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Brain Anatomical Structure Segmentation by
Hybrid Discriminative/Generative Models

Zhuowen Tu, Katherine L. Narr, Piotr Dollár, Ivo Dinov, Paul M. Thompson, and Arthur W. Toga

Abstract— In this paper, a hybrid discriminative/generative
model for brain anatomical structure segmentation is proposed.
The learning aspect of the approach is emphasized. In the
discriminative appearance models, various cues such as intensity
and curvatures are combined to locally capture the complex
appearances of different anatomical structures. A probabilistic
boosting tree (PBT) framework is adopted to learn multi-class
discriminative models that combine hundreds of features across
different scales. On the generative side, Principal Component
Analysis (PCA) shape models are used to capture the global shape
information about each anatomical structure. The parameters
to combine the discriminative appearance and generative shape
models are also automatically learned. Thus low-level and high-
level information is learned and integrated in a hybrid model.
Segmentations are obtained by minimizing an energy function
associated with the proposed hybrid model. Finally, a grid-
face structure is designed to explicitly represent the 3D region
topology. This representation handles an arbitrary number of
regions and facilitates fast surface evolution. Our system was
trained and tested on a set of 3D MRI volumes and the results
obtained are encouraging.

Index Terms— Brain anatomical structures, segmentation,
probabilistic boosting tree, discriminative models, generative
models

I. INTRODUCTION

Segmenting sub-cortical structures from 3D brain images
is of significant practical importance, for example in de-
tecting abnormal brain patterns [30], studying various brain
diseases [24] and studying brain growth [34]. Fig. (1) shows
an example 3D MRI brain volume and sub-cortical structures
delineated by a neuroanatomist. This sub-cortical structure
segmentation task is very important but difficult to do even by
hand. The various anatomical structures have similar intensity
patterns, (see Fig. (2)), making these structures difficult to
separate based solely on intensity. Furthermore, often there is
no clear boundary between the regions. Neuroanatomists often
develop and use complicated protocols [24] in guiding the
manual delineation process and those protocols may vary from
task to task, and a considerable amount of work is required
to fully delineate even a single 3D brain volume. Designing
algorithms to automatically segment brain volumes is very
challenging in that it is difficult to transfer such protocols into
sound mathematical models or frameworks.

In this paper we use a mathematical model for sub-cortical
segmentation that includes both the appearance (voxel intensi-
ties) and shape (geometry) of each sub-cortical region. We
use a discriminative approach to model appearance and a
generative model to describe shape, and learn and combine
these in a principled manner. Unlike previous work, equal
focus is given to both the shape and appearance models.

(a) (b)

Fig. 1. Illustration of an example 3D MRI volume. (a) Example MRI volume
with skull stripped. (b) Manually annotated sub-cortical structures. The goal of
this work is to design a system that can automatically create such annotations.

We apply our system to the segmentation of eight sub-
cortical structures, namely: the left hippocampus (LH), the
right hippocampus (RH), the left caudate (LC), the right
caudate (RC), the left putamen (LP), the right putamen (RP),
the left ventricle (LV), and the right ventricle (RV). We obtain
encouraging results.

A. Related Work

There has been considerable recent work on 3D segmen-
tation in medical imaging and some representatives include
[43], [9], [29], [28], [5], [42]. Two systems particularly related
to our approach are Fischl et al. [9] and Yang et al. [43],
with which we will compare results. The 3D segmentation
problem is usually tackled in a Maximize A Posterior (MAP)
framework in which both appearance models and shape priors
are defined. Often, either a generative or a discriminative
model is used for the appearance model, while the shape
models are mostly generative based on either local or global
geometry. Once an overall target function is defined, different
methods are then applied to find the optimal segmentation.

Related work can be classified into two broad categories:
methods that rely primarily on strong shape models and
methods that rely more on strong appearance models. Table
(I) compares some representative algorithms (this is not a
complete list and we may have missed some other related
ones) for 3D segmentation based on their appearance models,
shape models, inference methods, and specific applications
(we give detailed descriptions below).

The first class of methods, including [9], [43], [28], [29],
[41], rely on strong generative shape models to perform 3D
segmentation. For the appearance models, each of these meth-
ods assumes that the voxels are drawn from independent and
identically-distributed (i.i.d.) Gaussians distributions. Fischl
et al. [9] proposed a system for whole brain segmentation



2

TABLE I

Algorithms Appearance Model Shape Model Inference Application
Our Work discriminative: PBT generative: PCA on shape variational method brain sub-cortical segmentation
Fischl et al. [9] generative: i.i.d. Gaussians generative: local constraints expectation maximization brain sub-cortical segmentation
Yang et al. [43] generative: i.i.d. Gaussians generative: PCA on shape variational method brain sub-cortical segmentation
Pohl et al. [29] generative: i.i.d. Gaussians generative: PCA on shape expectation maximization brain sub-cortical segmentation
Pizer et al. [28] generative: i.i.d. Gaussians generative: M-rep on shape multi-scale gradient descent medical image segmentation
Woolrich and Behrens [41] generative: i.i.d. Gaussians generative: local constraints Markov Chain Monte Carlo fMRI segmentation
Li et al. [22] discriminative: rule-based None rule-based classification brain tissue classification
Rohlfing et al. [32] discriminative: atlas based somewhat voxel classification bee brain segmentation
Descombes et al. [6] discriminative: extracted features generative: geometric properties Markov Chain Monte Carlo lesion detection
Lao et al. [18] discriminative: SVM None voxel classification brain tissue classification
Lee et al. [19] discriminative: SVM generative: local constraints iterated conditional modes brain tumor detection
Tu et al. [38] discriminative: PBT generative: local constraints variational method colon detagging

Comparison of different 3D segmentation algorithms. Note that only our work combines a strong generative shape model with a discriminative appearance
model. In the above, PCA refers to principle component analysis, SVM refers to support vector machine, and PBT refers to probabilistic boosting tree.

using Markov Random Fields (MRFs) to impose spatial con-
straints for the voxels of different anatomical structures. In
Yang et al. [43], joint shape priors are defined for different
objects to prevent surfaces from intersecting each other, and
a variational method is applied to a level set representation
to obtain segmentations. Pohl et al. [29] used an Expectation
Maximization (EM) type algorithm again with shape priors
to perform segmentation. Pizer et al. [28] used a statistical
shape representation, M-rep, in modeling 3D objects. Woolrich
and Behrens [41] used a Markov chain Monte Carlo (MCMC)
algorithm for fMRI segmentation. The primary drawback to all
of these methods is that the assumption that voxel intensities
can be modeled via i.i.d. models is not realistic (again see
Fig. (2)).

The second class of methods for 3D segmentation, including
[22], [32], [18], [19], [38], [13], [21], rely on strong dis-
criminative appearance models. These methods either do not
explicitly use shape model or only rely on very simple geo-
metric constraints. For example, atlas-based approaches [32],
[13] combined different atlases to perform voxel classification,
requiring atlas based registration and subsequently making use
of shape information implicitly. Li et al. [22] used a rule
based algorithm to perform classification on each voxel. Lao et
al. [18] adopted support vector machines (SVMs) to combine
different cues for performing brain tissue segmentation, but
again no shape model is used. The classification model used
in Lee et al. [19] is based on the properties of extracted objects.
All these approaches share two major problems: (1) as already
stated, there is no global shape model to capture overall shape
regularity; (2) the features used are limited (not as thousands
in this paper) and many of them are not so adaptive from
system to system.

In other areas, conditional random fields (CRFs) mod-
els [17] use discriminative models to provide context infor-
mation. However, inference is not easy in CRFs, and they
also have difficulties capturing global shape. A hybrid model
is used in Raina et al. [31], however it differs from the hybrid
model proposed here in that discriminative models were used
only to learn weights for the different generative models.

Finally, our approach bears some similarity with [38] where
the goal is foreground/background segmentation for virtual
colonoscopy. The major differences between the methods are:
(1) There is no explicit high-level generative model defined
in [38], nor is there a concept of a hybrid model. (2) Here we
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Fig. 2. Intensity histograms of the eight sub-cortical structures targeted in
this paper and of the background regions. Note the high degree of overlap
between their intensity distributions, which makes these structures difficult to
separate based solely on intensity.

deal with 8 sub-cortical structures, which results in a multi-
class segmentation and classification problem.

B. Proposed Approach

In this paper, a hybrid discriminative/generative model for
brain sub-cortical structure segmentation is presented. The
novelty of this work lies in the principled combination of
a strong generative shape model and a strong discriminative
appearance model. Furthermore, the learning aspect of this
research provides certain advantages for this problem.

Generative models capture the underlying image generation
process and have certain desirable properties, such as requiring
small amounts of training data; however, they can be difficult
to design and learn, especially for complex objects with inho-
mogeneous textures. Discriminative models are easier to train
and apply and can accurately capture local appearance varia-
tions; however, they are not easily adapted to capture global
shape information. Thus a hybrid discriminative/generative
approach for modeling appearance and shape is quite natural
as the two approaches have complementary strengths, although
properly combining them is not trivial.

For appearance modeling, we train a discriminative model
and use it to compute the probability that a voxel belongs to a
given sub-cortical region based on properties of its local neigh-
borhood. A probabilistic boosting tree (PBT) framework [37]
is adopted to learn a multi-class discriminative model that
automatically combines many features such as intensities,
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gradients, curvatures, and locations across different scales. The
advantage of low-level learning is twofold: (1) Training and
application of the classifier are simple and fast and there are
few parameters to tune, which also makes the system readily
transferable to other domains. (2) The robustness of a learning
approach is largely decided by the availability of a large
amount of training data, however, even a single brain volume
provides a vast amount of data since each cubic window
centered on a voxel provides a training instance. We attempt
to make the low-level learning as robust as possible, although
ultimately some of the ambiguity caused by similar appearance
of different sub-cortical regions cannot be resolved without
engaging global shape information.

We explicitly engage global shape information to enforce
the connectivity of each sub-cortical structure and its shape
regularity through the use of a generative model. Specifically,
we use Principal Component Analysis (PCA) [4], [20] applied
to global shapes in addition to local smoothness constraints.
This model is well suited since it can be learned with only a
small number of region shapes available during training and
can be used to represent global shape. It is worth to mention
that 3D shape modeling is still a very active area in medical
imaging and computer vision. We use a simple PCA model
in the hybrid model to illustrate the usefulness of engaging
global shape information. One may adopt other approaches,
e.g. m-rep [28], as the shape model.

Finally, the parameters to combine the discriminative ap-
pearance and generative shape models are also learned.
Through the use of our hybrid model, low-level and high-level
information is learned and integrated into a unified system.

After the system is trained, we can obtain segmentations by
minimizing an energy function associated with the proposed
hybrid model. A grid-face representation is designed to handle
an arbitrary number of regions and explicitly represent the
region topology in 3D. The representation allows efficient trace
of the region surface points and patches, and facilitates fast
surface evolution. Overall, our system takes about 8 minutes
to segment a volume.

This paper is organized as follows. Section II gives the
formulation of brain anatomical structure segmentation and
shows the hybrid discriminative/generative models. Procedures
to learn the discriminative and generative models are discussed
in Section III-A and Section III-B respectively. We show the
grid-face representation and a variational approach to perform-
ing segmentation in Section IV. Experiments are shown in
Section V and we conclude in Section VI.

II. PROBLEM FORMULATION

In this section, the problem formulation for 3D brain
segmentation is presented. The discussion begins from an ideal
model and shows that the hybrid discriminative/generative
model is an approximation to it.

A. An Ideal Model

The goal of this work is to recover the anatomical structure
of the brain from a manually registered 3D input volume V.
Specifically, we aim to label each voxel in V as belonging to

one of the eight subcortical regions targeted in this work or
to a background region. A segmentation of the brain can be
written as:

W = {R0, . . . , R8}, (1)

where R0 is the background region and R1, . . . , R8 are the
eight anatomical regions of interest. We require that

⋃8
k=0 Rk

includes every voxel position in the volume and that R i ∩
Rj = ∅, ∀i �= j, i.e. that the regions are non-intersecting.
Equivalently, regions can be represented by their surfaces since
each representation can always be derived from the other. We
write V(Rk) to denote the voxel values of region k.

The optimal W ∗ can be inferred in the Bayesian framework:

W ∗ = arg maxW p(W |V)
= arg maxW p(W )p(V|W ). (2)

Solving for W ∗ requires full knowledge about the complex
appearance models p(V|W ) of the foreground and background
and their shapes and configurations p(W ). Even if we assume
the shape and appearance of each region is independent,
p(V(Rk)|Rk) can jointly model the appearances of all voxels
in region Rk, and p(W ) =

∏8
k=0 p(Rk) must be an accurate

prior for the underlying statistics of the global shape. To make
this system tractable, we need to make additional assumptions
about the form of p(V|W ) and p(W ).

B. Hybrid Discriminative/Generative Model

Intuitively, the decision of how to segment a brain volume
should be made jointly according to the overall shapes and ap-
pearances of the anatomical structures. Here we introduce the
hybrid discriminative/generative model, where the appearance
of each region p(V(Rk)|Rk) is modeled using a discriminative
approach and shape p(Rk) using a generative model. We can
approximate the posterior as:

p(W |V) ∝ p(W )p(V|W )

∝̇
8∏

k=0

p(Rk)
∏

a∈Rk

p(V(a), y = k|V(N(a)/a))

∝
8∏

k=0

p(Rk)
∏

a∈Rk

p(y = k|V(N(a)). (3)

Here, N(a) is the sub-volume (a cubic window) centered at
voxel a, N(a)/a includes all the voxels in the sub-volume
except a, and y ∈ {0, ..., 8} is the class label for each voxel.
The term p(V(a), y = k|V(N(a)/a)) is analogous to a
pseudo-likelihood model [17].

We model the appearance using a discriminative model,
p(y = k|V(N(a)), computed over the sub-volume V(N(a))
centered at voxel a. To model the shape p(Rk) of each region
Rk, we use Principal Component Analysis (PCA) applied to
global shapes in addition to local smoothness constraints. We
can define an energy function based on the negative log-
likelihood − log(p(W |V)) of the approximation of p(W |V):

E(W,V) = EAP (W,V)+α1EPCA(W )+α2ESM (W ). (4)
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The first term, EAP (W,V), corresponds to the discriminative
probability p(y|V(N(s)) of the joint appearances:

EAP (W,V) = −
8∑

k=0

∑

a∈Rk

log p(y = k|V(N(a)). (5)

EPCA(W ) and ESM (W ) represent the generative shape
model and the smoothness constraint, details are given in
Section (III-B). After the model is learned, we can compute
an optimal segmentation W ∗ by finding the minimum of
E(W,V), details are given in Section IV.

As can be seen from Eqn. 4, E(W,V) is composed of
both discriminative and generative models, and it combines
the low-level (local sub-volume) and high-level (global shape)
information in an integrated hybrid model. The discriminative
model captures complex appearances as well as the local
geometry by looking at a sub-volume. Based on this model, we
are no longer constrained by the homogeneous texture assump-
tion – the model implicitly takes local geometric properties and
context information into account. The generative models are
used to explicitly enforce global and local shape regularity. α 1

and α2 are weights that control our reliance on appearance,
shape regularity, and local smoothness; these are also learned.
Our approximate posterior is:

p̂(W |V) =
1
Z

exp{−E(W,V)}, (6)

where Z =
∑

W exp−E(W,V) is the partition function. In
the next section, we discuss in detail how to learn and compute
EAP , EPCA, ESM , and the weights to combine them.

III. LEARNING DISCRIMINATIVE APPEARANCE AND

GENERATIVE SHAPE MODELS

This section gives details about how the discriminative
appearance and generative shape models are learned and
computed. The learning process is carried out in a pursuit
way. We learn EAP , EPCA and ESM separately, and then
α1, and α2 to combine them.

A. Learning Discriminative Appearance Models

Our task is to learn and compute the discriminative ap-
pearance model p(y = k|V(N(a)), which will enable us
to compute EAP (W,V) according to Eqn. 5. Each input
V(N(a)) is a sub-volume of size 11 × 11 × 11, and the
output is the probability of the center voxel a belonging to
each of the regions R0, . . . , R8. This is essentially a multi-
class classification problem; however, it is not easy due to
the complex appearance pattern of V(N(a)). As we noted
previously, using only the intensity value V(a) would not give
good classification results (see Fig. (2)).

Often, the choice of features and the method to com-
bine/fuse these features are two key factors in deciding the
robustness of a classifier. Traditional classification methods in
3D segmentation [22], [32], [18] require a great deal of human
effort in feature design and use only a very limited number
of features. Thus, these systems have difficulty classifying
complex patters and are not easily adapted to solve problems
in domains other than for which they were designed.

Recent progress in boosting [10], [12], [37] has greatly
facilitated the process of feature selection and fusion. The
AdaBoost algorithm [10] can select and fuse a set of in-
formative features from a very large feature candidate pool
(thousands or even millions). AdaBoost is meant for two-
class classification; to deal with multiple anatomical structures
we adopt the multi-class probabilistic boosting tree (PBT)
framework [37], built on top of AdaBoost. PBT has two
additional advantages over other boosting algorithms: (1) PBT
deals with confusing samples by a divide-and-conquer strategy,
and (2) the hierarchical structure of PBT improves the speed
of the learning/computing process. Although the theory of
AdaBoost and PBT are well established (see [10] and [37]),
to make the paper self-contained we give additional details of
AdaBoost and multi-class PBT in Sections III-A.1 and III-A.2,
respectively.

In this paper, each training sample V(N(a)) is a 11×11×11
sized cube centered at voxel a. For each sample, around 5,000
candidate features are computed, such as intensity, gradients,
curvatures, locations, and various 3D Haar filters [38]. Gradi-
ent and curvature features are the standard ones and we obtain
a set of them at three different scales. Among all these 5,000
candidate features, most of them are Haar filters. A Haar filter
is simply a linear filter that can be computed very rapidly using
a numerical trick called integral volumes. For each voxel in
a 11 × 11× subvolume, we can compute a feature for each
type of 3D Haar filters [38] (we use nine types) at a certain
scale. Suppose we use 3 scales in the x, y and z direction,
a rough estimate for the possible number of Haar features is
113 × 9 × 33 = 323, 433 (some Haars might not be valid
on the boundary). Due to the computational limit in training,
we choose to use a subset of them (around 4950). Therefore,
these Haar filters of various types and sizes are computed
at uniformly sampled locations in the sub-volume. Dollár et
al. [7] recently proposed a mining strategy to explore a large
feature space, but this is out of the scope of this paper. From
among all the possible candidate features available during
training, PBT selects and combines a relatively small subset
to form an overall strong multi-class classifier.

Fig. (6) shows the classification result on a test volume
after a PBT multi-class discriminative model is learned.
Sub-cortical structures are already roughly segmented out
based on the local discriminative appearance models, but
we still need to engage high-level information to enforce
the geometric regularity of each anatomical structure. In
the trained classifier, the first 6 selected features are: (1)
coordinate z of the center voxel a; (2) Haar filter of size
9× 7× 7; (3) gradient at a; (4) Haar filter of size 3× 3× 7;
(5) coordinate x+z of center a; (6) coordinate y−z of center a.

1) AdaBoost: To make the paper self-contained, we give
a concise review of AdaBoost [10] below. For notational
simplicity we use v = V(N(a)) to denote an input sub-
volume, and denote the two-class target label using y = ±1:

AdaBoost sequentially selects weak classifiers ht(v) from
a candidate pool and re-weights the training samples. The
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Given: N labeled training examples (vi, yi) with yi ∈ {−1, 1} and
vi ∈ V , and an initial distribution D1(i) over the examples (if not
specified D1(i) = 1

N
).

For t = 1, ..., T :

• Train a weak classifier ht : V → {−1, 1} using distr. Dt.
• Calculate the error of ht : εt =

∑N

i=1
Dt(i)δ(yi �= ht(vi))

(δ is the indicator function).
• Compute αt = − 1

2
log (εt/(1 − εt)).

• Set Dt+1(i) = Dt(i) exp (−αtyiht(vi))/Zt, where Zt =

2
√

εt(1 − εt) is a normalization factor.

Output the the strong classifier H(v) = sign (f(v)), where

f(v) =
∑T

t=1
αtht(v).

Fig. 3. A brief description of the AdaBoost training procedure [10].

selected weak classifiers are combined into a strong classifier:

H(v) = sign(f(v)), where f(v) =
T∑

t=1

αtht(v). (7)

It has been shown that AdaBoost and its variations are
asymptotically approaching the posterior distribution [12]:

p(y|v)← q(y|v) =
exp{2yf(v)}

1 + exp{2yf(v)} . (8)

In this work, we use decision stumps as the weak classifiers.
Each decision stump corresponds to a thresholded feature:

h(Fj(v), tr) =
{

+1 if Fj(v) ≥ tr
−1 otherwise

(9)

where Fj(v) is the jth feature computed on v and tr is a
threshold. Finding the optimal value of tr for a given feature
is straightforward. First, the feature is discretized (say into
30 bins), then every value of tr is tested and the resulting
decision stump with the smallest error is selected. Checking
all the 30 possible values of tr can be done very efficiently
using the cumulative function on the computed feature
histogram. That way, we only need to scan the cumulative
function once for the best threshold tr for every feature.

2) Multi-class PBT: For completeness we also give a
concise review of multi-class PBT [37]. Training PBT is
similar to training a decision tree, except at each node a
boosted classifier, here AdaBoost, is used to split the data. At
each node we turn the multi-class classification problem into
a two-class problem by assigning a pseudo-label {−1, +1}
to each sample and then train AdaBoost using the procedure
defined above. The AdaBoost classifier is applied to split the
data into two branches, and training proceeds recursively.
If classification error is small or the maximum tree depth
is exceeded, training stops. A schematic representation of a
multi-class PBT is shown in Fig. 5, and details are given in
Fig. (4).

After a PBT classifier is trained based on the procedures
described in Fig. (4), the posterior p(y = k|v) can be
computed recursively (this is an approximation). If the tree
has no children, the posterior is simply the learned empirical
distribution at the node p(y = k|v) = q̂(y = k). Otherwise
the posterior is defined as:

p(y = k|v) = q(+1|v)pR(y = k|v) + q(−1|v)pL(y = k|v). (10)

Given: N labeled training examples S = (vi, yi) with yi ∈ {0 . . . 8}
and vi ∈ V , and a distribution D(i) over the examples (if not specified
D(i) = 1

N
). For the current node:

• Compute the empirical distribution of S for each k:
q̂(y = k) =

∑
i
D(i)δ(yi = k). If classification error is over

some threshold and depth of node does not exceeds maximum
value, continue training node, else stop.

• Assign pseudo-labels ŷ(k) ∈ {−1, +1} to each label k ∈
{0, ..,8}. First, for each feature Fj and threshold tr compute
histograms histL and histR according to:

histL(k) =
∑

i
δ(yi = k)δ(Fj (vi) < tr)D(i)

histR(k) =
∑

i
δ(yi = k)δ(Fj (vi) ≥ tr)D(i)

Normalize histL and histR , and compute the total entropy
according to: ZL ∗ Entropy(histL) + ZR ∗ Entropy(histR),
where Entropy(hist) =

∑
k

hist(k)log(hist(k)), and ZL and
ZR are the weights of all the samples in histL and histR
respectively. Finally, choose the feature/threshold combination
that minimizes overall entropy, and assign pseudo-labels using:

ŷ(k) = {−1 if (histL(k) < histR(k)) else + 1}
• After assigning pseudo-labels to each sample using ŷ from

above, train AdaBoost using samples S and distribution D.
• Using the trained AdaBoost classifier, split the data into (pos-

sibly overlapping) sets SL and SR with distributions DL and
DR. For each sample i compute q(+1|vi) and q(−1|vi), and:

DL(i) = D(i) ∗ q(−1|vi)
DR(i) = D(i) ∗ q(+1|vi)

Normalize DL and DR to 1. Initially set SL = S and SR = S,
then if DL(i) < ε example i can be removed from SL and
likewise if DR(i) < ε example i can be removed from SR.

• Train the left and right children recursively using SL and SR

with distributions DL and DR.

Fig. 4. A brief description of the training procedure for PBT multiclass
classifier [37].

Here q(y|v) is the posterior of the AdaBoost classifier, and
pL(y = k|v) and pR(y = k|v) are the posteriors of the left and
right trees, computed recursively. We can avoid traversing the
entire tree by approximating pL(y = k|v) with q̂L(y = k) if
q(−1|v) is small, and likewise for the right branch. Typically,
using this approximation, only a few paths in the tree are
traversed. Thus the amount of computation to calculate p(y|v)
is roughly linear in the depth of the tree, and in practice can
be computed very quickly.

B. Learning Generative Shape Models

Shape analysis has been one of the most studied topics
in computer vision and medical imaging. Some typical ap-
proaches in this domain include Principal Component Analysis
(PCA) shape models [4], [43], [20], the medial axis repre-
sentation [28], and spherical wavelets analysis [16]. Despite
the progress made [23], the problem remains unsolved. 3D
shape analysis is very difficult for two reasons: (1) there is no
natural order of the surface points in 3D, whereas one can use
a parametrization to represent a closed contour in 2D, and (2)
the dimension of a 3D shape is very high.

In this paper, a simple PCA shape model is adopted based
on the signed distance function of the shape. A signed distance
map is similar to the level sets representation [27] and some
existing work has shown the usefulness of building PCA
models on the level sets of objects [43]. In our hybrid
models, much of the local shape information has already
been implicitly fused in the discriminative appearance model,
however, a global shape prior helps the segmentation by
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Fig. 6. Classification result on a test volume. The first row shows three slices of part of a volume with the left hippocampus highlighted. The first image
in the second row shows a label map with each voxel assigned with the label maximizing p(y|V(N(s)). The other three figures in the second row display
the soft map, p(y = 1|V(N(s)) (left hippocampus) at three typical slices. For visualization, the darker the pixel, the higher its probability. We make two
observations: (1) Significant ambiguity has already been resolved in the discriminative model; and, (2) Explicit high-level knowledge is still required to enforce
the topological regularity.
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Fig. 5. Schematic diagram of a multi-class probabilistic boosting tree. During
training, each class is assigned with a pseudo label {−1, +1} and AdaBoost
is applied to split the data. Training proceeds recursively. PBT performs multi-
class classification in a divide-and-conquer manner.

introducing explicit shape information. Experimental results
with and without shape prior are shown in Table (III).

Our global shape model is simple and general. The same
procedure is used to learn the shape models for 6 anatomical
structures, namely, the left hippocampus (LH), right hippocam-
pus (RH), left caudate (LC), right caudate (RC), left putamen
(LP), and right putamen (RP). We do not apply the shape
model to the background or the left ventricle (LV) or right
ventricle (RV). The background is too irregular, while the
ventricles often have elongated structures and their shapes are
not described well by the PCA shape models. On the other
hand, ventricles tend to be quite dark in many MRI volumes
which makes the task of segmenting them relatively easier.

The volumes are registered and each anatomical structure is
manually delineated by an expert in each of the MRI volumes,
details are given in Section V. Basically, Brain volumes were
roughly aligned and linearly scaled (Talairach and Tournoux
1988). Four control points were manually given to perform
global registration followed by the algorithm [40] to perform
9 parameter registration. In this work n = 14 volumes were
used for training. Let R1

k, . . . , Rn
k denote the n delineated

training samples for region Rk. First the center of each sample
Ri is computed (subscript dropped for convenience), and the
centers for each i are aligned. Next, the signed distance map
(SDM) Si is computed for each sample, where S i has the same
dimensions as the original volume and the value of S i(a) is
the signed distance of the voxel a to the surface of R i.

We apply PCA to S1, . . . , Sn. Let S̄ be the the mean SDM,
and Q be a matrix with each column being a vectorized sample
Si − S̄. We compute its singular value decomposition Q =
UΣV T . Now, the PCA coefficient of S (here we drop the
superscript for convenience) are given by its projection β =
UT (S − S̄), and the corresponding probability of the shape
according to the Gaussian model is:

p(S) ∝ exp

(

−1
2
βT Σβ

)

(11)

Note that n = 14 training shapes is very limited compared
to the enormously large space in which all possible 3D
shapes may appear. We keep the components of U whose
corresponding eigenvalues are bigger than a certain threshold;
in the experiments we found that setting the threshold such
that 12 components are kept gives good results. Finally, note
that a shape may be very different from the training samples
but can still have a large probability since the probability
is computed based on its projection onto the PCA space.
Therefore, we add a reconstruction term to penalize unfamiliar
shape: ‖(I −UUT )(S − S̄)‖2, where I is the identity matrix.
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Fig. 7. The PCA shape model learned for the left hippocampus. The shapes
of the surface are shown at zero distance. The top-left figure shows the mean
shape, the first three major components are shown in the top-right and bottom-
right, and three random samples drawn from the PCA models (synthesized)
are displayed in the bottom-left.

The second energy term in Eqn. (4) becomes:

EPCA =
6∑

k=1

1
2
βT

k Σkβk +α3‖(I−UkUT
k )(Sk− S̄k)‖2. (12)

Fig. (7) shows a PCA shape model learned for the left
hippocampus; it roughly capture the global shape regularity for
the anatomical structures. Table (III) shows some experimental
results with and without the PCA shape models, and we see
definite improvements in the segmentations with the shape
models. To further test the importance of the term EPCA, we
initialize our algorithm from the ground truth segmentation
and then perform surface evolution based on shape only; we
show results in Table (III) and Fig. (10). Due to the limited
number of training samples and the properties of the PCA
shape model itself, results are far from perfect. Learning a
better shape model is one of our future research directions.

The term EPCA enforces the global shape regularity for
each anatomical structure. Another energy term is added to
encourage smooth surfaces:

ESM =
8∑

k=0

∫

∂Rk

dA, (13)

where
∫

∂Rk
dA is the area of the surface of region Rk.

When the total energy is being minimized in a variational
approach [14], [11], this term corresponds to the force that
encourages each boundary point to have small mean curvature,
resulting in smooth surfaces.

C. Learning to Combine The Models

Once we have learned EAP , EPCA, and ESM , we learn the
optimal weights α∗

1 and α∗
2 to combine them. For any choice of

α1 and α2, for each volume Vi in the training set we can use
the energy minimization approach from Section IV to com-
pute the minimal solution Ŵ i(α1, α2) of E(W,V). Different
choices of α1 and α2 will result in different segmentations,
the idea is to pick the weights so that the segmentations of
the training volumes are as good as possible.

Let ||W i−Ŵ i(α1, α2)|| measure the similarity between the
segmentation result under the current (α1, α2) and the ground
truth on volume Vi. In this paper, we use precision-recall [25]
to measure the similarity between two segmentations. One
can adopt other approaches, e.g. Hausdorff distance [23],

depending upon the emphasis on the errors. Our goal is to
minimize:

(α∗
1, α

∗
2) = arg min

(α1,α2)

∑

i

||W i − Ŵ i(α1, α2)||. (14)

We solve for α∗
1 and α∗

2 using a steepest descent algorithm so
that the segmentation results for all the training volumes are
as close as possible to the ground truth.

IV. SEGMENTATION ALGORITHM

In Section II we defined E(W,V) and in Section III we
showed how to learn the shape and appearance models and
how to combine them into our hybrid model. These were
the modeling problems, we now turn to the computing issue,
specifically, how to infer the optimal segmentation which
minimizes the energy (4) given a novel volume V. We begin
by introducing the motion equations used to perform surface
evolution for segmenting sub-cortical structures. Next we
discuss an explicit topology representation and then show how
to use it to perform surface evolution. We end this Section with
an outline of the overall algorithm.

A. Motion Equations

The goal in the inference/computing stage is to find the
optimal segmentation which minimizes the energy in Eqn. (4).
In our problem, the number of anatomical structures is known,
as are their approximate positions. Therefore, we can apply a
variational method to perform energy minimization. We adopt
a surface evolution method [44] to perform surface evolution
to minimize the energy E(W,V) in Eqn. (4). The original
surface evolution method is in 2D, here we give the extended
motion equations for EAP , EPCA, and ESM in 3D. For more
background information we refer readers to [44], [14]. Here we
give the motion equations for the continuous case, derivations
are given in the Appendix.

Let M be a surface point between region Ri and Rj . We
can compute the effect of moving M on the overall energy
by computing dEAP

dM , dEPCA

dM and dESM

dM . We begin with the
appearance term:

dEAP

dM
= −[log

p(y = i|V(N(M))
p(y = j|V(N(M))

]N, (15)

where N is the surface normal direction at M. Moving in the
direction of the gradient dEAP

dM allows each voxel to better fit
the output of the discriminative model. Effect on the global
shape model is:

dEPCA

dM
= −α1

[(
βT

i Σi − 2α3(Si − S̄i)
T (I − UiU

T
i )

)
Ji(M) −

(
β

T
j Σj − 2α3(Sj − S̄j)

T
(I − UjU

T
j )

)
Jj(M)

]
N. (16)

Ji(M) and Jj(M) are the Jacobian matrices for the signed
distance map for Ri and Rj respectively. Finally, the motion
equation derived from the smoothness term is:

dESM

dM
= −α2HN, (17)

where H is the curvature at M.
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Eqn. (15) contributes to the force in moving the boundary
to better fit the classification model, Eqn. (16) contributes
to the force to fit the global shape model, and Eqn. (17)
favors small curvature resulting in smoother surfaces. The final
segmentation is a result of balancing each of the above forces:
(1) each region should contain voxels that match its appearance
model p(y|V(N(M)), (2) the overall shape of each anatomical
structure should have high probability, and (3) the surfaces
should be locally smooth. Results using different combinations
of these terms are shown in Fig. (10) and Table (III).

B. Grid-Face Representation

In order to apply the motion equations to perform surface
evolution, an explicit representation of the regions in neces-
sary. 3D shape representation is a challenging problem. Some
popular methods include parametric representations [8] and
finite element representations [29]. The joint priors defined in
[43] are used to prevent the surfaces of different objects from
intersecting with each other in the level set representation.
The level set method [27] implicitly handles region topology
changes, and has been widely used in image segmentation.
However, the sub-cortical structures in 3D brain images are
often topologically connected, which introduces difficulty in
the level set implementation.

In this paper, we propose a grid-face representation to
explicitly code the region topology. We take advantage of
the particular form of our problem: we are dealing with a
fixed number of topologically connected regions that are non-
overlapping and together include every voxel in the volume.
Recall from Eqn. (1) that we can represent a segmentation
as W = {R0, . . . , R8}, where each Ri stores which voxels
belong to region i. If we think of each voxel as a cube, then
the boundary between two adjacent voxels is a square, or face.
The grid-face representation G of a segmentation W is the set
of all faces whose adjacent voxels belong to different regions.
It is worth to mention that although the shape prior is defined
by a PCA model for each structure separately, the actual region
topology is maintained by the grid-face representation, which
is a full partition of the lattice. Therefor, regions will not
overlap to each other.

The resulting representation is conceptually simple and
facilitates fast surface evolution. It can represent an arbitrary
number of regions and maintains a full partition of the input
volume. By construction, regions may be adjacent but cannot
overlap. Fig. (8) shows an example of the representation; it
bears some similarity with [26]. It has some limitations, for
example sub-voxel precision cannot be achieved. However,
this does not seem to be of critical importance in 3D brain
images, and the smoothness term in the total energy prevents
the surface from being too jagged.

C. Surface Evolution

Applying the motion equations to the grid-face representa-
tion G is straightforward. The motion equations are defined
for every point M on the boundary between two regions, and
in our representation, each face in G is a boundary point. Let
a1 and a2 be two adjacent voxels belonging to two different

regions, and M the face between them. Each of the forces
works along the surface normal N = a1−a2. If the magnitude
of the total force is bigger than 1 then the face M may move
1 voxel to the other side of either a1 or a2, resulting in the
change of the ownership of the corresponding voxel. The move
is allowed so long as it does not result in a region becoming
disconnected. Fig. (8) illustrates an example of a boundary
point M moving 1 voxel.

To perform surface evolution, we visit each face M in
turn, apply the motion equations and update G accordingly.
Specifically, we take a 2D slice of the 3D volume along an X-
Y , Y -Z , or X-Z plane, and then perform one move on each of
the boundary points in the slice. Essentially, the problem of 3D
surface evolution is reduced to boundary evolution in 2D, see
Fig. (8). During a single iteration, each 2D slice of the volume
is visited once; we perform a number of such iterations, either
until G does not change or a maximum number of iterations
is reached.

D. Outline of The Algorithm

Training:
1) For a set of training volumes with the anatomical struc-

tures manually delineated, train multi-class PBT to learn
the discriminative model p(y|V(N(a)) as described in
Section III-A.

2) For each anatomical structure learn its PCA shape model
as discussed in Section III-B

3) Learn α1 and α2 to combine the discriminative and
generative models as described in Section III-C.

Segmentation:

1) Given an input volume V, compute p(y|V(N(a)) for
each voxel a.

2) Assign each voxel in V with the label that maximizes
p(y|V(N(a)). Based on this classification map, we use a
simple morphological operator to find all the connected
regions. In each individual region, all the voxels are 6-
neighborhood connected and they have the same label.
Note that at this stage two disjoint regions may have
the same label. For all the regions with the same label
(except 0), we only keep the biggest one and assign the
rest to the background. Therefore, we obtain an initial
segmentation W in which all 8 anatomical structures are
topologically connected.

3) Compute the initial grid-face representation G based
on W as described in Section IV-B. Perform surface
evolution as described in Section IV-C to minimize the
total energy E(W,V) in Eqn. (4).

4) Report the final segmentation result W .

V. EXPERIMENTS

High-resolution 3D SPGR T1-weighted MR images were
acquired on a GE Signa 1.5T scanner as a series of 124
contiguous 1.5 mm coronal slices (256x256 matrix; 20cm
FOV). Brain volumes were roughly aligned and linearly scaled



9

1R 2R

3D grid face representation
0R

Slice along X Y plane

Surface Evolution

1R 2R

3D grid face representation

0R

Slice along X Y plane

EAPd
M
AP

d

M
EPCA
d
d

1R

2R

M

1a
M

M
ESM
d
d

0R

M

2a

2D View

M

2R

Overall
Force:

M’

1R

2R

M’

2D View

0R

Fig. 8. Illustration of the grid-face representation. Left: To code the region topology, a label map is stored in which each voxel is assigned with the label
of the anatomical structure to which the voxel currently belongs. Middle: Surface evolution is applied to a single slice of the volume, either along an X-Y ,
Y -Z , or X-Z plane. Shown is the middle slice along the X-Y plane. Right: Forces are computed using the motion equations at face M, which lies between
voxels a1 and a2. The sum of the forces causes M to move to M′, resulting in a change of ownership of a1 from R1 to R0. Top/Bottom: G before and
after application of forces to move M.

(Talairach and Tournoux 1988). Four control points were
manually given to perform global registration followed by
the algorithm [40] to perform 9 parameter registration. This
procedure is used to correct for differences in head position
and orientation and places data in a common co-ordinate
space that is specifically used for inter-individual and group
comparisons. All the volumes shown in the paper are manually
registered using the above procedure.

Our dataset includes 28 volumes annotated by neu-
roanatomists. The volumes were split in half randomly, 14
volumes were used for training and 14 for testing. The training
volumes together with the annotations are used to train the
discriminative model introduced in Section III-A and the
generative shape model discussed in Section III-B. After, we
apply the algorithm described in Section IV to segment the
eight anatomical structures in each volume. The training and
testing processes was repeated twice and we observed the
same performances. Computing the discriminative appearance
model is fast (a few minutes per volume) due to hierarchical
structure of PBT and the use of integral volumes. It takes an
additional 5 minutes to perform surface evolution to obtain the
segmentation, for a total of 8 minutes per volume.

Results on a test volume are shown in Fig. (10), along
with the corresponding manual annotation. Qualitatively, the
anatomical structures are segmented correctly in most places,
although not all the surfaces are precisely located. The results
obtained by our algorithm are more regular (less jagged) than
human labels. The results on the training volumes (not shown)
are slightly better than those on the test volumes, but the
differences are not large.

To quantitatively measure the effectiveness of our algorithm,
errors are measured using several popular criteria, including
Precision-Recall [25], Mean distance [43], and Hausdorff
distance [23]. Let R be the set of voxels annotated by an expert

and R̂ be the voxels segmented by the algorithm. These three
error criteria are defined, respectively, as:

Precision =
R ∩ R̂

R̂
; Recall =

R ∩ R̂

R
(18)

dM (R, R̂) =
1
|R|

∑

s∈R

minb∈R̂||s− b||. (19)

dH(R, R̂) = inf{ε > 0|R ⊆ R̂ε} (20)

In the definition of dH , R̂ε denotes the union of all disks with
radius ε centered at a point in R̂. Finally, note that dH is an
asymmetric measure.

TABLE II

LH RH LC RC LP RP LV RV Av
Recall 69% 68% 86% 84% 79% 78% 91% 91% 81%
Precis. 78% 72% 85% 85% 70% 78% 82% 82% 79%

(a) Results on the training data

LH RH LC RC LP RP LV RV Av
Recall 69% 62% 84% 81% 75% 75% 90% 90% 78%
Precis. 77% 64% 81% 83% 68% 72% 81% 81% 76%

(b) Results on test data

LH RH LC RC LP RP LV RV Av
Recall 66% 84% 77% 77% 83% 83% 76% 76% 78%
Precis. 47% 54% 78% 78% 71% 77% 81% 72% 70%

(c) Results on the test data by FreeSurfer [9]

Precision and recall measures for the results on the training and test volumes.
The test error is only slightly worse than the training error, which says that
the algorithm generalizes well. We also test the same set of volumes using
FreeSurfer [9], our results are slightly better.

Table (II) shows the precision-recall measure [25] on the
training and test volumes for each of the eight anatomical
structures, as well as the overall average precision and recall.
The test error is slightly worse than the training error, but again
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horizontal sagittal coronal 3D view

step 1
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step 9

Fig. 9. Results on a test volume with the segmentation algorithm initialized with small seed regions. The algorithm quickly converges to the final result. The
final segmentation are nearly the identical result as those shown in Fig. 10, where the initial segmentations were obtained based on the classification result
of the discriminative model. This validates the hybrid discriminative/generative models and it also demonstrates the robustness of our algorithm.

TABLE III

LH RH LC RC LP RP LV RV Av
Recall 79% 69% 83% 77% 72% 72% 88% 85% 78%
Precis. 63% 51% 78% 77% 60% 68% 82% 82% 70%

(a) Results using EAP only

LH RH LC RC LP RP LV RV Av
Recall 76% 67% 81% 77% 71% 70% 90% 89% 78%
Precis. 70% 57% 83% 84% 69% 74% 82% 81% 75%

(b) Results using EAP + ESM only

LH RH LC RC LP RP LV RV Av
Recall 79% 79% 87% 86% 86% 87% 96% 97% 87%
Precis. 51% 50% 45% 46% 56% 62% 95% 95% 63%
(c) Results using EPCA only, with initialization from ground truth.

Results on the test data using different combinations of the energy terms in
Eqn. (4). Note that the results obtained using EPCA are initialized from
ground truth.

the differences are not large. To directly compare our algorithm
to an existing state of the art method, we tested the MRI data
using FreeSurfer [9], and our results are slightly better. We
also show segmentation results by FreeSurfer in the last row of
Fig. (10); since FreeSurfer uses Markov Random Fields (MRF)
and lacks explicit shape information, the segmentation results
were more jagged. Note that FreeSurfer segments more sub-
cortical structures than our algorithm, and we only compare
the results on those discussed in this paper.

Table (IV) shows the Hausdorff and Mean distances be-
tween the segmented anatomical structures and the manual

TABLE IV

LH RH LC RC LP RP LV RV Av
dH(R̂, R) 6.6 10.0 6.6 5.0 10.4 8.6 5.6 6.0 7.4
dH(R, R̂) 10.4 11.9 7.9 8.6 10.3 9.7 16.0 13.9 11.1

(a) Results on training data measured using Hausdorff distance

LH RH LC RC LP RP LV RV Av
dH(R̂, R) 6.7 14.3 8.0 6.7 10.2 10.1 6.3 6.9 8.7
dH(R, R̂) 12.1 13.6 8.1 8.5 10.6 9.4 11.4 14.7 11.1

(b) Results on test data measured using Hausdorff distance

LH RH LC RC LP RP LV RV Av
mean 1.8 2.2 1.3 1.3 2.5 2.0 1.1 1.0 1.7

σ 0.53 0.52 0.24 0.36 0.78 0.39 0.38 0.13 0.4
(c) Results on training data measured using Mean Distance

LH RH LC RC LP RP LV RV Av
mean 2.0 2.8 1.5 1.4 2.6 2.4 1.1 1.1 1.9

σ 0.37 1.1 0.33 0.29 0.83 0.76 0.26 0.24 0.5
(d) Results on test data measured using Mean Distance

(a,b) Hausdorff Distances for the results on the training and test volumes; the
measure is in terms of voxels. (c,d) Mean distance measures for the results
on the training and test volumes.

annotations on both the training and test sets; smaller distances
are better. The various error measure are quite consistent – the
hippocampus and putamen are among the hardest to accurately
segment while the ventricles are fairly easy due to their distinct
appearance. For the asymmetric Hausdorff distance we show
both dH(R̂, R) and dH(R, R̂). For the Mean distance we give
the standard deviation, which was also reported in [43]. On
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the same task, Yang et al. [43] reported a mean error of 1.8
and a variation of 1.2, however, the results are not directly
comparable because the datasets are different and their error
was computed using the the leave-one-out method with 12
volumes in total. Finally, we note that the running time of our
algorithm, approximately 8 minutes, is around 20 to 30 times
faster then theirs (which takes a couple of hours per volume).
The speed advantage of our algorithm is due to: (1) efficient
computation of the discriminative model using a tree structure,
(2) fast feature computation based on integral volumes, and
(3) variational approach of surface evolution on the grid-face
representation.

To demonstrate how each energy term in Eqn. (4) affects the
quality of the final segmentation, we also test our algorithm
using EAP only, EAP and ESM , and EPCA. To be able to test
using shape only, we initialize the segmentation to the ground
truth and then perform surface evolution based on the E PCA

term only. Although imperfect, this procedure allows us to
see whether EPCA on its own is doing something reasonable.
Results can be seen in the second, third and forth row in
Fig. (10) and we report precision and recall in Table (III).
We make the following observations: (1) The sub-cortical
structures can be segmented fairly accurately using EAP only.
This shows a sophisticated model of appearance can provide
significant information for segmentation. (2) The surfaces are
much smoother by adding the ESM on the top of EAP ,
and we also see improved results in terms of errors. (3) The
PCA models are able to roughly capture the global shapes of
the sub-cortical structures, but only improve the overall error
slightly. (4) The best set of results are obtained by including
all three energy terms.

We also asked an independent expert trained on annotating
sub-cortical structures to rank these different approaches based
on the segmentation results. The ranking from the best to
the worst are respectively: Manual, E, EAP + ESM , EAP ,
FreeSurfer, EPCA. This echoes the error measures obtained
in Table (II) and Table (III).

As stated in Section IV-D, we start the 3D surface evolution
from an initial segmentation based on the discriminative
appearance model. To test the robustness of our algorithm,
we also started the method from the small seed regions shown
in Fig. (9). Several steps in the surface evolution process are
shown. The algorithm quickly converges to nearly the identical
result as shown in Fig. (10), even though it was initialized
very differently. This demonstrates that our approach is robust
and the final result does not depend heavily on the initial
segmentation. The algorithm does, however, converge faster
if it starts from a good initial state.

VI. CONCLUSION & FUTURE WORK

In this paper, we proposed a system for brain anatomical
structure segmentation using hybrid discriminative/generative
models. The algorithm is very general, and easy to train and
test. It has very few parameters that need manual specification
(only a couple of generic ones in training PBT, e.g. the depth
of the tree), and it is quite fast – taking on the order of minutes
to process an input 3D volume.

We evaluate our algorithm both quantitatively and qualita-
tively, and the results are encouraging. A comparison between
our algorithm using different combinations of the energy terms
and FreeSurfer is given. Compared to FreeSurfer, our system
is much faster and the results obtained are slightly better.
However, FreeSurfer is able to segment more sub-cortical
structures. A full scale comparison with other existing state
of art algorithms needs to be done in the future.

We emphasize the learning aspect of our approach for
integrating the discriminative appearance and generative shape
models closely. The system makes use of training data anno-
tated by experts and learns the rules implicitly from examples.
A PBT framework is adopted to learn a multi-class discrim-
inative appearance model. It is up to the learning algorithm
to automatically select and combine hundreds of cues such
as intensity, gradients, curvatures, and locations to model
ambiguous appearance patterns of the different anatomical
structures. We show that pushing the low-level (bottom-up)
learning helps resolve a large amount of ambiguity, and engag-
ing the generative shape models further improves the results
slightly. Discriminative and generative models are naturally
combined in our learning framework. We observe that: (1)
the discriminative model plays the major role in obtaining
good segmentations; (2) the smoothness term further improves
the segmentation; and (3) the global shape model further
constrains the shapes but improves results only slightly.

We hope to improve our system further. We anticipate that
the results can be improved by: (1) using more effective shape
priors, (2) learning discriminative models from a bigger and
more informative feature pool, and (3) introducing an explicit
energy term for the boundary fields.
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APPENDIX: DERIVATION OF MOTION EQUATIONS

Here we give detailed proofs for the motion equations
(Eqn. (15) and Eqn. (17)). For notational clarity, we write
the equations in the continuous domain, and their numerical
implementations are just approximations in a discretized space.
Let M = (x(u, v), y(u, v), z(u, v)) be a 3D boundary point,
and let R be a region and ∂R = S its corresponding surface.

Motion equation for EAP

The discriminative model for each region Rk is

−
∫

Rk

log(p(y = k|V(N(M))da, (21)

as given in Eqn. (5). A derivation of the motion equation in
the 2D case, based on Green’s theorem and Euler-Lagrange
equation, can be found in [44]. Now we show a similar result
for the 3D case. The Curl theorem [1] says

∫

R

(∇ ·F)da =
∫

∂R

FdA

where F : �3 → �3 and ∇ ·F is the divergence of F, which
is a scalar function on �3. Therefore, the motion equation for
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the above function on a surface point M ∈ ∂R can be readily
obtained by the Euler-Lagrange equation as

−(∇ · F)N,

where N is the normal direction of M on ∂R. In our case,
every point M on the surface ∂Ri is also on the surface ∂Rj of
its neighboring region Rj . Thus, the overall motion equation
for the discriminative model is

dEAP

dM
= −[

log
p(y = i|V(N(M))
p(y = j|V(N(M))

]
N.

Motion equation for ESM

The motion equation for a term similar to ESM was shown
in [11] and more clearly illustrated in [14]. To make this paper
self-contained, we give the derivation here also. For region R,

ESM =
∫

∂R

dA =
∫ ∫ √

EG− F 2dudv

where
E =

(∂x

∂u

)2
+

(∂y

∂u

)2
+

(∂z

∂u

)2
,

F =
(∂x

∂u

)(∂x

∂v

)
+

(∂y

∂u

)(∂y

∂v

)
+

(∂z

∂u

)(∂z

∂v

)
,

and
G =

(∂x

∂v

)2 +
(∂y

∂v

)2 +
(∂z

∂v

)2
.

∂

∂t

∫

∂R

dA =

∫ ∫ √
EG − F 2

t
dudv

=

∫ ∫
EtG + GtE − 2FFt

2
√

EG − F 2
dudv

=

∫ ∫
2G〈Mut, Mu〉 + 2E〈Mvt, Mv〉 − 2F (〈Mvt, Mu〉 + 〈Mut, Mv〉)

2
√

EG − F 2
dudv

=

∫ ∫

−〈GMuu, Mt〉 + E〈Mvv , Mt〉 − 2F 〈Muv , Mt〉√
EG − F 2

dudv

=

∫ ∫

−〈G〈Muu, N〉N + E〈Mvv, N〉N − 2F 〈Muv, N〉N, Mt〉√
EG − F 2

dudv

=

∫ ∫

〈−2HN, Mt〉
√

EG − F 2dudv

=

∫ ∫

〈−2HN, Mt〉dA

Letting Mt = HN leads to the decrease in the energy. Thus,
the motion equation for ESM is:

dESM

dM
= −Mt = −HN,

where H is the mean curvature and N denotes the normal
direction at M.


