposed
method have comparable performance. Their performance
gaps with Ideal are also quite small, which is consistent
with the results in (Kajino et al., 2012). As various methods
can perform well here, it suggests that the noise generated
by the two-coin model is easier to remove than those in the
previous two settings.

4.2.3 Separating Experts from Noisy Workers

In this section, we examine the proposed model’s ability to
separate experts from noisy workers using the two criteria:
worker expertise and worker dedication. Because of the
lack of space, we will only show results (averaged over the
5 repetitions) on Set 1.

First, we check if the proposed model can detect workers
with high expertise. Figures 3(a) and 3(b) show the contri-



bution of wt in w∗ in (10) (i.e., 1
δ2t
/(γ +

∑
j

1
δ2j

)). As can
be seen, all the nonzero contributions are from the experts,
while the other workers are barely used.

Next, we check if the proposed model can find the dedi-
cated workers. Recall that for experts, most of his z(i)t ’s
should be close to 1; while most of the z

(i)
t ’s for non-

dedicated workers are close to 0. Figures 3(c) and 3(d)
show the value of ẑt =

∑
i:t∈Si

z̄
(i)
t for each worker. As

expected, the ẑ’s of experts are large; while those of the
others are usually much smaller (especially for the noisy
workers).
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(a) Set 1 (20 workers).
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(b) Set 1 (40 workers).
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(c) Set 2 (20 workers).
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(d) Set 2 (40 workers).
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(e) Set 3 (20 workers).
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(f) Set 3 (40 workers).

Figure 2: Testing ROC curves on the wine data set.

4.3 DATA SETS CROWDSOURCED FROM AMT

4.3.1 Data Collection and Feature Extraction

For better performance evaluation, it is desirable for the
data set to satisfy the following three conditions: (i) It is
labeled by a sufficient number of workers so that workers
with different expertise and dedications are all involved;
(ii) Each worker labels a sufficient amount of data so that
one can reliably model the annotating behavior of each
worker ; (iii) The ground truth labels are provided. To
our best knowledge, very few crowdsourced data sets meet
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Figure 3: Worker expertise and worker dedication on the
Set 1 data. 3(a) and 3(b): Contribution of each worker t
towards w∗ ( 1

δ2t
/(γ +

∑
j

1
δ2j

)). 3(c) and 3(d): Average ẑ’s
of the workers. Columns in red/blue/green correspond to
experts/non-experts/noisy workers. In 3(a) and 3(c): work-
ers 1-5 are experts; 6-15 are non-experts; and 16-20 are
noisy workers. In 3(b) and 3(d): workers 1-10 are experts;
11-30 are non-experts ; and 31-40 are noisy workers.

all these requirements. Thus, in the following, we build a
crowdsourced data set based on the Stanford Dog data set5

(Khosla et al., 2011). It contains images of 120 breeds (cat-
egories) of dogs collected from the ImageNet6 (Deng et al.,
2009).

For an image, its raw pixel representation is very high-
dimensional and also sensitive to image changes such as
scales, object locations, illuminations. Consequently, vari-
ous image features have been studied by the computer vi-
sion community to better represent the image from low
level (e.g. SIFT (Lowe, 1999)) to mid-level descriptors
(Wang et al., 2012). In this experiment, we extract 4,096-
dimensional features from images using the DeCAF (deep
convolutional activation feature) algorithm (Donahue et al.,
2014). These features are outputs from the intermediate
layers of a pre-trained deep convolutional neural network
(Krizhevsky et al., 2012). It has been shown that they can
be used as generic representations for various vision tasks,
and have achieved good performance even when combined
with simple linear classifiers (Donahue et al., 2014).

5http://vision.stanford.edu/aditya86/
ImageNetDogs/

6http://www.image-net.org/



Chihuahua Japanese spaniel Maltese dog Pekinese Shih-Tzu Blenheim spaniel Papillon Toy terrier Rhodesian ridgeback Afghan hound 

Figure 4: Sample images of the 10 dog categories.

4.3.2 Setup

We select the 10 categories that are most difficult to classify
(Khosla et al., 2011) (Figure 4). For each category, images
belonging to this category are taken as positive samples;
while images from the other categories are treated as nega-
tive samples. Some statistics of the data sets are shown in
Table 3. The constructed data sets are then randomly split
into HITs on the AMT. Each HIT contains 50 images and
is labeled by 6 workers. There are a total of 65 HITS and
21 workers over the 10 categories.

Table 3: Statistics on the dog data sets.

data set #positive #negative avg #samples
sample sample per worker

Chihuahua 142 157 85
Japanese spaniel 142 157 85

Maltese dog 142 163 85
Pekinese 142 163 85
Shih-Tzu 142 157 83

Blenheim spaniel 142 207 89
Papillon 142 175 92

Toy terrier 142 175 86
Rhodesian ridgeback 142 207 88

Afghan hound 142 207 89

For each category, we randomly use 50% of the samples
for training, and the rest for testing. To reduce statistical
variability, results are averaged over 5 repetitions.

4.3.3 Results on ROC Curves

The ROC curves are shown in Figure 5, and the correspond-
ing AUC values in Table 4. As can be seen, the proposed
method yields the highest AUC on all 10 categories. It is
then followed by CUBAM, GLAD, RY and YAN, which are
very competitive on some categories. MTL can sometimes
achieve good performance (e.g., Blenheim spaniel), but are
often much inferior. Overall, the simple MV is the worst.

4.3.4 Experts vs Noisy Workers

As in Section 4.2.3, we examine the obtained δt’s and z̄t’s
on the Chihuahua, Japanese spaniel and Maltese dog cat-
egories. As the real experts and noisy workers are not
known, we assume that workers with high overall accura-
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(a) Chihuahua.
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(b) Japanese spaniel.
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(c) Maltese dog.
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(d) Pekinese.

0 0.5 10

0.2

0.4

0.6

0.8

1

False postive rate

Tr
ue

 p
os

iti
ve

 ra
te

 

 

proposed
MTL
RY
YAN
GLAD
CUBAM
MV
Ideal

(e) Shih-Tzu.
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(f) Blenheim spaniel.
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(g) Papillon.
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(h) Toy terrier.
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(i) Rhodesian ridgeback.
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(j) Afghan hound.

Figure 5: Testing ROC curves of the dog data sets.



Table 4: Testing AUCs on the dog data sets. The best results and those that are not statistically worse (according to the
paired t-test with p-value less than 0.05) are in bold.

data set proposed MTL RY YAN GLAD CUBAM MV Ideal
Chihuahua 0.92 ± 0.02 0.67 ± 0.01 0.88 ± 0.04 0.74 ± 0.08 0.76 ± 0.06 0.90 ± 0.02 0.58 ± 0.11 0.94 ± 0.02

Japanese spaniel 0.83 ± 0.01 0.57 ± 0.01 0.80 ± 0.03 0.84 ± 0.04 0.75 ± 0.04 0.85 ± 0.03 0.60 ± 0.05 0.92 ± 0.01
Maltese dog 0.90 ± 0.01 0.62 ± 0.05 0.85 ± 0.02 0.82 ± 0.03 0.76 ± 0.05 0.87 ± 0.03 0.43 ± 0.02 0.93 ± 0.02

Pekinese 0.73 ± 0.05 0.53 ± 0.02 0.60 ± 0.03 0.58 ± 0.04 0.72 ± 0.05 0.72 ± 0.03 0.56 ± 0.09 0.92 ± 0.01
Shih-Tzu 0.90 ± 0.02 0.85 ± 0.03 0.87 ± 0.04 0.93 ± 0.03 0.77 ± 0.03 0.88 ± 0.03 0.35 ± 0.08 0.94 ± 0.03

Blenheim spaniel 0.78 ± 0.03 0.78 ± 0.03 0.74 ± 0.02 0.69 ± 0.05 0.69 ± 0.07 0.77 ± 0.03 0.45 ± 0.03 0.93 ± 0.03
Papillon 0.83 ± 0.03 0.74 ± 0.07 0.70 ± 0.05 0.74 ± 0.04 0.66 ± 0.04 0.72 ± 0.04 0.53 ± 0.06 0.90 ± 0.03

Toy terrier 0.79 ± 0.02 0.75 ± 0.01 0.76 ± 0.03 0.76 ± 0.03 0.73 ± 0.02 0.79 ± 0.04 0.51 ± 0.05 0.89 ± 0.03
Rhodesian ridgeback 0.86 ± 0.04 0.85 ± 0.03 0.79 ± 0.02 0.78 ± 0.02 0.73 ± 0.05 0.79 ± 0.04 0.50 ± 0.05 0.92 ± 0.01

Afghan hound 0.85 ± 0.02 0.83 ± 0.02 0.76 ± 0.01 0.77 ± 0.01 0.73 ± 0.04 0.81 ± 0.04 0.47 ± 0.05 0.93 ± 0.01

cies (that are computed based on both the training and test
samples) are experts. In Figures 6(a),(c) and (e), we first
plot the overall accuracies versus average weighting of the
workers ( 1

δ2t
/(γ +

∑
j

1
δ2j

)) over five repetitions. As can be
seen, workers with high weights, which are detected as ex-
perts in our model, generally have high overall accuracies.
Next, we plot the overall accuracies versus average ẑt’s of
the workers over five repetitions (Figures 6(b),(d) and (e)).
Workers with high average ẑt’s are detected as dedicated
workers and those with low average ẑt’s as lazy workers.
As shown, the detected dedicated workers generally have
high overall accuracies.

5 CONCLUSION

In this paper, we proposed a new model for crowdsourced
labels that can perform out-of-sample prediction effec-
tively. We observe that the worker’s expertise and dedica-
tion to the task greatly affect the labeling process. We em-
ployed a mixture of distributions to model the annotation
process: one models the worker’s expertise and the other
one depicts worker’s labeling judgement with his random
guess. We showed that this model can be easily extended
to account for sample difficulty. The proposed model can
be solved by the simple EM algorithm. Experiments on
both UCI and real-world crowdsourced data sets demon-
strate that the proposed method has significant improve-
ments over other state-of-the-art approaches.
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Figure 6: Results on the Chihuahua, Japanese spaniel and
Maltese dog data sets. Figures 6(a), 6(c) and 6(e): Overall
accuracies vs average weighting of the workers ( 1

δ2t
/(γ +∑

j
1
δ2j

)); Figures 6(b),6(d) and 6(f): Overall accuracies vs

average ẑ(i)t ’s of all workers.
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