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Joint Sulcal Detection on Cortical Surfaces
With Graphical Models and Boosted Priors
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Ivo Dinov, Paul M. Thompson, and Arthur W. Toga*

Abstract—1In this paper, we propose an automated approach for
the joint detection of major sulci on cortical surfaces. By repre-
senting sulci as nodes in a graphical model, we incorporate Mar-
kovian relations between sulci and formulate their detection as a
maximum a posteriori (MAP) estimation problem over the joint
space of major sulci. To make the inference tractable, a sample
space with a finite number of candidate curves is automatically
generated at each node based on the Hamilton—Jacobi skeleton of
sulcal regions. Using the AdaBoost algorithm, we learn both in-
dividual and pairwise shape priors of sulcal curves from training
data, which are then used to define potential functions in the graph-
ical model based on the connection between AdaBoost and logistic
regression. Finally belief propagation is used to perform the MAP
inference and select the joint detection results from the sample
spaces of candidate curves. In our experiments, we quantitatively
validate our algorithm with manually traced curves and demon-
strate the automatically detected curves can capture the main body
of sulci very accurately. A comparison with independently detected
results is also conducted to illustrate the advantage of the joint de-
tection approach.

Index Terms—AdaBoost, boosted prior, cortex, graphical model,
major sulci, shape prior.

I. INTRODUCTION

NE of the most intriguing and difficult problems in brain
O imaging is identifying and registering the convolution
patterns of the cortex. It is generally agreed that a set of major
sulci are relatively stable [1] and they have been used as land-
mark curves for registration and locating structural and func-
tional areas on cortices [2], [3]. On the other hand, the auto-
mated detection of these sulci is still a challenging problem
due to the complexity and variability of the convolution pat-
terns and the different forms these sulci may have in the folding
patterns. Thus, manual annotation remains the gold standard in

Manuscript received April 18, 2008; revised July 18, 2008. First published
August 15, 2008; current version published February 25, 2009. This work was
supported by the National Institutes of Health through the NIH Roadmap for
Medical Research, Grant U54 RR021813 entitled Center for Computational Bi-
ology (CCB). Information on the National Centers for Biomedical Computing
can be obtained from http://nihroadmap.nih.gov/bioinformatics. Asterisk indi-
cates corresponding author.

Y. Shi, Z. Tu,R. A. Dutton, A. D. Lee, I. Dinov, and P. M. Thompson are with
the Laboratory of Neuro Imaging, Department of Neurology, UCLA School of
Medicine, Los Angeles, CA 90095 USA.

A. L. Reiss is with the School of Medicine, Stanford University, Stanford,
CA 94305 USA.

A. M. Galaburda is with Harvard Medical School, Boston, MA 02215 USA.

*A. W. Toga is with the Laboratory of Neuro Imaging, Department of
Neurology, UCLA School of Medicine, Los Angeles, CA 90095 USA (e-mail:
toga@loni.ucla.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2008.2004402

brain mapping practice. In this paper, we propose a novel ap-
proach for the joint detection of major sulci via the solution of
an inference problem on graphical models [4], which we con-
struct with boosting techniques [5] to incorporate prior knowl-
edge from manual tracing.

Previous work on sulcal detection mostly focused on de-
tecting each sulcus separately. Curvature features were first
used to develop semi-automated algorithms [6]—[8] with user
specification of start/end points. Depth features with respect to
a shrink wrap surface were also used to study sulcal regions
on cortical surfaces [9] or find their line representations [10].
Based on the idea of skeletons [11], [12] and digital topology
[13]-[15], medial models, or sulcal ribbons, of sulcal regions
were constructed from volume images [16]-[21], but user in-
puts are still required to label specific sulcus from these results.

To automate the sulcal detection process, prior models were
introduced to alleviate the difficulty of the problem. The prin-
cipal component analysis (PCA) of point sets [22] was used to
model the centroids of sulcal basins and help with the labeling
[23]. Based on spherical maps of cortical surfaces, a hierarchical
contour evolution scheme was developed using a PCA model of
major sulci [24]. Graphical models were constructed with neural
networks in [25] for simple surfaces, which are subsets of major
sulci, computed with the skeletonization algorithm in [16], and
then annealing techniques were used to label them. Based on a
learning technique called probabilistic boosting trees [26], an
automated approach was proposed in [27] to detect sulci from
volume images, but each curve was treated separately.

In this work, we propose a joint detection approach that re-
alizes sulcal detection via inference over graphical models of
major sulci. We assume that each major sulcus is represented as
a continuous curve on the cortical surface following a manual
tracing protocol [28]. While this assumption may omit some
interruptions over gyral regions, it is useful in improving the
regularity when these curves are used to guide the mapping of
cortical surfaces across population [3]. Based on boosting tech-
niques, we not only incorporate the individual shape prior of
each sulcal curve, but also model joint shape priors between
neighboring sulci and integrate this information through belief
propagation. From the practice of manual annotation, the use
of pairwise shape priors seems a natural idea. For example, the
precentral sulcus usually needs to cross a gyrus to ensure it fol-
lows a route as parallel as possible to the central sulcus. In fact,
such local dependencies are utilized fairly commonly to handle
complicated situations in protocols for manual tracing [28].

As an illustration, we provide an overview of our method
in Fig. 1. In this example, the goal is to detect a set of
eight major sulci on a cortical surface: the central sulcus
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Fig. 1. An overview of our joint sulcal detection approach. The automatically detected sulci are plotted over the cortical surface with the color map on the right.

(CS), precentral sulcus (PreCS), postcentral sulcus (PostCS),
superior—frontal sulcus (SF), inferior—frontal sulcus (IF),
intraparietal sulcus (IP), sylvian fissure (Sylvian), and the su-
perior—temporal sulcus (ST). An undirected graphical model
of eight nodes is used to represent the Markovian relations of
these sulci. Since the random variable at each node is a sulcal
curve that lives in an infinitely dimensional shape space,
it is generally difficult to perform inference directly over
such spaces. We overcome this challenge by constructing a
sample space containing a finite number of candidate curves,
as plotted over each node in the graph in Fig. 1, greatly
reducing the search range for each variable. To incorporate
both individual and pairwise shape priors, we use boosting
techniques to learn discriminative shape models and use them
to define potential functions on the graphical model. Finally
the max-product algorithm of belief propagation is used to
find the MAP estimation from the joint sample spaces of the
eight sulci as the sulcal detection results.

Compared with PCA models adopted in previous work [23],
[24], the boosting approach we use does not need to impose
the Gaussian assumption on shape models and can automati-
cally select and fuse a large set of informative features to model
both individual and pairwise shape priors. Our prior models are
learned automatically from training data and there is no param-
eter to tune for different sulcal curves. Our method also works
directly on cortical surfaces and does not need spherical maps
of cortical surfaces [24].

Our work is most related to the sulci labeling algorithm pro-
posed in [25], where the nodes of the graph are simple surfaces
that oversample the major sulci and their labeling is realized by
matching with a template graph learned from training data. In
our work, we model each major sulcus as a continuous curve. In
addition, the learning techniques and inference algorithms used
in our work are different.

The rest of the paper is organized as follows. In Section II,
we first present the general framework for joint sulcal detec-
tion. After that, we develop the algorithm for generating sample
spaces of candidate sulcal curves in Section III. A learning-
based approach for constructing potential functions of graph-
ical models is proposed in Section IV to model priors of sulcal
curves. Experimental results are presented in Section V on a data
set of 40 surfaces. Finally, we discuss possible future extensions
in Section VL

II. JOINT DETECTION FRAMEWORK

In this section, we present our general framework for the joint
detection of major sulci on cortical surfaces. By using a graph-
ical model to represent Markovian relations of neighboring
sulci, we realize automated sulcal detection by performing a
MAP estimation over the sample spaces of sulcal lines.

Let M denote the cortical surface and Cy, Co, . .., Cy be the
set of major sulci to be detected on M. To represent the Mar-
kovian relation among these sulci, we use an undirected graph-
ical model G = (V, E), where V = {C1,C,,...,Cn} are the
set of nodes, and F is the set of edges in the graph. As an ex-
ample, a graphical model is shown in Fig. 1 for the eight major
sulci: CS (C4), PreCS (Cs), PostCS (C3), SF (Cy), IF (C5),
IP (Cs), Sylvian (C7), and ST (Cs). As the number of major
sulci is typically small, we can construct such graph structures
easily to encode desirable Markovian priors and it only needs to
be done once for the same detection task.

Besides the graph structure, we need to specify the sample
space for the random variable defined at each node and the
potential functions to completely characterize the probabilistic
graphical model. At each node in V, the random variable is a
sulcal line and it can take values in a shape space of curves that
is generally infinitely dimensional and difficult to analyze. One
possible solution is to use dimension reduction techniques such
as PCA models of curves [22] to generate each sulcal line as
a linear combination of several basis functions. But the PCA
models make the restrictive assumption of Gaussian distribu-
tions and there is no guarantee that the generated parametric
curves will follow the sulcal regions. To overcome this problem,
we develop a novel algorithm, which will be described in detail
in Section III, to automatically generate a set of candidate curves
for each node by combining geometric features of sulcal regions
and machine learning techniques. These curves are guaranteed
to be on the cortical surface and they span a wide variety of
possible routes for each sulcus of interest. With these candidate
curves as the sample space S; of each node C;, we convert the
sulcal detection problem to a tractable inference problem over
a set of discrete random variables with the goal of selecting the
best from the candidate curves.

Based on the sample spaces of candidate sulcal curves, we
define two types of potential functions to complete the con-
struction of the graphical model: the local evidence function
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¢; : S; — R at each node C; and the compatibility function
i Si x S; — R for each edge (C;,C;) € E. Given a can-
didate curve from S;, the local evidence function ¢; gives the
likelihood of this curve being the desirable sulcus to be detected.
The compatibility function v; ; represents joint shape priors for
two neighboring sulci (C;, C;) and measures how likely any
two curves from S; X S; can co-exist as neighbors. To incor-
porate such individual and joint shape priors, we propose a dis-
criminative approach based on AdaBoost [5] in Section IV to
learn both types of potential functions from manually annotated
training data. With the discriminative approach, we can use a
flexible and large set of features derived from training data and
selectively combine them with boosting techniques to form the
potential functions, so there is no need of specifying parametric
forms for either the individual or joint shape prior models of
sulcal lines.

The undirected graphical model defined above is a Markov
random field, so the joint distribution of all the sulci can be
factorized as a product of potential functions

I

(Ci.Cj)EE

i ;(Ci, Cj) H $:(Ci)

C; eV

N| =

p(Cl7CN):

ey

where Z is the partition function for normalization. The task of
finding the optimal set of curves (C, C3, ..., C%) in the space
S1 X Sg X -+ x Sy is then a MAP estimation problem defined
as follows:

(CT,C5,...,Cx) = argmax p(Cq,...,Cn).
C,Ca,..., Cn

©))

To solve this inference problem over graphical models, we use
the max-product algorithm of belief propagation [4], [29] be-
cause it can efficiently compute the optimal solution for tree-
structured graphs and also demonstrated very good performance
on graphs with cycles in various applications [30], [31]. With
belief propagation, each node in the graph receives and sends
out messages at every iteration of the algorithm. For a node C;,
the message it sends to its neighbor C; is defined as

m; ;(C;) = [Jnax $i.;(Ci, C)i(Ci)

< 11

CLEN (Ci)\C;

mi,i(Ci) (3)

where NV (C;) are neighbors of C; in the graph. This message
takes into account not only the local evidence ¢; and the com-
patibility function 4); ;, but also the messages the node C; re-
ceived from its neighbors except C;. As an illustration, we show
in Fig. 2 the flow of messages from the node Cg and C7 to Cs,
and then to C1 in the graphical model shown in Fig. 1. After the
message passing procedure converges, we obtain the final belief
at each node of the graph as

LN @)

—
3
Q
I
ul\')

Fig. 2. An example of message passing in the graphical model of Fig. 1.

and also the pairwise belief of each edge as
bi,j(Ci, Cj) = ¢i(Ci)$;(Cj)hi i (Ci, C5)

X H mkﬂ(Cl) H

CLEN (C)H\C; CreN(CH)\Ci

ka(CJ) (5)

Based on the final beliefs, we find an optimal configuration of
major sulci with the following procedure [32], [33].

1) Start from a node C; and pick the optimal sulcus C}* at this
node as the one that maximizes b;( - ).

2) For each node C; visited, if it has a neighbor C; unvisited,
find the optimal solution for C'; by maximizing the pair-
wise belief function €7 = argmaxc b; ;(C], C;). Repeat
step 2 until all nodes are visited.

For tree-structured graphs, the above algorithm guarantees
to find the globally optimal solution for the MAP estimation
problem in (2). It is possible that more than one solution
achieves global optimality for MAP estimation over graphs,
but in our experience this does not happen in any of our sulci
detection experiments. Nevertheless, we choose to fix the
starting node as the one corresponding to the central sulcus in
step 1 of the above procedure to remove the potential ambiguity
that exists theoretically.

III. SAMPLE SPACE GENERATION

Given a cortical surface M represented as a genus zero tri-
angular mesh, which we assume is a left hemispheric surface
aligned in a standard ICBM space [34] with a nine-parameter
affine registration including independent scaling in z-, y-, and
z- directions to account for brain size differences, there are four
main steps in our algorithm to generate a sample space for each
node in the graphical model: 1) extract the skeleton of the sulcal
regions; 2) partition the surface into the lateral and medial part;
3) compute a set of possible start/end points and route-control
segments of candidate curves with a learning-based approach;
4) generate candidate curves via random walks on a graph built
from the start/end points and route-control segments.

A. Sulcal Skeleton Extraction

As a first stage toward sample space generation, we use the
algorithm of computing Hamilton—Jacobi skeletons on cortical
surfaces [35] to extract the skeleton of sulcal regions on M. For
completeness, we briefly describe the main steps of computing
the sulcal skeletons as illustrated in Fig. 3. Using the mean cur-
vature of the cortical surface M, it is first partitioned into sulcal
and gyral regions using graph cuts [36], [37] and the result is
shown in Fig. 3(b). After that, the Hamilton—Jacobi skeleton
method [38] is extended to triangular meshes to compute the
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Fig. 3. Main steps in computing the sulcal skeletons of a cortical surface. (a) The cortical surface. (b) The partition of the surface into sulcal and gyral regions.
(c) The Hamilton-Jacobi skeleton of the sulcal regions. End points of each branch are marked as green dots.

skeleton of sulcal regions. A pruning process is finally applied to
eliminate small branches with length below a specific threshold,
which is 10 mm in all our experiments. The sulcal skeletons are
decomposed into a set of branches as shown in Fig. 3(c), where
we have plotted the main body of the branches in blue and the
end points in green. From the results we can see these sulcal
skeletons capture the major folding patterns fairly well and pro-
vide a compact summary of cortex geometry.

B. Lateral/Medial Side Partition

In the second stage we partition the hemispheric cortical sur-
face M into lateral and medial parts with a graph-cut algo-
rithm. The resulting boundary between the lateral and medial
side is then used to compute a set of features with the aim of
providing intrinsic information about sulcal features in addition
to absolute coordinates (in millimeter) in the ICBM space and
improving the robustness to pose variations.

Before we apply the graph-cut algorithm, we first find a set of
seed points for both the lateral and medial side. Since M is a left
hemispheric surface in the ICBM space, where the z-coordinate
increases from left to right, we find a set of seed points X; for
the lateral side as vertices visible from the left side, i.e., the
“z” direction, using the Z-buffer algorithm for visible surface
determination in computer graphics. Similarly, the set of seed
points X, for the medial side are determined as vertices visible
from the right side, i.e., the “-z” direction.

Because there are hidden regions invisible from either the left
or right side, the two sets X; and X,,, do not form a complete
partition of the surface. To achieve this goal, we minimize the
following energy function to separate M into the lateral side R,
and the medial side R,,,:

E(R,Rp) = > dm(X,Vi)+ > du(Xm, Vi)
ViER; Vi€Rm

K
+AY° Y sy (©

=1 V; EN(Vi)

where V; and V; are vertices on M, K is the total number
of vertices, daq(+, -) denote the geodesic distance between two
point sets on M that can be computed numerically with the fast
marching algorithm on triangular meshes [39], and the delta
function 0 is defined as one when V; and V;, a vertex in its
one-ring neighborhood NV (V;), belong to different regions and
zero otherwise. The first two energy terms require R; and R,,

to be close to their seed points, the third energy term provides
regularization for boundary smoothness and the nonnegative pa-
rameter A controls the weight of regularization. To minimize the
energy, the same graph-cut algorithm used in stage one for parti-
tioning M into sulcal and gyral regions is applied to find the so-
lution. Since this is a binary optimization problem, the graph-cut
technique ensures the global optimality of the separation result
[36], [37].

As an example, we show in Fig. 4 the partition results for
the surface in Fig. 3(a). Choosing a proper regularization pa-
rameter ensures there will be no holes in R; and R,,, and their
boundary is a simple curve. In our experience, the parameter
A = 10 gives very robust performance. With this parameter, our
algorithm is able to successfully partition all of the 40 cortical
surfaces used our experiments into only two connected compo-
nents corresponding to the lateral and medial parts.

Once we have the partition results ; and R,,,, we find three
boundary vertices, shown as red dots in Fig. 4, that have the
largest y-coordinate, the smallest y-coordinate, and the smallest
z-coordinate, respectively, and use them to divide the boundary
between R; and R,, into three curves BC{, BCy, BC3 shown
as the green, blue, and cyan curve in Fig. 4(a) and (b). We have
also plotted the three curves from all 40 surfaces used in our
experiments in Fig. 4(c). We can see these curves are clustered
fairly closely in the ICBM space and this helps demonstrate the
robustness of our partition algorithm. Using these three curves,
we can compute the landmark context feature [40] defined at
each vertex as LC = [dpc, , dBc, , dBc, ] to provide an intrinsic
characterization of locations on M, where dpc,(j = 1,2,3)
is the geodesic distance to the curve BC;. While the landmark
context feature is not necessarily unique over the surface, it pro-
vides very intuitive characterizations of the intrinsic locations of
major sulci on the cortical surface using distances to the three
curves. For example, the distance to the curve BC; is useful
in describing the almost parallel path to the medial wall the SF
sulcus usually takes. This distance is also useful to describe the
medial-to-lateral trend of the CS, PreCS, and PostCS. The dis-
tance to the curve BCs is valuable in characterizing the intrinsic
location of the frontal part of the SF, IF, ST sulcus and the syl-
vian fissure. With the distance to the curve BC3, we can quantify
effectively the almost parallel relation between the ST sulcus
and the sylvian fissure. In the next stage, we will use both the
ICBM coordinate and the landmark context feature to charac-
terize relative locations on M for the learning algorithms.
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Fig. 4. The result of partitioning the cortical surface in Fig. 3(a) into the
lateral(bright) and medial(dark) side. (a) The lateral view. (b) The medial
view. The boundary between the two regions is divided into three curves:
BC, (green), BC; (blue), and BCj3 (cyan). (c) The landmark curves from 40
cortical surfaces.

C. Compute Start/End Points and Route-Control Segments

By computing the skeleton of sulcal regions, we greatly re-
duce the search range for the start point X7 and end point X
of a sulcal curve C;. Let us denote the set of end points for the
branches of sulcal skeletons, i.e., the green dots in Fig. 3(c), as
A. For each branch of the skeleton, we also divide itinto | £/10]
segments of equal length around 10 mm, where £ is the length
of the branch and |z| represents the largest integer less than
or equal to z. We denote the set of such segments from all the
branches as B. In this third stage of our sample space generation
algorithm, we use classifiers learned from training data to pick
out a set of candidate points from the set A for X and X7, and

TABLE 1
ADABOOST ALGORITHM [5]

Given training data: (z1,y1,wy), -, (®n,yn,wy) wWhere z; are the
sample data, y; € {—1,1} are the corresponding class labels, and wzl
are the initial weights.
Fort=1,---,T

o Train a weak classifier h; given the current weights.

o Compute the weighted error rate ¢ of the classifier hy.

o Update the weights:
41 w;ﬁc*atyiht(zi)
w, "= B —
t

where oy = log((1—€¢)/€e¢)/2 and Z; is a normalization constant
such that 327 | wf+1 =1
Output the final classifier H = sign(f) with the decision function f =
2y the.

a set of segments from B, which we denote as route-control seg-
ments, that help better control the intermediate path the sample
curves should follow from X to X?.

To train these classifiers, we derive training data from a set of
‘P cortical surfaces with manually traced sulci and use AdaBoost
[5] as our learning algorithm because it is easy to implement,
flexible to incorporate various features, and robust to over fit-
ting. As listed in Table I, the main idea of boosting is to form a
strong classifier by combining a series of weak classifiers with
their weights chosen adaptively based on their classification per-
formance. In order to train the classifier for the start/end point
of a sulcal curve C;, we form the training data as follows by
using the start point of C; as an example. For each of the P cor-
tical surfaces in the training data, we compute the set .4 of end
points of sulcal skeletons. On each surface there is a manually
labeled start point for the sulcal curve C; and we compute the
distance between this point and all points in .A. For each point
in A, if this distance is less than 5 mm, we assign the label +1.
For all other points in .A, we assign a label —1. Combining all
the results from the P surfaces, we form the training data for
the start point of the sulcal curves C;. The training data for its
end point can be formed similarly. The features we use in our
learning algorithm include the ICBM coordinate, the landmark
context, and their individual components. For 1-D features, we
learn a decision stump as the weak classifier. For 3-D features,
we learn a perceptron using the pocket algorithm with rachet
[41] as the weak classifier. Both the decision stump and percep-
tron are linear classifiers in the form

h(z) = { b

where 1 is the feature in R for the decision stump, and R? for
the perceptron. For the decision stump, (u, &) are coefficients of
a 1-D linear classifier. In the case of the perceptron, they are co-
efficients of a 3-D linear classifier. While the perceptron seems
sufficient for 3-D features such as the ICBM coordinates and
landmark context, we have chosen to also include the decision
stump for the individual components of these 3-D features be-
cause the training data is noisy and the 3-D classifier may not be
as specific as the 1-D classifier in learning information that can
be better captured by 1-D features. So the decision stump can be
viewed as a robust version of the perceptron useful to learn ex-
plicitly 1-D information such as the distance to the medial wall.

if pf'z+€>0
else

(N

)
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The AdaBoost algorithm is then used to selectively combine in-
formation from these features and form the final classifier.

For each sulcus C;, we also use AdaBoost to train a classi-
fier to pick out a set of route-control segments from the set 3
that should be on the sample curves. For each of the P cor-
tical surface in the training data, we first compute the set 3 of
skeleton segments. For every segment in B, we then compute
its Hausdorff distance to the manually traced curve on this sur-
face. If the Hausdorff distance is less than 5 mm, we assign a
label +1 to this segment; otherwise, a label —1 is assigned. Re-
peating the above procedure for all the P cortical surfaces, we
form the training data for the route-control segments of C};. For
each segment, we compute the mean and difference of the ICBM
coordinates, the landmark context features, and their individual
components at its two end points as the features used for clas-
sification. The same learning algorithm described above is then
used to learn the classifier for route-control segments.

D. Candidate Curve Generation via Random Walks

In this fourth stage, we generate sample curves based on
random walks over a directed graph constructed from the
candidate start/end points and route-control segments for a
major sulcus C;. Given a pair of candidate start point X and
end point X7, we order all the route-control segments of C;
according to their geodesic distance to X7, which we denote
as RC = {Q1,Q2,...,Qs} and a segment Q;; is closer to
X7 than Q2 if j1 < j2. Similarly, we also order the two end
points of a segment (; and denote them as () and ()5 such
that d (X7, Q3) < dm (X7, QF), where daq(+, -) denotes the
geodesic distance between two points on M as in (6).

— - —

The directed attributed graph G = (V, E') for generating

sample curves from X7 to X is composed of a set of nodes

V = {X7,Q1,Q2,...,Qs, X5} and a set of direct edges
— e N — —_— .

E :E1UE2UE3.TheSCtE1 :{XISQ]L] :1,2,...,J}
are directed edges from X7 to all the segments in RC
and their weights are defined as 1/dnm (X7, Q%). The

— — . !
set By, = {Q;X;|j = 1,2,...,J} are directed edges
from all the segments in RC to X and their weights are
— "
defined as 1/dm(Q5, X7). The set B3 = {Qj1Qj2| if
dM(XIS ?1) < dM(XIS ;2)71 < jly2 < J} arc com-

posed of directed edges @;1Q;2 between segments in RC.
To ensure there are no loops in the graph, we require the end
point of ();; to be closer to X than the start point of @ j». The

weights for edges in s are defined as 1/dm(Q51, @32)-

To generate a sample curve, we perform a random walk in
G tofinda path from X7 to X. Starting from the node X,
we pick the next node by randomly choosing an edge from all
the direct edges starting from X with a probability in propor-
tion to the weights of these edges. The process is repeated until
we reach the node X . Because we have defined the weights of
edges inversely proportional to the geodesic distance between
neighboring nodes, edges connecting closer nodes will have a
higher chance of being visited in the random walk. Since there

—
are no loops in G and all the router-control segments are con-
nected to X7 and X7, any random walk starting from X7 is
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guaranteed to stop at X;. By repeating the random walk mul-
tiple times, we can generate sample curves covering various
routes from the start point to the end point. This is important
as the major sulci are not necessarily the shortest path from X
to X7.

Suppose the path of the random walk in the graph GisX ;=
Q1 — Qjp — -+ = Qjn — X, we generate the sample
curve by connecting a series of curve segments: (X7, le) —
Qj1 = (Q51,Q5) — Qjz = = Qjn — (Q5,,X7),
where m represents a weighted geodesic path connecting two
points on M. Because it is possible to jump from a curve seg-
ment to a relatively far away curve segment during the random
walk, we need to design the weighted geodesics to ensure the
path connecting them passes through sulcal regions whenever
possible. Thus, we define the weight function for computing the
geodesic as

F=¢P (8)

where D is the distance transform of the sulcal skeletons, so
points closer to the skeleton will have higher speeds. To find
each path numerically, we use the fast marching algorithm on
triangular meshes [39] to solve the Eikonal equation on M:

VdF = 1 )

and trace backward along the gradient direction of d" to find
the geodesic path.

As an example, we show in Fig. 5(b) the sample curves be-
tween a start point (the red dot) and end point (the green dot)
generated with random walks on the graph constructed with
the route-control segments shown in Fig. 5(a). For each pair of
start/end points, we typically generate 30 candidate curves in
our experiments. In this case, there are five start and five end
points, so we obtain a sample space of 750 candidate curves as
shown in Fig. 5(c). Similarly, we can generate the sample space
for other major sulci of interest. The sample spaces of the eight
sulci in the graphical model of Fig. 1 are plotted in Fig. 5(d) with
the color map in Fig. 1. In this case, the usefulness of the random
walking process can be best illustrated in the sample space gen-
erated for the IF sulcus as the shortest path is clearly not the
most desirable. It is clear that most of the sample curves shown
in Fig. 5(d) are not neuro-biologically valid sulci. There are also
overlaps between candidate curves of different sulci as it is pos-
sible for some curve segments being classified as route-control
segments by multiple sulci. To ensure that the belief propagation
algorithm can handle these cases correctly, we learn the poten-
tial functions of the graphical model from training data to incor-
porate prior knowledge about individual and neighboring sulci.

IV. LEARNING POTENTIAL FUNCTIONS

In this section, we describe our learning-based approach to
construct both the local evidence functions ¢; and compatibility
functions 1); ; over the sample spaces of sulcal curves. For each
potential function, we compute a large set of features and let
the boosting technique automatically pick out the most informa-
tive features to model the individual and pairwise shape priors.
Using the classifier learned by AdaBoost, we then define the
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Fig. 5. The process of sample space generation. (a) The candidate start (red) and end (green) points of the precentral sulcus, and its route-control segments whose
both ends are marked as yellow dots. (b) The sample curves generated with 30 random walks between a pair of start and end points of the precentral sulcus. (c) The
sample space of precentral sulcus as composed of curves connecting all the start and end points. (d) The sample spaces of all eight major sulci in the graphical

model of Fig. 1 are plotted with the same color map in Fig. 1.

potential function based on its connection to logistic regression
[42].

For both the local evidence functions and compatibility func-
tions, we assume a training data set of P cortical surfaces in the
ICBM space with manually labeled sulcal lines. For each sur-
face, we compute the sample space S; for each node C; in the
graphical model.

A. Local Evidence Functions

To learn the local evidence function ¢; for a sulcus C;, we
form its training data as follows. We assign all the manually
traced curves on the P surfaces the label +1. For a curve from
S, of each surface, we assign it the label —1 if more than 50%
of the points on the curve have a minimum distance of 10 mm
to the corresponding manually traced sulcus.

To characterize these curves, we use the Haar wavelet trans-
form to compute a set of multiscale features. More specifically,
we uniformly sample each curve into Ly, = 32 points. The
Haar wavelet transform is then computed for the ICBM coor-
dinates, landmark context features, and their individual com-
ponents defined at these uniformly sample points. As a result,
we have 2Ly, 3-D features from the ICBM coordinates and
landmark context features, and 6 L., 1-D features from their
individual components. This large set of features provides a
multi-scale description of the location and orientation of the
curves.

Using these features, the AdaBoost algorithm combines a se-
ries of weak classifiers to form a final decision function for a
curve C; € S;

T
F(Ci) = auhe(Ch) (10)
t=1

where h; is the tth weak classifier, which is a decision stump for
1-D features and perceptron for 3-D features, «; is the weight for
this classifier, and T is the total number of weak classifiers. It is
shown in [42] that AdaBoost approximates logistic regression
and the learned decision function can be used to estimate the
probability of a class label, thus we follow [42] and define the
local evidence function as

2F(C)

Y

The range of the local evidence function is between (0,1) and it
approaches 1 when f(C;) is large for a curve C; € S;, which
suggests this curve bears strong similarity to manually traced
sulcal lines in the training data. On the other hand, it approaches
zero for curves with negative decision function values.

B. Compatibility Functions

For two nodes C; and C; in the graphical model G, we follow
a similar process to learn their compatibility function 1); ;, but
with a different set of features to capture their joint shape priors.
Given a cortical surface, we generate the sample spaces S; and
S; for these two sulci, and the value ; ;(C;, C;) measures how
compatible a pair of curves (C;, C;) € S; x S; being the two
major sulci. The training data to learn 1), ; thus are also com-
posed of curve pairs (C;, C;) that we form as follows. For the
P pairs of manually traced sulci for C; and C; on the P surfaces
in the training data, we assign a label +1. For each of the P sur-
face, we compute the sample space S; and S; and assign a label
—1 for the set of curve pairs (C;, C;) generated by associating
each curve C; € S; with arandomly picked curve C; € S; with
the goal of representing possible cases of incompatible curves.
By repeating the above procedure for each edge in the graph-
ical model GG, we can generate different training data for other
neighboring sulci.

As inputs to the weak classifiers used in AdaBoost, we de-
sign a set of multiscale features to model the joint configuration
for each pair of curves (C;, Cj). Let T denote the maximum
number of levels we want to compute the features. We resample
each curve C; and C; into 27 4 1 equally spaced points. Let
D0, P1s- - -, par be the 27 +1 points on C;, we then approximate
it with a set of 27 straight line segments at the level 0 < n < T

MC(n) = {Prar—Pr1)27—7[0 < k < 27}

where Dror—P(ry1)27—» denote the line segment connecting
the two points pyor—» and p(j41)2r-». As shown in Fig. 6, line
segments at the coarse scale captures the global trend of each
curve, while the line segments at finer scales provide more local
information. Similarly, the curve C} is also decomposed into the
same number of levels and we use the relation between line seg-
ments from these two curves to characterize their configuration
at each level. More specifically, for each line segment L.S; of
C; and LS, of C; at a level n, we compute the angle between
them and the shortest displacement vector from points on LS,

12)
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Fig. 6. The multilevel decomposition of a curve. (a)n = 0.(b)np =1.(c) n =
2.(d) n = 3. (e) The original curve.

to LS». Repeat this procedure for all levels, we obtain a set of
multiscale features to describe the relative position of curves.
The AdaBoost algorithm is then used to learn a strong classifier
for the curve pair (C;, C;). Similar to the definition of local ev-
idence functions, we define the compatibility function between
C; and C}; as

e2f(c7' 7Cj)
¥ j(C;,Cj) =

= Trarcey "CnC)esixs; (13

where f(-,-) is the decision function learned with AdaBoost
using features described above.

Applying the above learning algorithms to each node and
every pair of neighboring sulci in a graphical model, we can
learn all the local evidence and compatibility functions, which
complete the construction of the graphical model. After that,
the belief propagation algorithm can be applied to detect sulci
jointly on cortical surfaces from the sample spaces of major
sulci.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results to demon-
strate our joint sulcal detection algorithm on a data set of 40 left
hemispheric surfaces. These surfaces represent the boundary be-
tween the gray matter and cerebrospinal fluid (CSF), and were
generated from MRI images in the ICBM space using a surface
extraction algorithm [43] and they all have genus zero topology.
While these surfaces may not capture the deepest parts of sulcal
regions, the regularity they share makes it easier to compare
across population and perform group studies. More details on
the MRI imaging and postprocessing protocols can be found
in [44]. A set of eight major sulci were manually labeled on
each surface for training and validation, which include the cen-
tral sulcus (CS), precentral sulcus (PreCS), postcentral sulcus
(PostCS), superior—frontal sulcus (SF), inferior—frontal sulcus
(IF), intraparietal sulcus (IP), sylvian fissure (Sylvian), and the
superior—temporal sulcus (ST).

In our experiments, we use the graphical model in Fig. 1 to
demonstrate the joint detection method. As a common practice
in graph-based estimation, belief propagation is also often ap-
plied to graphs with loops. This may allow us to incorporate
more neighboring priors between sulcal curves, but no theoret-
ical guarantee of global optimality exists for graphs with loops.
So there is a tradeoff between using more complicated models
and the tractability in obtaining the optimal solution. We have
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chosen to use tree-structured graphical models in our experi-
ments as this allows us to focus more on the construction of
sample spaces of candidate curves and shape priors.

In the first experiment, we learn from a set of training data
the classifiers used in sample space generation and the poten-
tial functions in the graphical model, and then demonstrate the
sulcal detection algorithm on surfaces in the training data. After
that we apply the joint detection algorithm to a set of testing
data and validate its performance quantitatively. In our third ex-
periment, we demonstrate the advantage of the joint detection
approach by comparing with results obtained without using the
graphical model.

A. Graphical Model Training

Among the 40 surfaces in our data we randomly pick 20
surfaces, together with their manually traced sulci, as the
training data. As an illustration, we show three examples from
the training data in Fig. 7(a)—(c). The other 20 surfaces are
used as the testing data to evaluate the performance of the joint
sulcal detection algorithm.

In this learning stage, we first compute the sulcal skeletons
for all the surfaces in the training data. After that the landmark
context features derived from the boundary of the lateral/medial
partition are computed with the graph-cut approach developed
in Section III-B. Using results obtained in these two steps, the
AdaBoost algorithm is applied to learn the classifiers for the
start/end points and route-control segments of each sulcal curve
as described in Section III-C. On every surface, we then run the
random-walk algorithm in Section III-D for each sulcal curve,
or node of the graphical model, to generate its sample space
of candidate curves. For the surfaces in Fig. 7(a)—(c), the cor-
responding sample spaces of the eight major sulci are plotted
in Fig. 7(d)—(f). Finally the potential functions in the graphical
model are learned following the procedure in Section I'V.

As a first step to examine the graphical model we learned
from training data, we perform MAP estimation on the sample
spaces of each surface in training data using the belief prop-
agation algorithm described in Section II. By presenting re-
sults from the training data, we demonstrate the ability of our
learning-based approach in capturing shape priors from manual
tracing. These results will also be used to compare with results
from the testing data to illustrate the generalization ability of
our method. For the three examples in Fig. 7, we have plotted
in Fig. 7(g)-(i) the detected sulci. Compared with the manu-
ally traced curves in Fig. 7(a)—(c), we can see the detected sulci
travel mostly along the same routes through sulcal regions. The
geometric relations of neighboring sulci, such as the junctions
between the IF and PreCS, are also correctly followed because
both angle and displacement features are used in modeling the
compatibility functions of these neighboring sulci.

Besides the visual results, we next present more detailed
quantitative measures to compare automatically detected sulci
with manual results. In previous works [19], [24], [27], sta-
tistics such as the mean and standard deviation of distances
between points on detected sulci and manually traced curves
were used. We extend these measures and use more detailed
quantile statistics in our experiments. With quantile statistics,
we can characterize how well the detected curves align with the
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Fig. 7. Three surfaces in the training data. (a)—(c) Cortical surfaces with manually traced sulcal curves. (d)—(f) Sample spaces of the eight sulci. (g)-(i) Automat-
ically detected sulcal curves plotted on surfaces. (All curves are plotted with the color map in Fig. 1).

main body of the major sulci at different levels, which maybe
anatomically more reasonable considering the difficulty and the
resulting variability in deciding the starting and ending parts of
sulcal curves even for human tracers.

To compute the quantile statistics, we first calculate two dis-
tances between automatically detected curves and manual re-
sults. For each point on an automatically detected curve, we
compute its minimum distance to the corresponding manually
traced curve and denote this kind of distance as d,,,,. For each
point on the manually traced curve, we also compute its min-
imum distance to the automatically detected curve and denote
this distance as d,,, . For each major sulcus, we use the 20 pairs
of automatically detected and manually traced curves on all the
surfaces in training data to compute the quantile statistics of d g,
and d,,, at the 50th, 70th, and 90th percentile.

The results for all eight sulci are listed in Table II. Each dis-
tance value in the table represents a cut-point on the cumulative
distribution function (CDF) of either d,,, or d,,, for a certain
sulcus. For example, the last number in the column of central
sulcus means that 90% of points on the manually traced curve
have a distance d,,, < 2.09 mm to the automatically detected
curve. For all eight sulci, we can see the 50th percentile of both
dam and d,,, are less than 1.5 mm, and the 70th percentile are

less than 3.5 mm. Even for highly variable sulci such as PostCS
and IF, the 90th percentile of both d,,, and d,,, are around
10 mm. So the results in Table II show that very good alignment
has been achieved between the main body of automatically de-
tected curves and manually traced ones.

B. Validation With Testing Data

In our previous experiment, we demonstrated very good
sulcal detection results in Fig. 7 and Table II. For practical
purposes, however, it is more important to examine the gen-
eralization abilities of the algorithm, i.e., its performance on
testing data. In this experiment, we apply our algorithm to
the 20 surfaces in the testing data and evaluate the results
quantitatively with manually labeled sulcal lines.

There are two main steps in applying our algorithm to testing
data. In the first step, we generate a sample space of candi-
date curves for each sulcus on a cortical surface. During this
stage, the classifier for start/end points and route-control seg-
ments learned from training data are used. After that, belief
propagation is applied to pick out the best combination of sulcal
curves from their sample spaces. Using the classifiers learned
from training data, there are very few parameters to tune when
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TABLE II
QUANTILE STATISTICS OF d g, AND d,,, FROM SULCI DETECTED IN TRAINING DATA. ALL DISTANCES ARE IN MILLIMETERS
CS | PreCS | PostCS SF IF P Sylvian ST
50th percentile | 0.70 1.05 1.01 124 ] 1.15 | 097 0.93 1.04
dam | 70th percentile | 0.98 1.91 1.86 2251 328 1 2.01 1.58 1.94
90th percentile | 1.66 6.35 9.76 8.92 | 826 | 6.87 4.60 8.54
50th percentile | 0.75 1.18 1.14 138 | 1.31 | 1.12 1.05 1.26
dma | 70th percentile 1.14 2.30 2.19 255 ] 334 ] 2.18 1.95 2.56
90th percentile | 2.09 8.15 1275 1 929 [ 862 | 7.35 6.62 11.21

(€9)

Fig. 8. Sulcal detection results on three cortical surfaces in the testing data. (a)—(c) Cortical surfaces with manually traced sulci. (d)—(f) Sample spaces of the eight
sulci. (g)—(i) Automatically detected sulcal curves plotted on surfaces. (All curves are plotted with the color map in Fig. 1.)

we apply the two steps to the testing data. The only param-
eter we need to adjust is the number of sample curves to gen-
erate for each pair of start/end points of a sulcal curve at the
first step. When we increase this number, we get larger sample
spaces covering more routes a sulcal curve can follow, but it also
increases the computational cost because more random walks
need to be performed. In our experiments, we set this param-
eter to 30 curves as in the example shown in Section III-D. This
usually generates a sample space containing around 1000 curves
for each major sulcus. No significant gains are observed if we
further increase this parameter. As an illustration, we visualize
the results from these two steps on three surfaces in the testing
data, as shown in Fig. 8(a)-(c). The sample spaces generated
for each of the eight major sulci are plotted on the surfaces in
Fig. 8(d)—(f) using the same color map in Fig. 1. The detected

sulcal curves are plotted on the surfaces in Fig. 8(g)—(i). By com-
paring the automatically detected sulci with manually traced
curves in Fig. 8(a)—(c), we can see the automatically detected
curves overall capture the main body of the sulci and agree with
manual results very well.

To measure quantitatively the performance of our sulcal de-
tection algorithm on testing data, we compute the same statistics
as in the first experiment. For each major sulcus, we use the 20
pairs of automatically detected and manually traced curves in
testing data to calculate the quantile statistics of dg,, and d,,,
at the 50th, 70th, and 90th percentile. The results for the eight
sulci are listed in Table III. For all eight sulci, the 50th percentile
of both d;,, and d,,,, are less than 2 mm, and the 70th percentile
are less than or around 5 mm. Besides the central sulcus, the 90th
percentile of dg,,, and d,,, are around 10 mm, which is slightly
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TABLE III
QUANTILE STATISTICS OF d 4, AND d,,, FROM SULCI DETECTED JOINTLY IN TESTING DATA. ALL DISTANCES ARE IN MILLIMETERS
CS | PreCS | PostCS SF IF i3 Sylvian ST
50th percentile | 0.70 1.23 1.05 1.46 1.55 0.92 1.34 1.33
dam 70th percentile | 0.97 2.42 2.11 3.25 3.99 1.74 2.84 2.75
90th percentile | 1.70 8.07 9.32 898 | 9.17 8.60 7.36 7.64
50th percentile | 0.74 1.44 1.23 1.63 1.97 1.12 1.77 1.66
dma 70th percentile 1.14 3.32 2.93 3.38 5.16 2.24 4.13 4.19
90th percentile | 2.38 9.06 10.77 9.44 | 11.50 | 11.05 11.02 10.75

Fig. 9. Sulcal detection results without using graphical models. (All curves are plotted with the color map in Fig. 1).

TABLE IV
QUANTILE STATISTICS OF d,,, AND d,,,, FROM SULCI DETECTED SEPARATELY IN TESTING DATA. ALL DISTANCES ARE IN MILLIMETERS
CS PreCS | PostCS SF IF 1P Sylvian ST
50th percentile | 0.69 1.23 1.56 1.71 2.34 0.88 1.33 1.34
dam | 70th percentile | 0.99 2.96 7.52 4.87 7.29 1.65 2.86 3.24
90th percentile | 2.04 10.32 13.68 11.13 | 11.56 | 10.59 9.15 8.63
50th percentile | 0.74 1.54 1.90 1.83 242 1.13 1.71 1.78
dma | 70th percentile | 1.15 4.01 9.02 4.57 8.46 2.29 4.27 4.87
90th percentile | 2.82 | 10.95 16.42 11.10 | 13.52 | 12.61 11.79 11.65

worse than the performance on training data and this is mainly
due to the high variability in the starting and ending parts of
sulcal curves. One good example in illustrating this difficulty is
the superior end of the PostCS. Following the tracing protocol
[28], the manual tracer is able to consistently pick the posterior
route whenever there are more than one choices in determining
this part of the PostCS such as the example in Fig. 7(a). Our au-
tomated approach, however, may sometimes get confused and
follow a posterior route that actually jumps across a gyrus as
in Fig. 8(h). Another example is the difficulty in capturing the
frontal part of the IF sulcus that usually bends backward. This
is mainly because that the IF sulcus does not necessarily follow
a weighted geodesic that we use to generate candidate curves.
These kinds of situations contribute to the largest errors in the
quantile statistics and point out directions of future improve-
ments.

Overall the results in Table III show that our algorithm gener-
alizes very well on testing data and the detected curves are able
to capture the main body of major sulci accurately, which is es-
pecially encouraging for those sulci (PostCS, IF) that are highly
variable.

C. Comparison With Sulci Detected Separately

In this experiment, we compare the joint detection results in
Section V-B with sulci detected separately without taking into
account pairwise priors between neighboring sulci, which is re-
alized by choosing the curve in each sample space that maxi-
mizes the associated local evidence function.

For the three surfaces in Fig. 8(a)—(c), we plot the indepen-
dently detected sulci in Fig. 9(a)—(c), respectively. To highlight
the differences between the detection results in Figs. 8 and 9,
we have annotated with a dotted circle to identify one place on
each surface in Fig. 9 where the independently detected curve
failed to locate the corresponding sulcus accurately. On the con-
trary, these kinds of mistakes were avoided in the results shown
in Fig. 8(g)—(1) because pairwise priors are incorporated. This
demonstrates the value of the compatibility functions in im-
proving sulci detection with joint shape priors.

Following the quantitative evaluation procedure in Sec-
tion V-B, we also compare independently detected sulci with
manually annotated sulcal curves on the 20 surfaces in our
testing data by computing the same quantile statistics. The
results are listed in Table IV. From the numbers in Tables III
and IV, we can clearly see the advantage of the joint detec-
tion approach as it performs better on 40 of the 48 distance
measures. For the 6 measures that the independent detection
approach generated better results, it outperforms the joint
detection method only by a slight margin of less than 0.1 mm.
The performance gain with the use of the graphical model is
especially significant for more variable sulci such as the PostCS
and IF as demonstrated by their quantile statistics at the 70th
percentile for both d,,,, and d,,, in Tables III and I'V.

VI. DISCUSSION AND CONCLUSION

In this paper, we proposed a joint detection framework for the
automated labeling of major sulci on cortical surfaces. By gen-
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erating sample spaces of candidate curves for the major sulci,
we are able to convert sulcal detection into a tractable infer-
ence problem over discrete random variables. To capture both
individual and joint shape priors of sulcal curves, we use graph-
ical models in our framework to encode Markovian relations
between neighboring sulci and learn the potential functions au-
tomatically with AdaBoost.

With the aim of providing stable landmark curves for the
mapping of cortical surfaces across population, we represent
each major sulcus as a continuous curve in our work, which is
useful for the analysis of anatomical quantities defined on cor-
tical surfaces such as gray matter densities. On the other hand,
this assumption simplifies the interruptions of the sulci over
gyral regions that exist naturally. So when the sulcal anatomy
is the target of analysis, it might be beneficial to study the de-
tailed configuration of sulcal regions directly.

In our experiments, we demonstrated the training of a graph-
ical model and applied it to automatically detect a set of eight
major sulci on hemispheric cortical surfaces. These sulci are on
the lateral surface of the cortex, but our method is general and
can also be applied to detect other major sulci on the medial sur-
face such as the calcarine sulcus. For the detection of secondary
sulci that may or may not be present, for example the secondary
cingulate sulcus, however, we cannot apply our method directly.
A model selection process might be necessary to first determine
the proper graphical model to use and then apply the joint de-
tection algorithm we develop here.

As noted in our experiments, there are still difficulties in ac-
curately detecting sulcal lines that tend to bend backward. To
address this problem, we will improve in the future work the
sample space generation algorithm for these sulci to ensure their
sample spaces contain valid candidate curves. For example, we
can train an additional classifier for the IF sulcus to detect a
route-control segment corresponding to the most frontal part of
the sulcal line and use it to capture the bending between the start
and end points.

A large set of features derived from the ICBM coordinates
and landmark context features have been combined with Ad-
aBoost to model shape priors of sulcal curves in our current
work. The ability of this approach in modeling joint shape priors
was demonstrated via comparisons with results detected without
using graphical models. An interesting direction of future re-
search is to include a feature selection process [45], [46] in our
algorithm as many features contain redundant information. This
may improve the effectiveness of our model. For example, this
process could make the compatibility function of the PostCS
and IP sulcus more sensitive to the spatial configuration between
the closest line segments in their multilevel decompositions and
help eliminate artifacts such as the slight overlap of these two
sulcal curves in Fig. 8(h).

We have chosen to use tree-structured graphical models in our
experiments because the belief propagation algorithm can effi-
ciently compute the globally optimal solution on such models.
This is, however, at the expense of leaving out potentially useful
neighboring priors. To incorporate more joint shape priors, we
will study the use of graphical models with loops in our fu-
ture work. The same learning process developed here can still
be used to construct the sample spaces of candidate curves and
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potential functions on such models, but the belief propagation
algorithm has to be used with caution as there is no guarantee
of global optimality anymore. More sophisticated optimization
strategies such as the tree-reweighted message passing algo-
rithm [47] and the primal-dual graph cut algorithm [48] will be
investigated for MAP estimation on these graphical models with
loops.

REFERENCES

[1] M. Ono, S. Kubik, and C. Abarnathey, Atlas of the Cerebral Sulci..
New York: Thieme Medical Publishers, 1990.

[2] D.C. Van Essen, “A population-average, landmark- and surface-based
(PALS) atlas of human cerebral cortex,” Neurolmage, vol. 28, no. 3,
pp. 635-662, 2005.

[3] P.M. Thompson, K. M. Hayashi, E. R. Sowell, N. Gogtay, J. N. Giedd,
J. L. Rapoport, G. I. de Zubicaray, A. L. Janke, S. E. Rose, J. Semple,
D. M. Doddrell, Y. Wang, T. G. M. van Erp, T. D. Cannon, and A. W.
Toga, “Mapping cortical change in alzheimer’s disease, brain develop-
ment, and schizophrenia,” Neurolmage, vol. 23, pp. S2-S18, 2004.

[4] 1. Perl, Probabilistic Reasoning in Intelligent Systems.. San Mateo,
CA: Morgan Kaufman, 1988.

[5] Y. Freund and R. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119-139, 1997.

[6] N. Khaneja, M. Miller, and U. Grenander, “Dynamic programming

generation of curves on brain surfaces,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 20, no. 11, pp. 1260-1265, Nov. 1998.

A. Bartesaghi and G. Sapiro, “A system for the generation of curves on

3-D brain images,” Human Brain Mapp., vol. 14, pp. 1-15, 2001.

[8] L. M. Lui, Y. Wang, T. F. Chan, and P. M. Thompson, “Automatic

landmark and its application to the optimization of brain conformal

mapping,” in Proc. Comput. Vision Pattern Recognit., 2006, vol. 2, pp.

1784-1792.

M. E. Rettmann, X. Han, C. Xu, and J. L. Prince, “Automated sulcal

segmentation using watersheds on the cortical surface,” Neurolmage,

vol. 15, no. 2, pp. 329-244, 2002.

[10] C. Kao, M. Hofer, G. Sapiro, J. Stern, K. Rehm, and D. Rotternberg,
“A geometric method for automatic extraction of sulcal fundi,” IEEE
Trans. Med. Imag., vol. 26, no. 4, pp. 530-540, Apr. 2007.

[11] H. Blum and R. Nagel, “Shape description using weighted symmetric
axis features,” Pattern Recognit., vol. 10, no. 3, pp. 167-180, 1978.

[12] S. M. Pizer, D. S. Fritsch, P. A. Yushkevich, V. E. Johnson, and E. L.
Chaney, “Segmentation, registration, and measurement of shape varia-
tion via image object shape,” IEEE Trans. Med. Imag., vol. 18, no. 10,
pp. 851-865, Oct. 1999.

[13] T.Kong and A. Rosenfeld, “Digital topology: Introduction and survey,”
Comput. Vis. Graph. Image Process., vol. 48, no. 3, pp. 357-393, Dec.
1989.

[14] G. Bertrand and R. Malgouyres, “Some topological properties of sur-
faces in Z3,” J. Math. Imag. Vis., vol. 11, pp. 207-221, 1999.

[15] X. Han, C. Xu, and J. Prince, “A topology preserving level set method
for geometric deformable models,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 25, no. 6, pp. 755-768, Jun. 2003.

[16] J.-F. Mangin, V. Frouin, I. Bloch, J. Régis, and J. Lépez-Krahe, “From
3-D magnetic resonance images to structural representations of the
cortex topography using topology preserving deformations,” J. Math.
Imag. Vis., vol. 5, no. 4, pp. 297-318, 1995.

[17] G. Lohmann, “Extracting line representations of sulcal and gyral pat-
terns in MR images of the human brain,” IEEE Trans. Med. Imag., vol.
17, no. 6, pp. 1040-1048, Jun. 1998.

[18] M. Vaillant and C. Davatzikos, “Finding parametric representations of
the cortical sulci using an active contour model,” Med. Image. Anal.,
vol. 1, no. 4, pp. 295-315, 1996.

[19] G. Goualher, E. Procyk, D. Collins, R. Venugopal, C. Barillot, and A.
Evans, “Automated extraction and variability analysis of sulcal neu-
roanatomy,” IEEE Trans. Med. Imag., vol. 18, no. 3, pp. 206-217, Mar.
1999.

[20] Y. Zhou, P. M. Thompson, and A. W. Toga, “Extracting and repre-
senting the cortical sulci,” IEEE Comput. Graphics Appl., vol. 19, no.
3, pp. 49-55, May/Jun. 1999.

[21] X. Zeng, L. Staib, R. Schultz, H. Tagare, L. Win, and J. Duncan, “A
new approach to 3-D sulcal ribbon finding from MR images,” in Proc.
MICCAI, 1999, pp. 148-157.

[7

—

[9

—

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on March 20, 2009 at 23:00 from IEEE Xplore. Restrictions apply.



SHI et al.: JOINT SULCAL DETECTION ON CORTICAL SURFACES WITH GRAPHICAL MODELS AND BOOSTED PRIORS 373

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

T. Cootes, C. Taylor, D. Cooper, and J. Graham, “Active shape models-
their training and application,” Computer Vis. Image Understand., vol.
61, no. 1, pp. 38-59, 1995.

G. Lohmann and D. Cramon, “Automatic labelling of the human
cortical surface using sulcal basins,” Med. Image. Anal., vol. 4, pp.
179-188, 2000.

X. Tao, J. Prince, and C. Davatzikos, “Using a statistical shape model
to extract sulcal curves on the outer cortex of the human brain,” IEEE
Trans. Med. Imag., vol. 21, no. 5, pp. 513-524, May 2002.

D. Riviere, J.-F. Mangin, D. Papadopoulos-Orfanos, J. Martinez, V.
Frouin, and J. Régis, “Automatic recognition of cortical sulci of the
human brain using a congregation of neural networks,” Med. Image.
Anal., vol. 6, pp. 77-92, 2002.

Z. Tu, “Probabilistic boosting-tree: Learning discriminative models for
classification, recognition, and clustering,” in Proc. ICCV, 2005, vol.
2, pp. 1589-1596.

Z. Tu, S. Zheng, A. Yuille, A. Reiss, R. A. Dutton, A. Lee, A. Gal-
aburda, I. Dinov, P. Thompson, and A. Toga, “Automated extraction
of the cortical sulci based on a supervised learning approach,” IEEE
Trans. Med. Imag., vol. 26, pp. 541-552, Apr. 2007.

Surface curve protocal [Online]. Available: http://www .loni.ucla.edu/
~esowell/edevel/new_sulcvar.html

S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE
Trans. Inf. Theory, vol. 46, pp. 325-343, 2000.

S. M. Aji, G. Horn, R. J. McEliece, and M. Xu, “Iterative min-sum
decoding of tail-biting codes,” in Proc. IEEE Inf. Theory Workshop,
1998, pp. 68-69.

W. T. Freeman and E. Pasztor, “Learning to estimate scenes from im-
ages,” in Proc. Neural Inf. Process. Syst. (NIPS), 1998, vol. 2, pp.
775-781.

A. P. Dawid, “Applications of a general propagation for probabilistic
expert systems,” Statistics Comput., vol. 2, pp. 25-36, 1992.

M. Wainwright, T. Jaakkola, and A. Willsky, “Tree consistency and
bounds on the performance of the max-product algorithm and its gen-
eralizations,” Statistics Comput., pp. 143—-166, 2004.

J. C. Mazziotta, A. W. Toga, A. C. Evans, P. T. F. N. D. J. Lancaster, K.
Zilles, R. P. Woods, T. Paus, G. Simpson, B. Pike, C. J. Holmes, D. L.
Collins, P. M. Thompson, D. MacDonald, T. Schormann, K. Amunts,
N. Palomero-Gallagher, L. Parsons, K. L. Narr, and N. Kabani, “A
probabilistic atlas and reference system for the human brain: Interna-
tional consortium for brain mapping,” Philos. Trans. R. Soc. Lond. B.
Biol. Sci., vol. 356, pp. 1293-1322, 2001.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Y. Shi, P. Thompson, I. Dinov, and A. Toga, “Hamilton-Jacobi
skeleton on cortical surfaces,” IEEE Trans. Med. Imag., vol. 27, no. 5,
pp. 664—673, May 2008.

Y. Boykov and M. P. Jolly, “Interactive graph cuts for optimal
boundary & region segmentation of objects in N-D images,” in Proc.
ICCV, 2001, vol. I, pp. 105-112.

Y. Boykov and V. Kolmogorov, “An experimental comparison of Min-
Cut/Max-Flow algorithms for energy minimization in vision,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124-1137, Sep.
2004.

K. Siddiqi, S. Bouix, A. Tannebaum, and S. Zuker, “Hamilton-Jacobi
skeletons,” Int. J. Comput. Vis., vol. 48, no. 3, pp. 215-231, 2002.

R. Kimmel and J. A. Sethian, “Computing geodesic paths on mani-
folds,” Proc. Nat. Acad. Sci. USA, vol. 95, no. 15, pp. 8431-8435, 1998.
Y. Shi, P. M. Thompson, I. Dinov, S. Osher, and A. W. Toga, “Direct
cortical mapping via solving partial differential equations on implicit
surfaces,” Med. Image. Anal., vol. 11, no. 3, pp. 207-223, 2007.

S. Gallant, “Perceptron-based learning algorithms,” IEEE Trans.
Neural Networks, vol. 1, no. 2, pp. 179-191, Jun. 1990.

J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
A statistical view of boosting,” Ann. Statist., vol. 28, no. 2, pp. 337-407,
2000.

D. MacDonald, “A method for identifying geometrically simple
surfaces from three dimensional images,” Ph.D. dissertation, McGill
Univ., Montreal, QC, Canada, 1998.

P. M. Thompson, A. D. Lee, R. A. Dutton, J. A. Geaga, K. M. Hayashi,
M. A. Eckert, U. Bellugi, A. M. Galaburda, J. R. Korenberg, D. L.
Mills, A. W. Toga, and A. L. Reiss, “Abnormal cortical complexity
and thickness profiles mapped in Williams syndrome,” J. Neurosci.,
vol. 25, no. 16, pp. 4146-4158, 2005.

I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.

H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information: Criteria of max-dependency, max-relevance, and min-re-
dundancy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp.
12261238, Aug. 2005.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “MAP estimation
via agreement on trees: Message-passing and linear programming,”
IEEE Trans. Inf. Theory, vol. 51, no. 11, pp. 3697-3717, Nov. 2005.
N. Komodakis and G. Tziritas, “Approximate labeling via graph cuts
based on linear programming,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 29, no. 8, pp. 1436-1453, Aug. 2007.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on March 20, 2009 at 23:00 from IEEE Xplore. Restrictions apply.



