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Abstract

This paper presents a stochastic jump-diffusion method for optimizing a Bayesian posterior probability
in segmenting range data and their associated reflectance images. The algorithm works well on complex
real world scenes (indoor and outdoor), which consist of an unknown number of objects (or surfaces)
of various sizes and types, such as planes, conics, smooth surfaces, and cluttered objects (like trees and
bushes). Formulated in the Bayesian framework, the posterior probability is distributed over a countable
number of subspaces of varying dimensions. To search for globally optimal solution, the paper adopts a
stochastic jump-diffusion process[21] to simulate a Markov chain random walk for exploring this complex
solution space. A number of reversible jump[18] dynamics realize the moves between different subspaces,
such as switching surface models and changing the number of objects. The stochastic Langevin equation
realizes diffusions, such as region competition[47] in each subspace. To achieve effective computation,
the algorithm pre-computes some importance proposal probabilities through Hough transforms, edge
detection, and data clustering. The latter is used by the Markov chains for fast mixing. For the varying
sizes (scales) of objects in natural scenes, the algorithm computes in a multi-scale fashion. The algorithm
is first tested against an ensemble of 1D simulated data for performance analysis. Then the algorithm is
applied to three datasets of range images under the same parameter setting. The results are satisfactory
in comparison with manual segmentation.

Keywords: Energy Minimization, Jump-Diffusion, Range Segmentation, Markov Chain Monte Carlo,
Data Clustering, Edge Detection, Hough Transform, Changing Point Detection.
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1 Introduction

a): Office scene 1 b): Office scene 2

c): A street scene d): A cemetery scene

Figure 1: Four examples of indoor and outdoor scenes from the Brown range dataset. The laser scanner

scans the scene in cylindric coordinates and produces panoramic views of the scenes.

This paper is concerned with the segmentation and surface reconstruction of real world scenes from
laser range images. Some typical examples of the range images, both indoor and outdoor, are shown in
Fig. 1. Our research interest is motivated by some new developments in sensor technology and demands

in applications.

1. Recently, high precision laser range scanners have become accessible to many users to acquire
complex real world scenes like those displayed in Fig. 1. In aerospace imaging, 3D Lidar images
have accuracy up to 1 centimeter for terrain maps and city scenes. These images provide much more
accurate depth information than conventional vision cues, such as motion, shading, and binocular

stereo. Thus it is increasingly important to have effective algorithms for parsing these range images.

2. There are new applications in graphics, visualization and spatial information management, for
example, image based rendering, augmented reality, and spatio-temporal databases of 3D urban
and suburban maps and developments. These demand the reconstruction of complex 3D scenes

from range data.

3. The study of 3D range data is also motivated by the need of prior knowledge (probabilistic models)
in solving the ill-posed problems in vision. Currently, most vision algorithing assume low level

smoothness priors. Though some work has been done for studying natural image statistics[26] and



learning priors from optic images[48], to the best of our knowledge, there is no work for learning
prior models, for example the layout of 3D objects, from real world range scenes as Fig. 1 shows.

Such prior models of 3D scenes are badly needed for many 3D vision tasks.

In contrast to the new developments and applications, existing range image segmentation algorithms
are mostly motivated by traditional applications in recognizing industry parts in assembly lines, and
thus they are focused on block worlds with mostly polyhedra objects. In the literature, methods on
general image segmentation have been introduced and extended to rang image segmentation, for example,
edge detection[29], region based methods|3, 6], and surface fitting[22], clustering[23, 15|, and generalized
Hough transform[4] for detecting parametric surfaces of low dimensions. We refer to (Hoover et al, 1996)
for a survey of range segmentation algorithms and a good empirical comparison done jointly by a few
groups[24]. One latest interesting work dealing with range data is directed to [30]. Generally speaking,
algorithms for range segmentation are not as advanced as those for intensity image segmentation. For
example, there is no algorithm, to our knowledge, which can satisfactorily segment complex scenes as
those displayed in Fig. 1.

The difficulties for segmenting real world scenes lie in several aspects.

Firstly, natural scenes contain many types of objects, for example, man-made objects (buildings,
desks), animate objects (human and animals), and free form objects (trees and terrain). These objects
should be represented by various families of surface models which have different dimensions of parameter-
ization. For example, Shade et al.[40] in graphics argued for a spectrum of representation, from polygon
to sprites and planar texture maps, for various precision requirements of photorealism. Thus an algorithm
must engage multiple surface models in representation and be capable of switching between these models
in computation. In the formulation of Bayesian inference, the posterior probability (or energy functional)
is distributed over a countable number subspaces of varying dimensions. Each subspace is for a certain
number of surface models combined. Thus conventional greedy algorithms are not applicable.

Secondly, objects (or surfaces) in natural scene come with multiple scales. For example, the office
scenes in Fig. 1 contain large surfaces such as walls, ceilings, and floors, middle size objects such as people,
chairs and tables, and small objects such as books and cups on the desk top. This is in contrast with the
block world (see Figures 13 and 14) where objects are of similar sizes. In computation, the algorithm must
engage large and small moves and extract information at multiple scales. In representation, this broad
range of scales seems to disable the conventional model complexity criteria, such as MDL (minimum
description length)[39], AIC (Akaike Information Criterion) [1], BIC (Bayesian information criterion)[2],
which are derived from the concern of information coding. Thus other prior models should be sought to

ensure that surfaces of various sizes appear in a scene and thus in a segmentation.



Thirdly, though range data are very accurate on depth, they are very noisy in comparison with optical
images around object boundaries. It gets worse in objects like trees and bushes. Furthermore depth data
are missing at infinity objects, such as the sky, or at metal, glass and ceramic objects where the laser
rays never return to the scanner.

Motivated by these problems, this paper presents a stochastic jump-diffusion algorithm for segmenting
and reconstructing 3D scenes from range images. In comparison with previous work on range segmenta-

tion, the paper makes the following contributions.

1. To deal with the variety of objects in real world scenes, this paper incorporates five types of surface
models, such as planes and conics for man-made objects, splines for free-form flexible objects,
and a non-parametric (3D histogram) model for cluttered objects. These surfaces models compete
to explain the range data under the constraints of a statistical prior for model complexity. The
paper also introduces various prior models on surfaces, boundaries, and vertices (corners) to ensure

regularities.

2. To handle missing range data, the algorithm integrates the range data with their associated re-
flectance map under the Bayes framework. The reflectance measures the proportion of laser energy
returned from surface in [0,1] and therefore carries material properties. It is especially useful for

glags, metal, ceramics, and the sky.

3. To achieve globally optimal solutions, the algorithm simulates ergodic Markov chains to sample the
posterior probability over a complex solution space with countable subspaces of varying dimensions.
The Markov chain consists of reversible jumps and stochastic diffusions. The jumps realize split
and merge, model switching, while the diffusions realize boundary evolution and competition and

model adaptation.

4. To improve the convergence speed and use information at multiple scales, the algorithm pre-
computes some bottom-up information in a coarse-to-fine manner: edge detection and surface
clustering at multiple scales. The computed information is expressed as importance proposal
probabilities[42] on the surface and boundaries for narrowing the search spaces in a probabilis-
tic fashion, and drives the Markov chain for fast mixing. This follows a data driven Markov chain

Monte Carlo method which has been successfully applied in parsing optical images[42, 43].

The algorithm is first tested against an ensemble of one hundred 1D simulated range data for per-
formance analysis. Then the algorithm is applied to three datasets of range images. The first two are

the standard USF polyhedra data and curved-surface data for comparison, and the third is from Brown



university which contains real world scenes. The experiments demonstrate robust and satisfactory results
under the same parameter setting.

In the following of the paper, we first discuss the jump-diffusion process and evaluate the performance
in 1D simulated data. Then we present a Bayesian formulation of the problem and the design of algorithm.

Finally, we show experimental results and conclude with some critical discussions.

2  Jump-diffusion for energy minimization: a toy example

In this section, we discuss the jump-diffusion and bottom-up approaches using an ensemble of simulated
1D range data, thus the fundamental ideas of the algorithm will not be entangled in the details of
the 2D range segmentation problem. Furthermore since we know the ground truth for the simulated
data, we evaluate how well the algorithm approaches globally optimal solutions and we also compare the

convergence speeds of the jump-diffusion algorithms with different designs.

2.1 Segmenting 1D range data: Problem formulation

Figure 2.a displays a simulated 1D range image I(z), = € [0, 1]. It is generated by adding Gaussian noise
N(0,0?) to the original surfaces I, in figure 2.b. Iy, consists of an unknown number of k surfaces which

could be either straight lines or circular arcs, separated by changing points,
O=2p<z1 <2< --- <21 <z, = 1.

Let ¢4; € {line,circle} indexes the surface types for interval [z;_1,z;) with parameters 6;, i = 1,2, ..., k.
For a straight line § = (s, p) represents the slope s and interception p. For a circular arc, 8 = (£,7,7)
represents the center (£,7) and radius ;. Thus the “world scene” is represented by a vector of random
variables,

W= (k {zi:i=12,..k—1}, {(¢,6;);3 =12, .. k}).

The surface I, is fully determined by W with
I(z) =1,(x; 4;,6;),z € [zi-1,%i),i = 1,2, ..., k.

By standard Bayesian formulation, we have the posterior probability

k

koo
POVID cexp{—3 5 [ (1(a) — Lo(s: i, 0)Pds} - p(k) [ (61180 v
i=1

Ti-t i=1
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Figure 2: a). A 1D range image I(z), = € [0,1), b). the true segmentation Wiy, c). edgeness measure
b(z) =z € [0,1) for changing point detection on I. d). The best solution W* found by the algorithm
plotted against Wyy,.

The first factor above is the likelihood and the rest are prior probabilities p(k) oc exp~?°F and p(6;|¢;) o

AF0;

exp” 7Y the parameters which penalize the parameter numbers #6;. Other variables are assumed to be

uniformly distributed for simplicity. Thus an energy function is defined,

2022/%1 ) — I a:éz,ﬁ))2dx+>\k+z#0 )

i=1

Now, the problem is that W does not have a fixed dimension. For example, if there are 8 objects (k = 8)
with 5 lines and 3 circular arcs, then W has 74+ 2 x 5 4+ 3 x 3 = 26 dimensions. But if £ = 10 with
4 lines and 6 circular arcs,then it has 35 dimensions. The probability p(W|I) (or the energy E(W)) is
thus distributed over a countable number of subspaces of varying dimensions. Thus to achieve globally
optimal solutions, we should adopt more advanced energy minimization approach — the jump-diffusion

method via Markov chain Monte Carlo.



2.2 Background of jump-diffusion

In statistics literature, there were some designs of hybrid sampler (Tierney, 1994) which traverses param-
eter spaces of varying dimensions by random choices of different Markov chain moves. Grenander and
Miller (1994) first introduced the jump-diffusion process which mixed the Metropolis-Hastings method[34]
and Langevin equations[17]. Other notable work includes (Green, 1995) for reversible-jumps and (Phillips
and Smith, 1995) for model comparison with reversible jumps. In this subsection, we briefly present the
basic ideas and discuss some problems with convergence speed.

In the 1D range segmentation problem above, let {2 denote the solution space which is a union of a

countable number of spaces

where n = (k, {1, ..., £x) indexes the various combinations and subspace. The algorithm simulates ergodic
Markov chain traversing the solution space by coordinating two types of moves: reversible jumps between

different subspaces and stochastic diffusion within each subspace.

1. Rewversible jumps

Let W = (n, ) be the state of a Markov chain at time ¢ with ¢ € €2,,. In an infinitesimal time interval
dt, the Markov chain jumps to a new space €, (m # n) at state W' = (m, ¢). There are three types
of moves: 1). switching a line to a circular arc, or vice versa, 2). merging two adjacent regions to a line
or a circle, 3). split a region into two regions (lines or circles). Thus a subspace €, with & regions is
connected to k 4+ 2 x (kK — 1) +4 x k = 7k — 2 other subspaces by the three types of moves. We denote
by C(n) the set of indexes to the 7K — 2 subspaces, and denote

J(n, %) = Umecn)m, and (m,¢) € J(n,¢) iff (n,v) € T(m, ¢).

the spaces connected to point (n,1) by the three jumps.
The jump is realized by a Metropolis move[34] which proposes to move from (n, ) to (m, ¢) (m # n)
by a proposal probability g(n — m)g(¢|m)d¢ and accepts the proposal with probability

g(m = n)q(y|n)dy - p(m, 4[1)d¢

a(n = m)q(glm)dg - pln, pID)dy 3)

a((n, ) = (m, ¢)) = min(1,

In all designs, we have

Z gln -=m)=1 Vn.
meC(n)

The Markov transition probability is

P((n,¥) = (m, ¢))d¢ = q(n = m)q(¢|m)dé o((n,¢) = (m, ¢)).



Then for any two Borel sets A C Q,, and B C £y, the detailed balance equation holds

[ 290y [ P(n,9), (m, 9)dg = [ p(m, @iD)ds [ Pl(m, 9), (n,9))d. @)
B B A

We can view the subspaces €2, 2, as discrete points with probabilities,

ww)= | p(nyiDd, atm) = [ plm, .
the discrete transition matrix is P with each element

Pam = P(n —m) = Jo, p(n,|D)dy [, P((n, ) — (m,¢))d¢,  if m € C(n), -

0, else

Then we have an irreducible and aperiodic Markov chain with detailed balance
w(m)P(m — n) = n(n)P(n = m), Vn,m.
Thus we have the following conclusion from the Perron-Frobenius theorem (see [8]).

Theorem 1 Suppose the total number k of object is finite in a scene, the three types of jumps (model
switching, split, and merge) realize an irreducible and aperiodic Markov chains with a finite stochastic
matriz P. Then starting with an arbitrary initial distribution m,, after M jumps, the Markov chain state

follows a probability that approaching © as the unique invariant probability,
1oPM =1 + O(|X2|™).
0 < |A2| < 1 is the second largest eigenvector modulus (SLEM) of P.
Thus the Markov chain visits each subspace 2, at probability 7(n) after some burning period M > M,.

2. Stochastic diffusions
But not every two points ¢ € Q, and ¢ € €, are connected directly by the three jumps. Thus
stochastic diffusion (or Langevin) equations are used to sample (or minimize) in each subspace €,. As

n = (k,f1,...,£) is fixed, the energy functional E(W') becomes

E[Y] = E(z1, ..., 251, 01,...,0) = —Z/ (I(z) — Io(z; 4, 0;))%dz + const.

The Langevin equation is a steepest descent driven by Gaussian random force dw; (Brownian motion)

with temperature T,

ap= -2

The following conclusion is well known in the literature (see [17] and refs therein).

dt + /2T (t)dw;, dw; ~ N(0, (dt)?).



Theorem 2 The continuous Langevin equation above simulates a Markov chain with stationary density
7T(¢) o e_E(w)/T.

For example, the movement of changing point is driven by

dz;(t) 1
dt 202

(I(z) = To(z; 451, 0;-1))% — (I(z) — Io(z; 4, 6;))?) + /2T (t)N(0,1).

This is the 1D case of the region competition equation[47]. In practice, the Brownian motion is found to
be useful to avoid local pitfalls. For ©;,7 = 1,2..., &k, it may appear that we can fit the best 8; for each
interval [z;_1, ;) instead of running the diffusion. But This usually is an “over-commitment” because
the current interval may contain more than one object. Thus a question rises for how long we should run

the diffusion between the jumps.

3. The coordination of jumps and diffusions
The continuous diffusion is interrupted by some jumps at time instances ¢| < fo < --- < tps... a8
Poisson events. In practice, the diffusion always runs in discrete time steps with A¢. Thus the discrete

waiting time 7; between two consecutive jumps is

w:%t]'wp(w):e R

with the expected waiting time E[w] = 7 which controls the frequency of jumps. Then the two processes
realize ergodic Markov chain sampling the posterior probability p(W |I) over the solution space Q[21].
Due to the strong structures in real world signals/scenes, the posterior probability is often very “cold”,
thus one may have to raise the temperature slightly ("= 5 10) and reduce it gradually to ("= 0.1 1) to
find a nearly global optimum.

Figure 3 shows two trials (thin and thick curves respectively) of the jump-diffusion process running
on the input 1D range data in Figure 2. The energy plots go up and down (i.e. not greedy) and the
continuous energy curves are interrupted by jumps.

To summarize the jump-diffusion process, we draw figure 4 to illustrate the Markov chain dynamics.
In figure 4, three two dimensional subspaces {1y, {2, wp are illustrated with some probabilities represented
by the landscapes. At each subspace, some trials of the diffusion equations are simulated from a point

(see several pathes). Then the Markov chain can jump between these subspaces as the large arrows show.

2.3 Data-driven techniques and convergence evaluation

Though the jump-diffusion is a general tool for energy minimization. Its applications to computer vision

have been very limited (indeed prohibited) by its computing speed. There are some theorems for bounding
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Figure 3: The plots of the energy E(W) against running time ¢ of two Markov chain trials on the signal
in fig.2.

the second largest eigenvalue A9 by the conductance of the transition graph given by the stochastic matrix
P, 1n[8]. Such analysis provides us with some intuition of improving the speed.

We observed that the bottlenecks are in the jumps affected by the design of proposal probabilities,
g(¢|m) and ¢(¢|n) in equation (3). More specifically,

q(0;|4;, [zi-1, ;) switch [z;_1,z;) to model (¢;, 6;);
g(¢|m) =< q(0|¢, [zi2, 7)) merge to a model (£, 6);
q(z|[zi-1,2:))q(0a|la; [zi-1,2))q(Op|Cp, [z, zi)) split [z;_1,z;) into (£q,6,) and (£, 0p) at .
(6)
In statistical literature(Grenander and Miller 94 and Green 95), the proposal probabilities were taken
mostly as uniform distributions. That is to jump to randomly selected lines or/and circles for new models.
Such proposals are almost always rejected because the ratio p(m, ¢|I)/p(n, |I) = e=2F is close to zero.
To have smart jumps, the Markov chain must be equipped with some domain knowledge (or heuristics).
Recently the authors introduced a data-driven Markov chain Monte Carlo scheme[42] which computes
the proposal probabilities by bottom-up method in each of the parameter space for z, (line, s, p) and
(are,&,m,7)-
1. Hough transform in the model spaces. For example, Figure 5.a is the Hough transform[25, 4] in the
line space (i.e. plane 6 = (s, p)). The crosses are detected as candidates Hl(iil)e, Hl(ii)e, vy Hl(igg“e). Figure 5.b

is the Hough transform results on the circular arc space 8 = (£,,y) with bounds. The balls are candidate

circles 0&2, 0&2, vy egi‘ém) with the sizes representing the weights (total number of votes received). Thus,



Figure 4: An illustration of the jump-diffusion process.

when we propose a new model for an interval [a,b), we compute the importance proposal probability by

Parzen windows centered at the candidates.
N, .
q(0]4,[a,0) =S w,G(O — 6), £ € {line, arc}.
i=1

wj is the accumulated weights voted from the data in [a, b).

2. FEdge detection in the = space. For example, Figure 2.b shows the result of an edge strength
f(z|VG %1, V%G * 1) based on two filters: the 1st and 2nd derivatives of Gaussians. Instead of making a
hard decision which is bound to be unreliable, we treat the strength measure as a probability. Thus the

proposal for changing point is

f(z|VG 1, V3G * T)
a(e|[a,) = L :
[, f(z|VG+1,V2G « T)dx
At present we are not able to link the design of ¢()’s to the convergence rate analytically. Thus we
seek empirical comparison.? An ensemble of 100 1D range data (like Fig. 2) are simulated randomly with

the truth segmentation (global minimum) known. Three Markov chain designs are compared over the
100 1D range data.

e MCMC I: use uniform distributions for ¢()’s, no data-driven heuristics.
e MCMC II: use Hough transform results for g(6| ¥, [a,b)) and uniform distribution for ¢(z|[a, b)).

¢ MCMC III: use both Hough transform and edge detections for proposals.

2The simulation on this pilot example was implemented by a MS student Qiming Luo, and the results were first reported

in a unpublished technical report (Zhu, Luo and Zhang, 1999).
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Figure 5: Results of Hough transforms on the signal in Fig. 2).a a). on the line model space (s, p), b). in

the circle model space (£,n,7).

Figure 2.d displays the optimal solution W* found by MCMC III. Figure 3 shows the energy E(W)
against running time for the input in Figure 2.a by the thin curve (MCMC II) and thick curves (MCMC
ITT). Figure 6 plots the energy changes averaged over 100 signals for 10,000 steps, the energy jumps
disappear because of averaging. The dotted curve is for MCMC 1, the dash-dotted curve is for MCMC
II, and the solid curve is for MCMC III. The bottom line is the average “true” global optimal energy.
Figure 6.b is a zoom-in view of the first 2,000 steps of MCMC II and MCMC III.

To summarize, the importance proposal probabilities exponentially improve the convergence speed.
In this experiment, the improvement is mostly from the Hough transform as the edge detection heuristics
has rather high entropy (see Fig. 2.b). The so designed jump-diffusion process is capable of finding nearly

global minima regardless of initial states.

3 Bayesian Formulation: integrating cues, models and prior

In this section, we formulate the problem of 2D range segmentation and surface reconstruction under the
Bayesian framework by integrating two cues, five families of surface models, and various prior models.
3.1 Problem formulation

We denote an image lattice by A = {(i,7) : 0 <4 < L;,0 < j < Lo}. A ranger scanner captures two

images. One is the 3D range data which is a mapping from lattice A to a 3D point,
D:A— R? D(i, 5) = (z(2,7), (i, ), 2(4, 5))-

11
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Figure 6: The energy curves of MCMC II (thin) and MCMC III (thick) averaged over 100 randomly

generated signals in a). 10,000 steps, and b). 2,000 steps.

(4,) indexes a laser ray that hits a surface point (z,y, z) and returns. The other is a reflectance map
I:A—{0,1,..,G}

I(4, 7) is the portion of laser energy returned from point D(i, §). I(,j) measures some material properties.
For example, surfaces of high specularities, such as glass, ceramics, metals, appear dark in I. I(i,5) =0
for mirrors and surfaces at infinity, such as the sky. D(%,7) is generally very noisy and thus unreliable
when I(i, j) is low, and is considered a missing point if I(i, ) = 0.

The objective is to partition the image lattice into an unknown number of K disjoint regions,
A=UE_ R, R,NR,=0 Ym#n.

As natural scenes contain objects (or surfaces) of different types, like the 1D example, at each region R,
the range data fit to a surface model of type £P with parameter ©F and the reflectance fit to a reflectance

model of type ¢! with parameter ©. Thus a solution is denoted by
W=(K, {Ri:i=1,2,..,K}, {((P,0P), ¢, 0e]): i=1,2.,K}).
The objective is to maximize a posterior probability over a solution space {2 3 W,
Y= W|D,I) = D, I|W)p(W).
W = arg max p(W|D, I) = arg max p(D, I|W)p(W)

In practice, two regions R;, R; may share the same surface model but with different reflectance, that
is, (¢P,0P) = (¢P,0P) but (¢/,0] 25, ©1). For example, a painting or a piece of cloth hung on
1 1] 7 7 ? ? J J

12



a wall, a thin book or paper on a desk, may fit to the same surfaces as the wall or desk respectively,
but they have different reflectance. It is also possible that (¢°,0P) # (EJD , GJD ) but (¢],0]) = (E; , @;)
To minimize the coding length [32] and to pool information from pixels over large areas, we shall allow
adjacent regions to share either depth or reflectance models. Thus a boundary between two regions could
be labelled as a reflectance boundary, a depth boundary, or both.

In the following, we briefly describe the likelihood model p((D,I)|W) and the prior probability p(W).

3.2 Likelihood coupling a mixture of surface and reflectance models

In the literature, there are many ways for representing a surface, such as implicit polynomials [6, 22],
superquadrics [36], and other deformable models. In this paper, five types of surface models are chosen
to account for various shapes in natural scenes. New models can be added under the same formulation

and algorithm.
1. Family D;: planar surfaces with unit normal (a, b, ¢) and interception d,
ez +by+cz=d; a?+b02+32=1.

Thus it is specified by three parameters © = (a,b,d). We denote by Qf > © as the space of all

planes.

2. Family Ds: conic surfaces — spheres, ellipsoids, cylinders, cones, and tori for many man-made objects
and parts. We adopt the representation in (Marshal et al. 2001). These surfaces are specified by
7 parameters © = (g, ¢,9,k,s,0,7). We refer to [33] for detailed discussions and fitting methods.
We denote by 9 3 © the space of family Ds.

3. Family Dj3: B-spline surfaces with 4 control points. As surfaces in a natural scene have a broad
range of sizes and orientation, we choose a reference plane p : az + by + cz = d which approximately
fits to the surface normal. Then a rectangular domain [0,4d] x [0, ¢] is adaptively defined on p to
just cover the surface indexed by two parameters (u,v). In practice, a domain much larger than the
surface will be hard to control. Then a grid of h X w control points are chosen on this rectangular

domain, and a B-spline surface is

h w
S(Ua U) = Z Zps,tBs (U)Bt(v)a

s=1t=1
where p, ¢ = (94,4, (85 Es,t) 18 a control point with (7, ¢, (s¢) being coordinates on p and & is the
degree of freedom at a point. By choosing A = w = 2, a surface in D3 is specified by 9 parameters
O = (a,b,d,8,$,&0,0,&0,1,€1,0,€1,1). We denote by 22 5 © the space of family Ds.

13



. Family Dy: B-spline surfaces with 9 control points. Like Dsj, it is a reference plane p and a 3 x 3

grid. It is specified by 14 parameters © = (a,b,d, d, ¢, 0,0, ---,£2,2)-

. Family Ds: cluttered surfaces. Some objects in natural scenes, such as trees and bushes have very

noisy range depth. To the best of our knowledge, there is no effective models in the literature
for such surfaces. Motivated by the success of non-parametric intensity histogram in intensity
and texture modeling [42], we adopt a non-parametric 3D histogram for this kind of surfaces. It
is specified by © = (h{,h%,...,hY ,h{, ks, ... kY WY, hY,....,h} ), where Ly, L, and L, are the

number of bins on u, v, w directions respectively. We denote by QEL,) 5 O the space of family Ds.

Fig 7 displays some typical surfaces for the five families.

a. plane b. sphere/ellipsoid c. cylinder d. cone

o

— Sl AT
i o e i ¢ "
o : b AN
e. torus f. 4-point spline g. 9-point spline h.clutter

Figure 7: Some typical surfaces for the five families of surfaces.

For the reflectance image I, we use three families of models, denoted by Q{ .1 =1,2,3 respectively.

1.

Family I;: regions with constant reflectance © = p €Q). They represent most of the surfaces with

uniform material properties, or surfaces where range data is missing and I is close to zero.

. Family I,: regions with smooth variation of reflectance, modelled by a B-spline model as in family

Ds.

. Family I3: This is a cluttered region with a non-parametrichistogram © = (hy, ho, ..., hr) for its

intensity with L being the number of bins.
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For the surface and reflectance models above (except the histogram models), the likelihood model

for a solution W assumes the fitting residues to be Gaussian noise subject to some robust statistics

treatment|7],
K
n=1
K
o [[exp{= > E(DG,5),16G4); (¢, 07), (4, 00))}- (8)
n=1 (i,)ERn

At each pixel (i,5) in Ry, the data energy E;; = E(D(i,j),1(i,j); (£2,02), (¢}, 0L)) is the squared
distance from the 3D point D(i,5) = (z(4,4),y(i,4), 2(4,§)) to the fitting surface S(¢2, ©F) plus the

fitness distance of reflectance I(4, 7) to the reflectance model J(£5,OL).
Ej; = d*(D(,5), S(t, 01)) - Sxijy>m) — d* (103, 9), J (¢, O2))

The depth data D(i,7) is considered missing if the reflectance I(7,5) is lower than a threshold 7, i.e
6(1(i,4) > ) = 0.

In practice, we use a robust statistics method to handle outliers[7]. We adopt a two-step procedure.
Firstly, we truncate points that are less than 25% of the maximum error; Secondly, truncate points at
trough or plateau. Furthermore, the least median of squares method based on orthogonal distance in [46]
has been adopted.

Of course, there are alterative likelihood models for laser radar range data that have been developed

by Shapiro, Green, and their colleagues [19, 20] which could also be used here.

3.3 Priors on surfaces, boundaries and corners

Generally speaking, the prior model p(W) should penalize model complexity, enforce stiffness of surfaces,
and enhance smoothness of the boundaries, and form canonical corners where the angles represent some
regularities.

In this paper, the prior model for W is

K
p(W) = p(K)p(rk) [] p(2)p(©F 160 p(e])p(OL|€}).
n=1

7 = (R1,..., Rg) denotes a K-partition of the lattice A. which forms a planar graph with K faces for

the regions, a number of M edges for boundaries, and N vertices for corners,
7k = (Rp,k=1,...K; Tp,m=1,.,.M; V,,n=1.,N)
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Thus p(rx) = [15, p(Rr) [TM_, p(Tr) TI2_, p(V;,) since Ry, Ty, and V;, are being treated as indepen-
dent here. We find that some previous prior models used by Leclerc and Fischler [31] for computing 3D
wireframe from line drawings quite relevant to our prior models. Leclerc and Fischler used planarity and
symmetry of 3D angles at each vertex to recover 3D wireframes from 2D drawings. Of course, natural
scenes are much more complex than the ”wireframe world”. Our prior probability p(W') consists of four

parts.

1. Prior on surface number and sizes for surface model complexity

It is well known that a higher order model always fits a surface better than a lower order model, but
the former could be less stable in the presence of noise. Some conventional model complexity criteria
in model selection and merging techniques include MDL (minimum description length)[39], AIC (Akaike
Information Criterion) [1], BIC (Bayesian information criterion)[2]. A survey study for range surface
fitting is reported in (Bubmna, 2000)[9]. According to such criteria, model complexity is regularized by
three factors, which penalizes the number of surface K, the number of parameters in each surface model

#|0©)| respectively.
p(K) x e_)“’K, p(@,? |£,?) x e_)‘D#|®7?|, and p(@f; |E£) x e_)‘l#|®£|, Vn.

However, in our experiments as well as in our previous experiments on segmenting intensity images[42],
we observed that such criteria are not appropriate in comparison with human segmentation results.
Conventional model complexity criteria, like MDL, are motivated by shortest image coding. But the
task of segmentation and image understanding is very different from coding. The extent to which an
object is segmented depends on the importance and familiarity of the object in the scene and the task.
In particular, a natural scene contains objects of very broad range of sizes measured by their areas.
Unfortunately, it is impractical to define the importance of each types of objects in a general purpose

segmentation algorithm. We adopt a statistical model on the surface areas |Ry|
p(Rp) e @l wp =12 . K. (9)

¢ being a constant and « being the a scale factor to control the scale of the segmentation. In our
experiments, ¢ is the only parameter that is left to be set. All other parameters are set to a value for all

experiments.

2. Prior on B-spline control points for surface stiffness
For all the B-spline models, a prior is imposed on the control points {£,:: 0 < s,t < 2 or 3} such

that the surface is close to be planar. We triangulate the spline grid on the p-plane, and every adjacent
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three control points form a plane. The prior energy terms enforce the normals of adjacent planes to be
parallel to each other. A similar prior was used in the wireframe reconstruction[31].

3. Prior for surface boundary smoothness

Due to the heavy noise of the range data along surface boundaries, thus a boundary smoothness prior
is adopted, like in the SNAKE [27] or region competition model[47]. Let I'(s) = (z(s), y(s)), s € [a,b] be

a boundary between two surfaces,

p(D(s)) ox exp{— [ $(F(s)) + #((s))ds}, or p(D(s) o< exp{= [ /*(5) +37(s)ds.

#() is a quadratic function with flat tails to account for sharp L-shaped turns in boundaries.

4. Prior for canonical corners

A prior is imposed on each vertex V,, by p(V,,),n =1,2,---, N. Since the natural scene is regular and
symmetric in most cases, the angles at a corner should be more or less equal as in [31].

To summarize, the Bayesian framework provides a convenient way for integrating multiple generative
models, for coupling two cues, and for introducing prior models. This enables us to deal with complex

natural scenes.

4 Computing globally optimal solutions by Jump-diffusion

Obviously the posterior probability is again distributed over a countable number of subspaces of varying
dimensions. In the literature of range segmentation, methods, such as edge detection [29], region growing
[22, 6], clustering [23, 15], and some energy minimization methods, generalized Hough transforms, can
produce useful information, but none of these methods are capable of exploring such complex spaces
thoroughly, let alone finding a global optimum.

Our algorithm is a straight-forward extension from the 1D range examples in section (2). It engages
six Markov chain jump and diffusion processes. To speed up the MCMC search, we use data clustering in
each model space and an edge detection/partition on the lattice A. These are discussed in the following

three subsections.

4.1 Ergodic Markov chain search by six dynamics

In this subsection, we briefly present the six types of moves/dynamics which form an ergodic Markov

chain in exploring the solution space.

Dynamics 1: diffusion of region boundary — stochastic region competition.
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Within a subspace of fixed dimension (i.e. the number of surfaces and their models are given), the
boundaries evolve according to a region competition equation[47] as a group of stochastic partial differ-
ential equations (sPDE). Let I';;(s) = (z(s),y(s)), s € (a,b) denote the boundary between two regions
R; and R;, and let (¢P, 0P, ¢f,0!) and (ED GJD , E; , 01 ;) be the models of the two regions respectively.
The motion of curve I';;(s) follows the following equation[47].

dry(s)  dlogp(W|D,T)
dt dT;(s)
The Brownian motion is always along the curve normal direction fi(s) = (—9(s), z(s))/v/2(s) + 92(s))

at each point s.

/2T () dwi(s), dwy ~ N(0, (d)?). (10)

To couple the continuous representation of curves I';;, we assume the lattice A to be a continuous 2D
plane. The curve I';;(s) is involved in three terms in the posterior p(W|D,I): the smoothness prior and

the likelihood on two regions R; and R;.

dlog p(W|D,I) 5p(Ti;(s)) o
_eoepivw Y, : Do 1
6FZ](S) 6FZ] 6]_—‘”{ ng( Ri»1R; 5 E @ E ,0; )}

)
_5I‘Z~j {logp(Dr;, Lr; ; EJD’GJD’ELGI)}

= L[V + Peas)
ij a

)
+5F,,{// —logp(Dg, (2, 9),Ir,(z,y) ; 47, O7) dzdy}
J R;

)
+ {// _logp(DRj (xay)aIRj (xay) 3 E]D’GD) dxdy}
0Tij ") JR;

By a Green’s theorem and an Euler-Lagrange equation, the gradient is

() .67
S {—unte) + log BOEIE I S a0a(e) ) 2 )
p(I( ()a ())7 309 ZI) dwt ﬁs
108 ey o)+ VT )

In the above equations «(s) is its curvature. At each point (z(s),y(s)) along the curve, two local log-
likelihood ratio tests are done to compare the fitness of the two region models: one for the surface model
and the other for the reflectance model. When the range data is less reliable, i.e. §(I(z(s),y(s)) > 7) =0,
its log-likelihood ratio test is not used. Thus the two cues are tightly coupled which is desirable in Bayesian

cue integration[45].

Dynamics 2: diffusion of vertices.
A vertex V = (z,y) refers to an intersection of more than two regions. It involves some prior model

p(V') for canonical corners in previous section, and the curvature is ill-defined at such point. Its diffusion
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is implemented by the Gibbs sampler[16]. That is, we consider a local lattice, say 3 x 3 pixels, and
randomly select a position subject to the posterior probability. We also implement a corner detection
method which may provides bottom-up heuristics for the right position of the vertices. But somehow in

experiments we did not observe significant improvement using such heuristics.

Dynamics 3: diffusion of surface and reflectance models.
This is the diffusion of the parameters ((©2,01)) for a region R,,, n = 1,2, ..., K with other variables
in W fixed.

y YoM oyt

dt d(07,07)

Some robust statistics method is used in calculating the gradient and some range pixels do not contribute

d(©y,0;) _ dlogp(Dr,,Ir, ; £7,07, 4, O4)

to the surface fitting if the reflectance is low. We found the Brownian motion may not be necessary in

such spaces.

dynamic 4: switching a surface or reflectance model £ or 41

This is similar to the 1D example but we have more families of model to choose. Suppose at a time
instance, a region R, is selected to switch to a model £2. Then we need some heuristic information for the
new model ®. The importance proposal probability is calculated, like g(¢ | m) in equation (3), based on
a number of candidate surfaces pre-computed by a data clustering approach. As we shall discuss below,

data clustering is a better method than Hough transform in high dimensional spaces.

Dynamics 5 and 6: split and merge of regions.

Split and merge are a pair of reversible moves to realize the jump process between subspaces. Assume
a region Ry, with model (©F,01) will be split into two regions R; and R; with models (©7,0]) and
(GJD , @5 ). Then the present state of the Markov chain W and the new state W' are

W = (KaRka(lkDaGkD)’(llgagi))a W—)a
W = (K+I’Ri’Rj’(liD’GiD)’(liI’GZI)a((ljDanD)a(l]I'aG]I')a W—)'

W_ is the other variables in W that remain unchanged during this jump. The split and merge are
proposed with probability G(W — W')dW' and G(W' — W )dW, while the split move is accepted with

probability
G(W' —» W)dWp(W'T)dW’

G(W = W) dW'p(W|T)dW

a(W — dW') = min(1, )-

The merge proposal probability is,

GW' = W) = q(6)q(Ri, R;)q(¢f , OF | Ri)q(4f, OF | Ry).
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g(6) is the probability for choosing merge move, and g(R;, R;) is the probability for choosing R;, R;.
q(E,? , @,? | Ry) is the probability for a new surface model which are selected from a set of bottom-up
candidates according to a probability which is summed votes from pixels in the new region Ry.

Similarly, the split proposal G(W — W') is,
a(5)a(Rr)a(Tij| R)a(¢2, ©7 | Ri)a(e], ©F | Ri)a(47, ©7 | R;)a(¢5, O] | R;).

Once Ry, is chosen to split, I';; is a candidate splitting boundary. In 1D example, this is randomly chosen
by an edge strength function. In 2D this is selected from a set of candidate partition pre-computed by
edge detection.

In the following, we focus on the computation of two importance proposal probabilities used above:
1). ¢(I'| R) — splitting boundary of a region R 2). ¢(¢,0|R) — the new model of a region (surface or
reflectance). As we noted before, natural scenes contain objects of broad range of sizes, the bottom-up

computation shall be done in multiple scales.

4.2 Coarse-to-fine Edge Detection and Partition

range image scale 2 scale 3

-
:
i,

Figure 8: Computed edge maps based on the range cue at three scales for one curved scene and one

polyhedral scene in Florida dataset respectively.

In this section, we detect potential edges based on local edge cues, and trace the edges to form a
partition of the lattice which will be used as candidate boundaries in splitting regions. We organize the
edge maps in three scales according to some edge strength measure. For example, figures 8 and 9 display

one example for each of the three database: polyhedra, conics, and real scenes. The edges in figures 8
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c). edge detection and partition scale 2, d). edge detection and partition scale 3

Figure 9: Computed edge maps at three scales for an office scene.

are based on range data only, while edges in figures 9 combine both range and reflectance measures. We
observe that edge detection does provide useful information about the boundaries, especially on occlusion
(step edges). However, such local detection is not reliable enough to be the final result, and there are
fundamental upper bounds|28] on the errors which one cannot go beyond without involving the global
models.

Edges in the reflectance image indicate abrupt changes of surface materials, and are often step edges.
In range depth images, edges could be surface discontinuities or surface normal discontinuities. Because
of the noisy nature, the surface normal at each point is estimated over a small window, say a 5 x 5 patch
A, by principle component analysis method (see [15]).

Let {p; = (zi,yi,2) : (m,n) € Az,y),i = 1,2,...,|A|} be a set of 3D points in a local patch A
centered at (x,y), and p their mass center. One can estimate the local surface normal by minimizing the

quadratic error function
n* = argminn'Sn, with § = 2:(;0Z —p)(p; — p)'.
n .

n* is equal to the eigen-vector of the scatter matrix S which corresponds to the smallest eigen-value Apin-
With the normal, a local plane az + by + cz = d (¢ = V1 — a? — b?) is fitted to the patch.
An edge strength is computed on vector space s = (a,b,d)’s of adjacent pixels using a technique of

(Nitzberg et al. 1993). Firstly we compute a 2 X 2 matrix at each point (z,y),

2
, Vz8Vys
—gv— 11
(2, y) // y( Vo5V, Vas? )p(u z,v — y) dudv, (11)
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where p(u—x,v—1y) is a Parzen window centered at (z,y). Let A; and Ag (A2 < A1) be the two eigenvalues
of the matrix, and v; and vs the corresponding eigenvectors. Then the edge strength, orientation and

cornerness are measured by e(), (), and ¢ respectively,

e(z,y) = VA1 + Ao, O(z,y) =arg(v1), c(z,y) = Ao.

In addition to computing the edge maps from range images, we also apply standard edge detection to the
reflectance image and obtain edge maps on three scales. We threshold the edge strength e() at three levels
to generate the edge maps shown in figures 8 and 9 after tracing them with heuristic local information
to form closed partitions[13].

Given a region R to split, we superimpose R with one of the three edge maps depending on the size of
R (large region will use coarse edge partition in general). Then the edge partition within R are candidate
sub-regions. Thus the splitting boundaries I' is chosen at random from a set of candidates. We refer to

our previous work on intensity segmentation for detailed formulation[42].

4.3 Coarse-to-fine surface clustering

We compute importance proposal probabilities on the parameter spaces QP , Q2 Q? , QP and QE? respec-
tively. These probabilities are expressed by a set of candidate surface models in non-parametric forms.
But unlike the 1D example represented in section (2), we shall use data clustering instead of Hough
transforms for two reasons: 1). Hough transforms become impractical in high dimensional space (say
more than three dimensions), 2). Hough transform assume a 2-category detections and thus the peaks
(candidates) in the space can be contaminated by each other. In contrast, data clustering is thus more
general.

From edge detection in the previous subsection, each small patch A is fitted to a local plane (a, b, d)
with mass center p and the smallest eigen-value Anpi,) of the scatter matrix. Therefore, we collect a set
of patches,

Q = {(4j,5,bj,dj, Djs Aminj : § = 1,2,..., ] = |A|/6%},
after subsampling the lattice A by a factor of §. In practice, we can discard patches which have relatively
large Apin, i.e. patches that are likely on the boundary. We can also use adaptive patch sizes.

The patches in set  are clustered into a set of C candidate surfaces in all five model spaces
C={0;:0;cQPululualunl,i=1,.,0}

by either the EM-clustering algorithm [5] or the mean-shift clustering algorithm [12, 10]. The EM

algorithm is used here and the number of hypothetic clusters in each space is chosen to be excessive.

22



Figure 10: A polyhedra and a conics range images each with six saliency maps for six clustered surfaces.

For example, figure 10 shows six chosen clusters (among many) for a polyhedra scene and a conics
scene. Each cluster is associated with a “saliency map” where the brightness at a patch displays the
probability that it fits to the cluster (or candidate model). Such probability comes automatically from
the EM-clustering. It is very informative in such simple scenes where the models are sufficient to describe
the surfaces, and objects have similar sizes.

In natural scene, the results are less satisfactory. Very often small objects, like a book on the top of a
desk can be easily assigned to a nearby large objects. To resolve this problem, we compute the clusters in
a coarse-to-fine strategy. For example, Fig. 11 shows eight chosen saliency maps for the most prominent
clusters in the office scene, which correspond to the floor, desktop, furnace, windows, walls, and ceiling
respectively. The total sum of the probability over the lattice is a measure of how prominent a cluster
is. Then for patch in @} which do not fit very well to these prominent clusters, we refine the range data
by sub-pixel interpolation, and conduct the clustering on such areas. For example, figure 11 lower panel

shows six of the clusters for a sub-area (indicated by a window), such as, people, chairbacks, small box

23



a). range image b). reflectance image

Figure 11: Saliency maps for office scene at two scales. See text for explanation.
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etc.

These candidate models are used to form the importance proposal probabilities as it is in the 1D
example. Give a region R, each pixel inside R votes for the candidate models by a continuous probability.
Then the proposed model is selected from the candidates proportional to their votes and some random

perturbations.

5 Experiments

5.1 The datasets and preprocessing

We test the algorithm on three datasets. The first two are the standard Perceptron LADAR camera
images and K2T structured light camera images in the USF dataset. The third one is a dataset from
Brown University, where images are collected with a long range scanner LMS-Z210 by Riegl. The field
of view is 80" vertically and 259° horizontally. Each image contains 444 x 1440 measurements with an
angular separation of 0.18 degree as Figure 1 shows.

In general, range data are contaminated by heavy noise. Effective preprocessing must be used to
deal with all types of errors presented in the data acquisition, while preserving the true discontinuities.
In our experiments, we adopt the least median of squares (LMedS) and anisotropic diffusion [44] to
pre-process the range data. LMedS is related to the median filter used in image processing to remove
impulsive noise from images and can be used to remove strong outliers in range data. After that, the
anisotropic diffusion is adopted to handle the general noises while avoiding the side effects caused by simple
Gaussian or diffusion smoothing, like the decreasing of the absolute value of curvature and smoothing of
orientation discontinuities into spurious curved patch. Fig. 12 shows a surface rendered before and after

the preprocessing.

5.2 Results and evaluation

We run the algorithm on three dataset under one parameter setting with only one free parameter ¢
in equation (9) which controls the extent of the segmentation. The algorithm starts with arbitrary
initializations.

Figure 13 displays the segmentation results on four images in dataset 1. Figure 14 shows two examples
in dataset 2. For the two datasets, we only use range data and the segments are superimposed on the
reflectance images. For comparison, we also show in these figures a manual segmentation used in [24] and

[38]. In these two figures, we also show the 3D reconstructed scenes based on our segmentation results
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Figure 12: A range scene rendered by OpenGL. a) before and b) after preprocessing.

and the fitted surface models in OpenGL from a novel viewing angle. This is a good way to examine the
sufficiency of the models used. In these reconstructed 3D scenes, the background and floor behind the
occluding objects are completed using the method discussed next. It is of no surprise that the algorithm
can parse such scene very well, because the image models are sufficient to account for the surfaces in
these two datasets.

The six examples on the Brown dataset are shown in figures 15 and 16. While the trees are correctly
segmented out as shown in Figure 15, we further show the 3D clutter histogram model by one image with
very complex tree structures in figure 16. All these results show that the clutter model does well for such
cluttered regions.

Range image is often incomplete due to partial occlusion or poor surface reflectance. This can be
clearly seen from Fig. 12, in which the floor and the two walls have a lot of missing points. Analysis
and reconstruction of range images usually focuses on complex objects completely contained in the field
of view; little attention has been devoted so far to the reconstruction of simply-shaped wide areas like
parts of wall hidden behind furniture and facility pieces in the indoor scene shown in Fig. 12 [14].
In the reconstructing process, how to fill the missing data points of surfaces behind occlusions is a
challenging question. The completion of these depth information needs higher level understanding of the
3D models. To solve this problem, an algorithm also shall make inference about two things: 1). The
types of boundaries as crease, occluding, and so on. 2). The ownership of the boundary to a surface.
In our reconstruction procedure, we only use a simple prior model to recover the missing parts of the
backgrounds (like the walls and the floor) by assuming they are rectangles. Since we can obtain the
needed parameters to represent these rectangles from the segmentation result, it is not difficult to fill the

missing points.
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Dataset 1, example 1.

a. range data b. manual segment ¢. our result d). reconstruction

Figure 13: Segmentation results compared with the manual segments provided in [24]. We only use range
data and the segments are superimposed on the reflectance images in c. The reconstructions are shown

in slightly different views.
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Dataset 2, example 1

3]

a. range b. manual segment ¢. our result d. reconstruction

Figure 14: Segmentation on the second dataset compared with manual segment provided in[38]. We only
use range data and the segments are superimposed on the reflectance images in c. The reconstruction

are generated from novel views.

6 Discussion

Our work reassure the representative power of the statistical Bayesian formulation which can couple
visual cues, engage many prior models, and incorporate many families of generative models for natural
scenes. It also shows that the jump-diffusion process is a general tool for energy minimization in complex
solution spaces. Furthermore, the convergence can be accelerated exponentially by bottom-up heuristic
information.

Some remaining problems that need to be resolved in future research.

1). The algorithm is still time consuming. It currently takes about 1 hour on a pentium IV PC to
segment a scene with arbitrary initial conditions. However, we feel there are many engineering methods
that can largely reduce the computational time.

2). The experiments reveal that when the models are not sufficient, then the segmentation is not
good. For example, the cables in the air and railing on the lane to the door in Fig. 15) are missing.
Because they are 1D structures not regions.

3). Better prior model for 3D objects are needed to group surfaces into objects, and therefore to

complete surfaces behind the occluding objects.
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Dataset 3, example 1

Dataset 3

a. range b. reflectance ¢. our result d. manual segment

Figure 15: Segmentation results for parts of the four scenes in Fig. 1.
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Dataset 3, example 5

reflectance

%\\’3

=

our result manual segment
Dataset 3, example 6

range reflectance

=

our result manual segment

Figure 16: Segmenting the most cluttered part of office B in Fig.1 and a scene with trees.
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