
1

Generalizing Pooling Functions in CNNs:
Mixed, Gated, and Tree
Chen-Yu Lee, Patrick Gallagher, and Zhuowen Tu

Abstract—In this paper, we seek to improve deep neural networks by generalizing the pooling operations that play a central role
in the current architectures. We pursue a careful exploration of approaches to allow pooling to learn and to adapt to complex and
variable patterns. The two primary directions lie in: (1) learning a pooling function via (two strategies of) combining of max and average
pooling, and (2) learning a pooling function in the form of a tree-structured fusion of pooling filters that are themselves learned. In our
experiments every generalized pooling operation we explore improves performance when used in place of average or max pooling.
We experimentally demonstrate that the proposed pooling operations provide a boost in invariance properties relative to conventional
pooling and set the state of the art on several widely adopted benchmark datasets. These benefits come with only a light increase
in computational overhead during training (ranging from additional 5% to 15% in time complexity) and a very modest increase in the
number of model parameters (e.g. additional 1, 9, and 27 parameters for mixed, gated, and 2-level tree pooling operators, respectively).
To gain more insights about our proposed pooling methods, we also visualize the learned pooling masks and the embeddings of the
internal feature responses for different pooling operations. Our proposed pooling operations are easy to implement and can be applied
within various deep neural network architectures.

Index Terms—Convolutional Neural Networks, Deep Learning, Pooling Functions, Supervised Classification.

F

1 INTRODUCTION

The recent resurgence of neurally-inspired systems such
as deep belief nets (DBN) [10], convolutional neural
networks (CNNs) [20], and the sum-and-max infrastruc-
ture [36] has derived significant benefit from building
more sophisticated network structures [37], [43] and
from bringing learning to non-linear activations [6], [27].
The pooling operation has also played a central role,
contributing to invariance to data variation and per-
turbation. However, pooling operations have been little
revised beyond the current primary options of average,
max, and stochastic pooling [3], [46]; this despite indica-
tions that e.g. choosing from more than just one type of
pooling operation can benefit performance [35].

In this paper, we desire to bring learning and “re-
sponsiveness” (i.e., the characteristics of the region being
pooled) into the pooling operation. Various approaches
are possible, but here we pursue two in particular. In the
first approach, we consider combining typical pooling
operations (specifically, max pooling and average pool-
ing); within this approach we further investigate two
strategies by which to combine these operations. One of
the strategies is “unresponsive”; for reasons discussed
later, we call this strategy mixed max-average pooling. The

• C.-Y. Lee was with the Department of Electrical and Computer Engineer-
ing, University of California, San Diego, La Jolla, CA 92093, U.S.A.
E-mail: chl260@ucsd.edu

• P. Gallagher was with the Department of Cognitive Science, University of
California, San Diego, La Jolla, CA 92093, U.S.A.
E-mail: patrick.w.gallagher@gmail.com

• Z. Tu is with the Department of Cognitive Science, University of Califor-
nia, San Diego, La Jolla, CA 92093, U.S.A.
E-mail: ztu@ucsd.edu

other strategy is “responsive”; we call this strategy gated
max-average pooling, where the ability to be responsive is
provided by a “gate” in analogy to the usage of gates
elsewhere in deep learning.

Another natural generalization of pooling operations
is to allow the pooling operations that are being com-
bined to themselves be learned. Hence in the second
approach, we learn to combine pooling filters that are
themselves learned. Specifically, the learning is per-
formed within a binary tree (with number of levels that
is pre-specified rather than “grown” as in traditional
decision trees) in which each leaf is associated with a
learned pooling filter. As we consider internal nodes of
the tree, each parent node is associated with an output
value that is the mixture of the child node output values,
until we finally reach the root node. The root node
corresponds to the overall output produced by the tree.
We refer to this strategy as tree pooling. Tree pooling is
intended (1) to learn pooling filters directly from the
data; (2) to learn how to combine leaf node pooling filters
in a differentiable fashion; (3) to bring together these
other characteristics within a hierarchical tree structure.

When the mixing of the node outputs is allowed to
be “responsive”, the resulting tree pooling operation
becomes an integrated method for learning pooling fil-
ters and combinations of those filters that are able to
display a range of different behaviors depending on
the characteristics of the region being pooled. In our
experiments, we will see evidence that tree pooling is
particularly useful at the lower network layers where
the feature responses are denser whereas mixed max-
average and gated max-average pooling are more advan-
tageous at the higher, sparser network layers. We refer



2

to a combined strategy adopting max-average pooling at
higher layers and tree pooling at lower layers as tree +
max-average pooling.

We make the following observations: First, in an ex-
periment to test invariance (shown in Figure 4) the spe-
cific configurations of our proposed gated max-average
pooling and tree pooling investigated display better
invariance properties than conventional pooling opera-
tions across a wide range of transformation types and
amounts. Second, our results (detailed in Tables 1, 2
4, and 5) are obtained using only a modest number of
additional parameters — for example, using only 45 ad-
ditional parameters, we improve AlexNet performance
on ImageNet by a 6% relative increase (top-5, single-
view). Third, we find that the tree + max-average pooling
configuration gives the best overall range of performance
(Table 1); we interpret this to indeed indicate that the
initial tree pooling layer here is well-suited to the denser
low-layer feature while the following gated max-average
pooling layer(s) is/are better suited to the sparser high-
layer feature maps.

We pursue experimental validation and find that in the
architectures we investigate, replacing standard pooling
operations with any of our proposed generalized pooling
methods boosts performance on each of the standard
benchmark datasets, as well as on the larger and more
complex ImageNet dataset [34]. We attain state-of-the-
art results on MNIST, CIFAR10 (with and without data
augmentation), and SVHN. Our proposed pooling oper-
ations can be used as drop-in replacements for standard
pooling operations in various current architectures and
can be used in tandem with other performance-boosting
approaches such as learning activation functions, train-
ing with data augmentation, or modifying other aspects
of network architecture — we confirm improvements
when used in a deeply-supervised nets (DSN) style
architecture, as well as in AlexNet and GoogLeNet. Our
proposed pooling operations are also simple to imple-
ment, computationally undemanding (ranging from 5%
to 15% additional overhead in timing experiments), dif-
ferentiable, and use only a modest number of additional
parameters. Since our proposed methods serve as drop-
in replacements for standard pooling operations, they
can be used in tandem with other performance boosting
techniques or within alternative architectures [19], [26],
[37], [43], [45].

2 RELATED WORK

In the current deep learning literature, popular pooling
functions include max, average, and stochastic pooling
[2], [3], [46]. A recent effort using more complex pooling
operations, spatial pyramid pooling [9], is mainly de-
signed to deal with images of varying size, rather than
delving into different pooling functions or incorporating
learning. Learning pooling functions is analogous to
receptive field learning [5], [8], [11], [16]. However meth-
ods like [16] lead to a more difficult learning procedure

that in turn leads to a less competitive result, e.g. an
error rate of 16.89% on unaugmented CIFAR10.

Since our tree pooling approach involves a tree struc-
ture in its learning, we observe an analogy to “logic-
type” approaches such as decision trees [31] or “logical
operators” [28]. Such approaches have played a central
role in artificial intelligence for applications that require
“discrete” reasoning, and are often intuitively appealing.
Unfortunately, despite the appeal of such logic-type ap-
proaches, there is a disconnect between the functioning
of decision trees and the functioning of CNNs — the out-
put of a standard decision tree is non-continuous with
respect to its input (and thus nondifferentiable). This
means that a standard decision tree is not able to be used
in CNNs, whose learning process is performed by back
propagation using gradients of differentiable functions.
Part of what allows us to pursue our approaches is that
we ensure the resulting pooling operation is differen-
tiable and thus usable within network backpropagation.

A recent work, referred to as auto-encoder trees [14],
also pays attention to a differentiable use of tree struc-
tures in deep learning but is distinct from our method as
it focuses on learning encoding and decoding methods
(rather than pooling methods) using a “soft” decision
tree for a generative model. In the supervised setting,
[4] incorporates multilayer perceptrons within decision
trees, but simply uses trained perceptrons as splitting
nodes in a decision forest; not only does this result
in training processes that are separate (and thus more
difficult to train than an integrated training process),
this training process does not involve the learning of
any pooling filters. The work in [17] investigates routing
decisions by using a sigmoid function in fully connected
layers and achieves a performance boost with 30 trees.
Techniques of learning decision functions are also pre-
sented in [12], [41].

Since we explore pooling operations in which we both
learn pooling filters and also learn how to combine
those filters, and since the filter combinations can differ
based on the characteristics of the region being pooled,
our proposed methods begin with the ability to present
a much richer range of responses than conventional
pooling methods both during learning and during actual
forward operation. From this initial potential, we move
to investigate whether the promise of these methods
is reflected in actual test performance. Our focus on
empirical verification comes both because theory (with
a few notable exceptions) has yet to make significant
inroads in deep learning, and because the primary recent
theoretical work on pooling operations [3] is grounded
in assumptions that are not applicable in our setting.
Evaluation of the proposed method after publication:
After the acceptance of the conference version of our
work [23], the proposed generalized pooling operations
have been validated in [29] where the effectiveness of
the proposed method has been illustrated in a compre-
hensive study on the ImageNet benchmark [34].



3

3 GENERALIZING POOLING OPERATIONS

A typical convolutional neural network is structured as
a series of convolutional layers and pooling layers. Each
convolutional layer is intended to produce representa-
tions (in the form of activation values) that reflect as-
pects of local spatial structures and to consider multiple
channels when doing so. More specifically, a convolution
layer computes “feature response maps” that involve
multiple channels within some localized spatial region.
On the other hand, a pooling layer is restricted to act
within just one channel at a time, “condensing” the
activation values in each spatially-local region in the
currently considered channel. An early reference related
to pooling operations (although not explicitly using the
term “pooling”) can be found in [11]. In modern visual
recognition systems, pooling operations play a role in
producing “downstream” representations that are more
robust to the effects of variations in data while still pre-
serving important motifs. The specific choices of average
pooling [20], [21] and max pooling [32] have been widely
used in many CNN-like architectures; [3] includes a
theoretical analysis (albeit one based on assumptions
that do not hold here).

Our goal is to bring learning and “responsiveness”
into the pooling operation. We focus on two approaches
in particular. In the first approach, we begin with the
(conventional, non-learned) pooling operations of max
pooling and average pooling and learn to combine them.
Within this approach, we further consider two strategies
by which to combine these fixed pooling operations. One
of these strategies is “unresponsive” to the characteristics
of the region being pooled; the learning process in this
strategy will result in an effective pooling operation
that is some specific, unchanging “mixture” of max and
average. To emphasize this unchanging mixture, we refer
to this strategy as mixed max-average pooling.

The other strategy is “responsive” to the characteristics
of the region being pooled; the learning process in this
strategy results in a “gating mask”. This learned gating
mask is then used to determine a “responsive” mix of
max pooling and average pooling; specifically, the value
of the inner product between the gating mask and the
current region being pooled is fed through a sigmoid,
the output of which is used as the mixing proportion
between max and average. To emphasize the role of
the gating mask in determining the “responsive” mixing
proportion, we refer to this strategy as gated max-average
pooling.

Both the mixed strategy and the gated strategy involve
combinations of fixed pooling operations; a complemen-
tary generalization to these strategies is to learn the
pooling operations themselves. From this, we are in
turn led to consider learning pooling operations and
also learning to combine those pooling operations. Since
these combinations can be considered within the context
of a binary tree structure, we refer to this approach as
tree pooling. We pursue further details in the following

Fig. 1: Illustration of proposed “mixed” max-average
pooling operations. x is referred to as an input and α
is the parameter balancing the importance of the max
pooling and the average pooling operations.

sections.

3.1 Combining max and average pooling functions
3.1.1 “Mixed” max-average pooling
The conventional pooling operation is fixed to be either
a simple average fave(x) = 1

N

∑N
i=1 xi or a maximum

operation fmax(x) = maxi xi, where the vector x contains
the activation values from a local pooling region of N
pixels (typical pooling region dimensions are 2 × 2 or
3× 3) in an image or a channel.

At present, max pooling is often used as the default
in CNNs. We touch on the relative performance of max
pooling and, e.g., average pooling as part of a collection
of exploratory experiments to test the invariance prop-
erties of pooling functions under common image trans-
formations (including rotation, translation, and scaling);
see Figure 4. The results indicate that, on the evaluation
dataset, there are regimes in which either max pooling or
average pooling demonstrates better performance than
the other (although we observe that both of these choices
are outperformed by our proposed pooling operations).
In the light of observation that neither max pooling nor
average pooling dominates the other, a first natural gen-
eralization is the strategy we call “mixed” max-average
pooling, in which we learn specific mixing proportion
parameters from the data. When learning such mixing
proportion parameters one has several options (listed in
order of increasing number of parameters): learning one
mixing proportion parameter (a) per net, (b) per layer, (c)
per layer/region being pooled (but used for all channels
across that region), (d) per layer/channel (but used for
all regions in each channel) (e) per layer/region/channel
combination.

The form for each “mixed” pooling operation (written
here for the “one per layer” option; the expression for
other options differs only in the subscript of the mixing
proportion a) is:

fmix(x) = a` · fmax(x) + (1− a`) · favg(x), (1)

where a` ∈ [0, 1] is a scalar mixing proportion specify-
ing the specific combination of max and average; the



4

subscript ` is used to indicate that this equation is for
the “one per layer” option. Figure 1 gives an illustration
of the proposed “mixed” pooling operation. Once the
output loss function E is defined, we can automati-
cally learn each mixing proportion a (where we now
suppress any subscript specifying which of the options
we choose). Vanilla backpropagation for this learning is
given by

∂E

∂a
=

∂E

∂fmix(x)

∂fmix(x)

∂a
= δ (max

i
xi −

1

N

N∑
i=1

xi), (2)

where δ = ∂E/∂fmix(x) is the error backpropagated from
the following layer. Since pooling operations are typi-
cally placed in the midst of a deep neural network, we
also need to compute the error signal to be propagated
back to the previous layer:

∂E

∂xi
=

∂E

∂fmix(xi)

∂fmix(xi)

∂xi

= δ

[
a · 1[xi = max

j
xj ] + (1− a) · 1

N

]
, (3)

where 1[·] denotes the 0/1 indicator function. In the
experiment section, we report results for the “one pa-
rameter per pooling layer” option; the network for this
experiment has 2 pooling layers and so has 2 more
parameters than a network using standard pooling op-
erations. We found that even this simple option yielded
a surprisingly large performance boost. We also obtain
results for a simple 50/50 mix of max and average,
as well as for the option with the largest number
of parameters: one parameter for each combination of
layer/channel/region, or pc×ph×pw parameters for each
“mixed” pooling layer using this option (where pc is the
number of channels being pooled by the pooling layer,
and the number of spatial regions being pooled in each
channel is ph× pw). We observe that the increase in the
number of parameters is not met with a corresponding
boost in performance, and so we pursue the “one per
layer” option.

3.1.2 “Gated” max-average pooling
In the previous section we considered a strategy that
we referred to as “mixed” max-average pooling; in that
strategy we learned a mixing proportion to be used
in combining max pooling and average pooling. As
mentioned earlier, once learned, each mixing proportion
a remains fixed — it is “nonresponsive” insofar as it
remains the same no matter what characteristics are
present in the region being pooled. We now consider a
“responsive” strategy that we call “gated” max-average
pooling. In this strategy, rather than directly learning a
mixing proportion that will be fixed after learning, we
instead learn a “gating mask” (with spatial dimensions
matching that of the regions being pooled). The scalar
result of the inner product between the gating mask and
the region being pooled is fed through a sigmoid to
produce the value that we use as the mixing proportion.
This strategy means that the actual mixing proportion

Fig. 2: Illustration of proposed “gated” max-average
pooling operations. x is referred to as an input and ω
denotes the gating function balancing the importance of
the max pooling and the average pooling operations.

can vary during use depending on characteristics present
in the region being pooled. To be more specific, suppose
we use x to denote the values in the region being pooled
and ω to denote the values in a “gating mask”. The
“responsive” mixing proportion is then given by σ(ωᵀx),
where σ(ωᵀx) = 1/(1+ exp{−ωᵀx}) ∈ [0, 1] is a sigmoid
function.

Analogous to the strategy of learning a mixing pro-
portion parameter, when learning gating masks one
has several options (listed in order of increasing num-
ber of parameters): learning one gating mask (a) per
net, (b) per layer, (c) per layer/region being pooled
(but used for all channels across that region), (d) per
layer/channel (but used for all regions in each channel)
(e) per layer/region/channel combination. We suppress
the subscript denoting the specific option, since the
equations are otherwise identical for each option. Figure
2 gives an illustration of the proposed “gated” pooling
operation.

The resulting pooling operation for this “gated” max-
average pooling is:

fgate(x) = σ(ωᵀx)fmax(x) + (1− σ(ωᵀx))favg(x). (4)

We can compute the gradient with respect to the internal
“gating mask” ω using the same procedure considered
previously, yielding

∂E

∂ω
=

∂E

∂fgate(x)

∂fgate(x)

∂ω

= δ σ(ωᵀx)(1− σ(ωᵀx)) x (max
i

xi −
1

N

N∑
i=1

xi), (5)

and

∂E

∂xi
=

∂E

∂fgate(xi)

∂fgate(xi)

∂xi

= δ

[
σ(ωᵀx)(1− σ(ωᵀx)) ωi (max

i
xi −

1

N

N∑
i=1

xi)

+ σ(ωᵀx) · 1[xi = max
j

xj ] + (1− σ(ωᵀx))
1

N

]
. (6)



5

In a head-to-head parameter count, every single mixing
proportion parameter a in the “mixed” max-average
pooling strategy corresponds to a gating mask ω in the
“gated” strategy (assuming they use the same parameter
count option). To take a specific example, suppose that
we consider a network with 2 pooling layers and pooling
regions that are 3×3. If we use the “mixed” strategy and
the per-layer option, we would have a total of 2 = 2× 1
extra parameters relative to standard pooling. If we use
the “gated” strategy and the per-layer option, we would
have a total of 18 = 2 × 9 extra parameters, where
9 is the number of parameters in each gating mask.
The “mixed” strategy detailed immediately above uses
fewer parameters and is “nonresponsive”; the “gated”
strategy involves more parameters and is “responsive”.
In our experiments, we find that “mixed” (with one mix
per pooling layer) is outperformed by “gated” with one
gate per pooling layer. Interestingly, an 18 parameter
“gated” network with only one gate per pooling layer
also outperforms a “mixed” option with far more param-
eters (40,960 with one mix per layer/channel/region) —
except on the relatively large SVHN dataset. We touch
on this below; Section 5 contains details.

3.1.3 Quick comparison: mixed and gated pooling

The results in Table 1 indicate the benefit of learning
pooling operations over not learning. Within learned
pooling operations, we see that when the number of
parameters in the mixed strategy is increased, perfor-
mance improves; however, parameter count is not the
entire story. We see that the “responsive” gated max-avg
strategy consistently yields better performance (using 18
extra parameters) than is achieved with the >40k extra
parameters in the 1 per layer/rg/ch “non-responsive”
mixed max-avg strategy. The relatively larger SVHN
dataset provides the sole exception (SVHN has ≈600k
training images versus ≈50k for MNIST, CIFAR10, and
CIFAR100) — we found baseline 1.89%, 50/50 mix
1.84%, mixed (1 per lyr) 1.76%, mixed (1 per lyr/ch/rg)
1.64%, and gated (1 per lyr) 1.74%.

3.2 Tree pooling

The strategies described above each involve combina-
tions of fixed pooling operations; another natural gen-
eralization of pooling operations is to allow the pool-
ing operations that are being combined to themselves
be learned. These pooling layers remain distinct from
convolution layers since pooling is performed separately
within each channel; this channel isolation also means
that even the option that introduces the largest number
of parameters still introduces far fewer parameters than
a convolution layer would introduce. The most basic
version of this approach would not involve combining
learned pooling operations, but simply learning pooling
operations in the form of the values in pooling filters.
One step further brings us to what we refer to as tree

Method MNIST CIFAR10 CIFAR10+ CIFAR100

Baseline
0.39
± 0.031

9.01
± 0.096

7.22
± 0.099

34.38
± 0.096

w/ Stochastic
no learning

0.38
± 0.04

8.50
± 0.05

7.30
± 0.07

33.48
± 0.27

w/ 50/50 mix
no learning

0.34
± 0.012

8.11
± 0.10

6.78
± 0.17

33.53
± 0.16

w/ Mixed
1 per pool layer

2 extra params
0.33
± 0.018

8.09
± 0.19

6.62
± 0.21

33.51
± 0.11

w/ Mixed
1 per layer/ch/rg

>40k extra params
0.30
± 0.012

8.05
± 0.16

6.58
± 0.30

33.35
± 0.19

w/ Gated
1 per pool layer

18 extra params
0.29
± 0.016

7.90
± 0.07

6.36
± 0.28

33.22
± 0.16

TABLE 1: Classification error (in %) comparison between
baseline model (trained with conventional max pooling)
and corresponding networks in which max pooling is
replaced by the pooling operation listed. A superscripted
+ indicates the standard data augmentation as in [24],
[27], [38]. We report means and standard deviations over
3 separate trials without model averaging.

Fig. 3: Illustration of proposed tree pooling operation
(3 levels in this figure). We indicate the input being
pooled by x, gating masks by ω, and pooling filters by
v (subscripted as appropriate).

pooling, in which we learn pooling filters and also learn
to responsively combine those learned filters.

Both aspects of this learning are performed within a
binary tree (with number of levels that is pre-specified
rather than “grown” as in traditional decision trees) in
which each leaf is associated with a pooling filter learned
during training. As we consider internal nodes of the
tree, each parent node is associated with an output value
that is the mixture of the child node output values,
until we finally reach the root node. The root node
corresponds to the overall output produced by the tree
and each of the mixtures (by which child outputs are
“fused” into a parent output) is responsively learned.
Tree pooling is intended (1) to learn pooling filters di-
rectly from the data; (2) to learn how to “mix” leaf node
pooling filters in a differentiable fashion; (3) to bring
together these other characteristics within a hierarchical



6

tree structure.
When the mixing of the leaf node pooling filters is

allowed to be “responsive”, the resulting tree pooling
operation becomes an integrated method for learning
pooling filters and fusions of those filters that can display
a range of different behaviors depending on the charac-
teristics of the region being pooled. To more fully explore
hidden structure and to potentially accommodate hetero-
geneous subspaces in complex data, we are motivated to
further incorporate higher order operations into pooling
operations. In particular, we propose to use a decision
tree structure to reflect hierarchical characteristics of
natural images. A decision tree consists of (internal)
decision nodes and terminal nodes. Here we do not
start from any particular pooling function (such as max
or average pooling) but instead use (learnable) pooling
filters. Figure 3 gives an illustration of the proposed tree
pooling operation.

Each leaf node in our tree is associated with a “pooling
filter” that will be learned; for a node with index m,
we denote the pooling filter by vm ∈ RN . If we had a
“degenerate tree” consisting of only a single (leaf) node,
pooling a region x ∈ RN would result in the scalar value
vᵀ
mx. For (internal) nodes (at which two child values

are combined into a single parent value), we proceed
in a fashion analogous to the case of gated max-average
pooling, with learned “gating masks” denoted (for an
internal node m) by ωm ∈ RN . The “pooling result” at
any arbitrary node m is thus

fm(x) =

vᵀ
mx if leaf node

σ(ωᵀ
mx)fm,left(x) + (1 − σ(ωᵀ

mx))fm,right(x) if internal node
,

(7)

where fm,left(x) and fm,left(x) denote left and right child
nodes of fm(x) . The overall pooling operation would
thus be the result of evaluating froot node(x). The appeal
of this tree pooling approach would be limited if one
could not train the proposed layer in a fashion that was
integrated within the network as a whole. This would be
the case if we attempted to directly use a traditional deci-
sion tree, since its output presents points of discontinuity
with respect to its inputs. The reason for the disconti-
nuity (with respect to input) of traditional decision tree
output is that a decision tree makes “hard” decisions; in
the terminology we have used above, a “hard” decision
node corresponds to a mixing proportion that can only
take on the value 0 or 1. The consequence is that this
type of “hard” function is not differentiable (nor even
continuous with respect to its inputs), and this in turn
interferes with any ability to use it in iterative parameter
updates during backpropagation. This motivates us to
instead use the internal node sigmoid “gate” function
σ(ωᵀ

mx) ∈ [0, 1] so that the tree pooling function as a
whole will be differentiable with respect to its parame-
ters and its inputs.

For the specific case of a “2 level” tree (with leaf nodes
“1” and “2” and internal node “3”) pooling function
ftree(x) = σ(ωᵀ

3x)v
ᵀ
1x + (1 − σ(ωᵀ

3x))v
ᵀ
2x, we can use

the chain rule to compute the gradients with respect to
the leaf node pooling filters v1,v2 and the internal node
gating mask ω3:

∂E

∂v1
=

∂E

∂ftree(x)

∂ftree(x)

∂v1
= δ σ(ωᵀ

3x)x, (8)

∂E

∂v2
=

∂E

∂ftree(x)

∂ftree(x)

∂v2
= δ (1− σ(ωᵀ

3x))x, (9)

∂E

∂ω3
=

∂E

∂ftree(x)

∂ftree(x)

∂ω3
= δσ(ωᵀ

3x)(1−σ(ω
ᵀ
3x))x(v

ᵀ
1−vᵀ

2)x.

(10)
The error signal to be propagated back to the previous
layer is

∂E

∂x
=

∂E

∂ftree(x)

∂ftree(x)

∂x

= δ [σ(ωᵀ
3x)(1− σ(ωᵀ

3x))ω3(v
ᵀ
1 − vᵀ

2)x

+ σ(ωᵀ
3x)v1 + (1− σ(ωᵀ

3x))v2]. (11)

3.2.1 Quick comparison: tree pooling
Table 2 collects results related to tree pooling. We observe
that on all datasets but the comparatively simple MNIST,
adding a level to the tree pooling operation improves
performance. However, even further benefit is obtained
from the use of tree pooling in the first pooling layer and
gated max-avg in the second. In Table 4 we compare the
results of this configuration against recent comparable
methods.

Method MNIST CIFAR10 CIFAR10+ CIFAR100 SVHN

Our baseline
0.39
± 0.031

9.01
± 0.096

7.22
± 0.099

34.38
± 0.096

1.89
± 0.069

Tree
2 level; 1 per pool layer

0.34
± 0.028

8.52
± 0.175

6.54
± 0.156

33.64
± 0.285

1.81
± 0.047

Tree
3 level; 1 per pool layer

0.38
± 0.032

8.43
± 0.091

6.38
± 0.165

32.85
± 0.181

1.73
± 0.096

Tree+Max-Avg
1 per pool layer

0.31
± 0.031

7.61
± 0.121

6.02
± 0.047

32.87
± 0.278

1.70
± 0.069

TABLE 2: Classification error (in %) comparison between
our baseline model (trained with conventional max pool-
ing) and proposed methods involving tree pooling. A su-
perscripted + indicates the standard data augmentation
as in [24], [27], [38].

Comparison with making the network deeper us-
ing conv layers. To further investigate whether simply
adding depth to our baseline network gives a perfor-
mance boost comparable to that observed for our pro-
posed pooling operations, we report in Table 3 below
some additional experiments on CIFAR10 (error rate
in percent; no data augmentation). If we count depth
by counting any layer with learned parameters as an
extra layer of depth (even if there is only 1 parameter),
the number of parameter layers in a baseline network
with 2 additional standard convolution layers matches
the number of parameter layers in our best performing
net (although the convolution layers contain many more
parameters).



7

−40 −20 0 20 40

50

62.5

75

87.5

Rotation angle (degrees)

A
cc

ur
ac

y 
(%

)

Max−Ave pooling (ours)
Tree pooling (ours)
Max pooling
Average pooling

−8 −4 0 4 8
70

76.25

82.5

88.75

95

Translation (pixels)

A
cc

ur
ac

y 
(%

)

Max−Ave pooling (ours)
Tree pooling (ours)
Max pooling
Average pooling

0.6 0.8 1 1.2 1.4
40

55

70

85

Scale multiplier

A
cc

ur
ac

y 
(%

)

Max−Ave pooling (ours)
Tree pooling (ours)
Max pooling
Average pooling

Fig. 4: Controlled experiment on CIFAR10 investigating the relative benefit of selected pooling operations in terms
of robustness to three types of data variation. The three kinds of variations we choose to investigate are rotation,
translation, and scale. With each kind of variation, we modify the CIFAR10 test images according to the listed
amount. We observe that, across all types and amounts of variation (except extreme down-scaling) the proposed
pooling operations investigated here (gated max-avg and 2 level tree pooling) provide improved robustness to these
transformations, relative to the standard choices of maxpool or avgpool.

Our method requires only 72 extra parameters and
obtains state-of-the-art 7.61% error. On the other hand,
making networks deeper with conv layers adds many
more parameters but yields test error that does not
drop below 8.98% in the configuration explored. Since
we follow each additional conv layer with a ReLU,
these networks correspond to increasing nonlinearity as
well as adding depth and adding (many) parameters.
These experiments indicate that the performance of our
proposed pooling is not accounted for as a simple effect
of the addition of depth/parameters/nonlinearity.

We also perform an experiment comparing grouped
convolutional layers using ReLU activation function in
the form of 1:

gconv(3×3×5, n) - relu - gconv(1×1×3, n) - relu - gconv(1×1×1, n),
(12)

where gconv(h× w × c,m) denotes m groups of convo-
lutions with kernel size h × w, n input channels, and
c output channels. This operation performs blocks of
convolution in a channel-wise fashion and therefore has
a closer behavior to the proposed tree pooling operation.
With this experimental setting, we observe better perfor-
mance than simply adding more convolutional layers,
but worse performance than the proposed tree pooling
and Tree + (gated) Max-Avg (see Table 3). The proposed
tree structure function achieves the lowest error rate in
this comparison.

Comparison with alternative pooling layers. To see
whether we might find similar performance boosts by
replacing the max pooling in the baseline network con-
figuration with alternative pooling operations such as
stochastic pooling, “pooling” using a stride 2 convolu-
tion layer as pooling (cf All-CNN), or a simple fixed
50/50 proportion in max-avg pooling, we performed
another set of experiments on unaugmented CIFAR10.

1. This was recommended by one of the anonymous reviewers.

Method % Error
Extra

parameters
Baseline 9.01 ± 0.096 0
w/ 1 extra conv layer (+ReLU) 8.98 ± 0.058 0.6M
w/ 2 extra conv layers (+ReLU) 9.25 ± 0.077 1.2M
w/ grouped conv layers (+ReLU) 8.85 ± 0.149 63
w/ Tree + (gated) Max-Avg 7.61 ± 0.121 72

TABLE 3: Classification error (%) on CIFAR10 (with-
out data augmentation) comparison between networks
made deeper with convolution layers and proposed
Tree+(gated) Max-Avg pooling.

From the baseline error rate of 9.01%, replacing each
of the 2 max pooling layers with stacked stride 2
conv:ReLU (as in [38]) lowers the error to 8.77%, but
adds 0.5M extra parameters. Using stochastic pooling
[46] adds computational overhead but no parameters
and results in 8.50% error. A simple 50/50 mix of
max and average is computationally light and yields
8.11% error with no additional parameters. Finally, our
tree+gated max-avg configuration adds 72 parameters
and achieves a state-of-the-art 7.61% error.

4 QUICK PERFORMANCE OVERVIEW

For ease of discussion, we collect here observations from
subsequent experiments with a view to highlighting
aspects that shed light on the performance characteristics
of our proposed pooling functions.

First, as seen in the experiment shown in Figure 4
replacing standard pooling operations with either gated
max-avg or (2 level) tree pooling (each using the “one
per layer” option) yielded a boost (relative to max or
avg pooling) in CIFAR10 test accuracy as the test im-
ages underwent three different kinds of transformations.
This boost was observed across the entire range of
transformation amounts for each of the transformations
(with the exception of extreme downscaling). We already
observe improved robustness in this initial experiment



8

and intend to investigate more instances of our proposed
pooling operations as time permits.

Second, the performance that we attain in the experi-
ments reported in Figure 4, Table 1, Table 2, Table 4, and
Table 5 is achieved with very modest additional numbers
of parameters — e.g. on CIFAR10, our best performance
(obtained with the tree+gated max-avg configuration)
only uses an additional 72 parameters (above the 1.8M
of our baseline network) and yet reduces test error from
9.01% to 7.61%; see the CIFAR10 Section for details. In
our AlexNet experiment, replacing the maxpool layers
with our proposed pooling operations gave a 6% relative
reduction in test error (top-5, single-view) with only
45 additional parameters (above the >50M of standard
AlexNet); see the ImageNet 2012 Section for details. We
also investigate the additional time incurred when using
our proposed pooling operations; in the experiments
reported in the Timing section, this overhead ranges
from 5% to 15%.

Testing invariance properties. Before going to the over-
all classification results, we investigate the invariance
properties of networks utilizing either standard pooling
operations (max and average) or two instances of our
proposed pooling operations (gated max-avg and 2 level
tree, each using the “1 per pool layer” option) that we
find to yield best performance (see Sec. 5 for architecture
details used across each network). We begin by training
four different networks on the CIFAR10 training set,
one for each of the four pooling operations selected for
consideration; training details are found in Sec. 5. We
seek to determine the respective invariance properties of
these networks by evaluating their accuracy on various
transformed versions of the CIFAR10 test set. Figure 4
illustrates the test accuracy attained in the presence of
image rotation, (vertical) translation, and scaling of the
CIFAR10 test set.

It is interesting to note that (with a few exceptions) the
accuracy curves for max pooling and average pooling are
quite close, as are the accuracy curves for gated max-
average and for 2 level tree pooling. One might expect
that the performance of (gated) max-average pooling
would perhaps resemble the point-wise best of max or
average, the reasoning being that it is a combination of
these two. We see that this appears to not capture the
story as shown in our experiment — other than in the
lower regime of scale multiplier values, our gated max-
avg pooling performance is not simply comparable to,
but notably better than the performance of either max or
average pooling. One might also speculate that because
max-average pooling has access to the highly nonlinear
max operation, it might be able to leverage this to
potentially outperform a 2 level tree pooling operation.
These invariance experiments, in contrast, indicate that
tree pooling performs as well as (and perhaps slightly
better than) gated max-average pooling; the exception is
found at the extreme regimes of scale multiplier values.
One might explain the tree pooling performance drop

in these extreme scale multiplier value regimes as an
indication that the basic pooling masks utilized at the
leaf nodes are unable to effectively respond to patterns
across significant scaling ranges — at least for this 2 level
case.

Timing. In order to evaluate how much additional time
is incurred by the use of our proposed learned pooling
operations, we measured the average forward+backward
time per CIFAR10 image. In each case, the one per layer
option is used. We find that the additional computation
time incurred ranges from 5% to 15%. More specifically,
the baseline network took 3.90 ms; baseline with mixed
max-avg took 4.10 ms; baseline with gated max-avg took
4.16 ms; baseline with 2 level tree pooling took 4.25 ms;
finally, baseline with tree+gated max-avg took 4.46 ms.

5 EXPERIMENTS

We evaluate the proposed max-average pooling and
tree pooling approaches on five standard benchmark
datasets: MNIST [22], CIFAR10 [18], CIFAR100 [18],
SVHN [30] and ImageNet [34]. To control for the effect
of differences in data or data preparation, we match
our data and data preparation to that used in [24].
Please refer to [24] for the detailed description. We also
seek to control for the effect of hyperparameter settings
by using the same hyperparameter settings. We will
use the term hyperparameters to collectively refer to
number of layers, number of channels, dimensions of
pooling regions, dropout rate, learning rate, learning
rate schedule, momentum, weight decay, and parameter
initialization.

We now describe the basic network architecture and
then will specify the various hyperparameter choices.
The basic experiment architecture contains six 3×3 stan-
dard convolutional layers (named conv1 to conv6) and
three mlpconv layers (named mlpconv1 to mlpconv3)
[27], placed after conv2, conv4, and conv6, respectively.
We chose the number of channels at each layer to be anal-
ogous to the choices in [24], [27]; the specific numbers
are provided in the sections for each dataset. We follow
every one of these conv-type layers with ReLU activation
functions. One final mlpconv layer (mlpconv4) is used
to reduce the dimension of the last layer to match the
total number of classes for each different dataset, as in
[27]. The overall model has parameter count analogous
to [24], [27]. The proposed max-average pooling and tree
pooling layers with 3× 3 pooling regions are used after
mlpconv1 and mlpconv2 layers 2. We provide a detailed
listing of the network configurations in Table 6.

Moving on to the hyperparameter settings, dropout
with rate 0.5 is used after each pooling layer. We also
use hidden layer supervision to ease the training process
as in [24]. The learning rate is decreased whenever the
validation error stops decreasing; we use the schedule

2. There is one exception: on the very small images of the MNIST
dataset, the second pooling layer uses 2× 2 pooling regions.



9

Average Pooling Max Pooling Weighted pooling Gated max-avg pooling (ours)

Learned 
pooling masks 

V1 V2

Fig. 5: Visualization of the learned pooling masks of weighted pooling and the proposed gated max-average pooling
function on CIFAR-10 dataset. Here we denote weighted pooling to a single learned pooling filter without the tree
structure (i.e., a singleton leaf node containing 9 parameters; one such singleton leaf node per pooling layer). We
also visualize the output feature maps from different pooling methods, including max pooling, average pooling,
weighted pooling, and gated max-average pooling. We can see that the feature responses of learnable pooling
functions (weight and gated pooling) encode much of the structure in the image, as some of it is lost when pooling
without learning (average or max pooling) is used.

{0.025, 0.0125, 0.0001} for all experiments. The momen-
tum of 0.9 and weight decay of 0.0005 are fixed for all
datasets as another regularizer besides dropout. All the
initial pooling filters and pooling masks have values
sampled from a Gaussian distribution with zero mean
and standard deviation 0.5. We use these hyperparam-
eter settings for all experiments reported in Tables 1, 2,
and 3. No model averaging is done at test time.

5.1 Classification results
Tables 1 and 2 show our overall experimental results.
Our baseline is a network trained with conventional max
pooling. Mixed refers to the same network but with a
max-avg pooling strategy in both the first and second
pooling layers (both using the mixed strategy); Gated has
a corresponding meaning. Tree (with specific number of
levels noted below) refers to the same again, but with
our tree pooling in the first pooling layer only; we do
not see further improvement when tree pooling is used
for both pooling layers. This observation motivated us to
consider following a tree pooling layer with a gated max-
avg pooling layer: Tree+Max-Average refers to a network
configuration with (2 level) tree pooling for the first
pooling layer and gated max-average pooling for the
second pooling layer. All results are produced from the
same network structure and hyperparameter settings —
the only difference is in the choice of pooling function.
See Table 6 for details.

MNIST. The MNIST dataset consists of 28 × 28 gray
scale images from 10 different classes (the digits 0-9)
with 60, 000 training and 10, 000 testing samples. Our
MNIST model has {128, 128, 192, 192, 256, 256} channels
for conv1 to conv6 and {128, 192, 256} channels for mlp-
conv1 to mlpconv3, respectively. Our only preprocessing

is mean subtraction. Tables 4,1, and 2 show previous best
results and those for our proposed pooling methods.

CIFAR10. The CIFAR10 dataset consists of 32× 32 color
images with 50, 000 training examples and 10, 000 testing
examples. The dataset is preprocessed by using global
contrast normalization and ZCA whitening as in [6],
[24], [27]. Our CIFAR10 model has {128, 128, 192, 192,
256, 256} channels for conv1 to conv6 and {128, 192, 256}
channels for mlpconv1 to mlpconv3, respectively. We
also performed an experiment in which we learned a
single pooling filter without the tree structure (i.e., a
singleton leaf node containing 9 parameters; one such
singleton leaf node per pooling layer) and obtained 0.3%
improvement over the baseline model. We refer this
single learned pooling filter to weighted pooling. Our
results indicate that performance improves when the
pooling filter is learned, and further improves when we
also learn how to combine learned pooling filters.

In Figure 5 we visualize learned pooling masks of
weighted pooling and the proposed gated max-average
pooling function on CIFAR-10 dataset. The weighted
pooling mask mimics a low-pass filter the while gated
pooling masks capture oriented edges. The gating mask
(function) will then learn and determine how to com-
bine the pooling responses based on the input feature
maps (Equation. 4). We also visualize the output feature
maps from different pooling methods, including average
pooling, max pooling, weighted pooling, and gated max-
average pooling in Figure 5. We can see that the feature
responses of learnable pooling functions (weight and
gated pooling) encode much of the structure in the im-
age, as some of it is lost when pooling without learning
(average or max pooling) is used.

The All-CNN method in [38] uses convolutional lay-



10

Method MNIST CIFAR10 CIFAR10+ CIFAR100 SVHN
CNN [15] 0.53 - - - -
Stoch. Pooling [46] 0.47 15.13 - 42.51 2.80
Maxout Networks [6] 0.45 11.68 9.38 38.57 2.47
Prob. Maxout [39] - 11.35 9.39 38.14 2.39
Tree Priors [40] - - - 36.85 -
DropConnect [25] 0.57 9.41 9.32 - 1.94
FitNet [33] 0.51 - 8.39 35.04 2.42
NiN [27] 0.47 10.41 8.81 35.68 2.35
DSN [24] 0.39 9.69 7.97 34.57 1.92
NiN + LA units [1] - 9.59 7.51 34.40 -
dasNet [42] - 9.22 - 33.78 -
All-CNN [38] - 9.08 7.25 33.71 -
R-CNN [26] 0.31 8.69 7.09 31.75 1.77
Our baseline 0.39 9.01 7.22 34.38 1.89
Our Tree+Max-Avg 0.31 7.61 6.02 32.87 1.70

TABLE 4: Classification error (in %) reported by recent comparable publications on four benchmark datasets with a
single model and no data augmentation, unless otherwise indicated. A superscripted + indicates the standard data
augmentation as in [24], [27], [38]. A “-” indicates that the cited work did not report results for that dataset. A fixed
network configuration using the proposed tree+max-avg pooling (1 per pool layer option) yields state-of-the-art
performance on all datasets (with the exception of CIFAR100).

ers in place of pooling layers in a CNN-type network
architecture. However, a standard convolutional layer re-
quires many more parameters than a gated max-average
pooling layer (only 9 parameters for a 3 × 3 pooling
region kernel size in the 1 per pooling layer option) or a
tree-pooling layer (27 parameters for a 2 level tree and
3×3 pooling region kernel size, again in the 1 per pooling
layer option). The pooling operations in our tree+max-
avg network configuration use 7×9 = 63 parameters for
the (first, 3 level) tree-pooling layer — 4 leaf nodes and
3 internal nodes — and 9 parameters in the gating mask
used for the (second) gated max-average pooling layer,
while the best result in [38] contains a total of nearly
500, 000 parameters in layers performing “pooling like”
operations; the relative CIFAR10 accuracies are 7.61%
(ours) and 9.08% (All-CNN).

For the data augmentation experiment, we followed
the standard data augmentation procedure [24], [27],
[38]. When training with augmented data, we observe
the same trends seen in the “no data augmentation” ex-
periments. We note that [7] reports a 4.5% error rate with
extensive data augmentation (including translations, ro-
tations, reflections, stretching, and shearing operations)
in a much wider and deeper 50 million parameter net-
work — 28 times more than are in our networks.

CIFAR100. The CIFAR100 dataset consists of 32 × 32
color images with 50, 000 training and 10, 000 testing
images, but with 100 classes rather than 10. The number
of images for each class is thus 500 instead of 5, 000
as in CIFAR10. We preprocess the dataset by global
contrast normalization and ZCA whitening as in [6]. Our
CIFAR100 model has 192 channels for all convolutional
layers and {96, 192, 192} channels for mlpconv1 to mlp-
conv3, respectively. The fourth column of Table 4 shows
recent comparable results.

Street view house numbers. The Street View House

Numbers (SVHN) dataset consists of 32×32 color images
from Google Street View images: 73, 257 digits for train-
ing, 26, 032 digits for testing, and 531, 131 extra training
samples. We follow the same training procedure in [6]
that we select 400 samples per class from the regular
training set and 200 samples per class from the extra
training set as the validation set. We preprocess the
dataset by Local Contrast Normalization (LCN) as in
[46]. Our SVHN model has {128, 128, 320, 320, 384, 384}
channels for conv1 to conv6 and {96, 256, 256} channels
for mlpconv1 to mlpconv3, respectively. In terms of
amount of data, SVHN has a larger training data set
(>600k versus the ≈50k of most of the other benchmark
datasets). The much larger amount of training data moti-
vated us to explore what performance we might observe
if we pursued the one per layer/channel/region option,
which even for the simple mixed max-avg strategy re-
sults in a huge increase in total the number of parameters
to learn in our proposed pooling layers: specifically, from
a total of 2 in the mixed max-avg strategy, 1 parameter
per pooling layer option, we increase to 40,960.

Using this one per layer/channel/region option for
the mixed max-avg strategy, we observe test error (in %)
of 0.30 on MNIST, 8.05 on CIFAR10, 6.58 on CIFAR10+,
33.35 on CIFAR100, and 1.64 on SVHN. Interestingly, for
MNIST, CIFAR10, CIFAR10+, and CIFAR100 this mixed
max-avg (1 per layer/channel/region) performance is
between mixed max-avg (1 per layer) and gated max-avg
(1 per layer); The SVHN result using mixed max-avg (1
per layer/channel/region) sets a new state of the art.

ImageNet 2012. The ImageNet 2012 dataset consists
of 1.2 million training images, 50, 000 validation, and
100, 000 testing. In this experiment we do not directly
compete with the best performing result in the challenge
(since the winning methods [43] involve many additional
aspects beyond pooling operations), but rather to pro-
vide an illustrative comparison of the relative benefit



11

of the proposed pooling methods versus conventional
max pooling on this dataset. We use the same network
structure and parameter setup as in [19] (no hidden layer
supervision) but simply replace the first max pooling
with the (proposed 2 level) tree pooling (2 leaf nodes
and 1 internal node for 27 = 3 × 9 parameters) and
replace the second and third max pooling with gated
max-average pooling (2 gating masks for 18 = 2 × 9
parameters). Relative to the original AlexNet, this adds
45 more parameters (over the >50M in the original) and
achieves relative error reduction of 6% (for top-5, single-
view) and 5% (for top-5, multi-view). Our GoogLeNet
configuration uses 4 gated max-avg pooling layers, for
a total of 36 extra parameters over the 6.8 million in
standard GoogLeNet. Table 5 shows a direct comparison
(in each case we use single net predictions rather than
ensemble). Table 6 gives a summary of the network
configurations used in the experiments.

Method
top-1

s-view
top-5

s-view
top-1

m-view
top-5

m-view
AlexNet [19] 43.1 19.9 40.7 18.2
AlexNet w/ ours 41.4 18.7 39.3 17.3
GoogLeNet [43] - 10.07 - 9.15
GoogLeNet w/BN 28.68 9.53 27.81 9.09
GoogLeNet w/BN+ours 28.02 9.16 27.60 8.93

TABLE 5: ImageNet 2012 test error (in %). BN denotes
Batch Normalization [13].

5.2 Observations from experiments

In each experiment, using any of our proposed pool-
ing operations boosted performance. A fixed network
configuration using the proposed tree+max-avg pooling
(1 per pool layer option) yields state-of-the-art perfor-
mance on MNIST, CIFAR10 (with and without data
augmentation), and SVHN. We observed boosts in tan-
dem with data augmentation, multi-view predictions,
batch normalization, and several different architectures
— network in network style, deeply-supervised nets
style, the >50M parameter AlexNet, and the 22-layer
GoogLeNet.

5.3 Visualization of network internal representa-
tions

To gain additional qualitative understanding of the pool-
ing methods we are considering, we use the popu-
lar t-SNE [44] algorithm to visualize embeddings of
some internal feature responses from pooling operations.
Specifically, we again use four networks (one utilizing
each of the selected types of pooling) trained on the
CIFAR10 training set (see Sec. 5 for architecture details
used across each network). We extract feature responses
for a randomly chosen 800-image subset of the CIFAR10
test set at the first (i.e., earliest) and second pooling
layers of each network. These feature response vectors
are then embedded into 2-D using t-SNE; see Figure 6.

The first column shows the embeddings of the internal
activations immediately after the first pooling operation;
the second column shows embeddings of activations
immediately after the second pooling operation. From
top to bottom, we plot the t-SNE embeddings of the
pooling activations within networks that are trained with
average, max, gated max-avg, and (2 level) tree pooling.
We can see that certain classes such as “0” (airplane),
“2” (bird), and “9” (truck) are more separated with the
proposed methods than they are with the conventional
average and max pooling functions. We can also see that
the embeddings of the second-pooling-layer activations
are generally more separable than the embeddings of
first-pooling-layer activations.

5.4 Relationship to gated convolutional layer
In the previous sections we demonstrated that aspects
of mixed, gated, and tree behaviors can be incorporated
into the pooling functions of a CNN framework, recall-
ing that a pooling function operates on spatially-local
regions in a channel-by-channel fashion; that is, spatial
information is condensed but channels remain separate.
Another layer type, specifically a convolutional layer,
is intended to exploit local correlation by computing
feature response maps across different channels within
corresponding receptive fields; that is, spatial informa-
tion remains separate, but channels can interact.

It can be a challenging task to design CNN models
that possess good performance without excessive model
size. Factors such as the number of layers and number
of output channels require careful consideration during
the CNN design process because even modest increases
in these factors can lead to much greater increases in
the dimensions of the output responses in subsequent
layers. In light of this, rather than simply increasing the
depth and the number of channels of a CNN model, we
instead investigate a method to improve performance by
integrating aspects of gated behavior into convolutional
layers constructed so as to incorporate both learning
of the convolutional features and learning how to fuse
those convolutional features. In keeping with our earlier
terminology, we call these layers gated convolutional
(gated conv) layers. We consider a gated convolutional
layer of the form:

fgate conv(x) = σ(Wx) ◦ V1x+ (1− σ(Wx)) ◦ V2x, (13)

where x denote the vectorized feed-forward and input
patches, {W,V1, V2} ∈ RNout×Nin are the kernel matrices
interacting with input x. Here Nout is the number of
output channels and Nin is the number of input channels,
◦ denotes the Hadamard product, and 1 represents the
vector in which all elements are 1. The “gating function”
σ(Wx) = 1/(1 + exp{−Wx}) ∈ [0, 1]Nout specifies the
weights to use when adding the different responses V1x
and V2x to produce the layer response result. The deriva-
tives of the function fgate conv(x) w.r.t its weights are
analogous to what we saw for the gated and tree pooling



12

pool1 pool2

3

88 0
6

6 1

6

3

1
09

5
7

9

8

5

7

86

7

0
4

9

5

2
4

0
9

6
6

5

4

5

924
1

9

5

46
5
6

0
9

3
9

76

9
80 3

8

87

7

4

6
7

3

6

36
2 1

2

37

2

6

8 8
0

2

9

3

3

8

8

1

1

7 25

2

78
9 0

3

86
4

6
6

0

0
74

5

6
3

1

1

3

6

8

7
4

0 6
2

1

3

04

2

7 8

3

1

2

8

08

3

5

2

4
189

1

2

9

72
9

6

5

6

3

8

7

6

25
2

8

96

0

0

5

2

9

5

4

2

1

6

6
8

48
4

5

0

9
9

9

8

9

9

3

7

5

0 052
2

3
8

6

3

4

0

5 8

0

1

7
2

8

8
7

8

5

18

7 13

0
5

7

9

7

4

5

9

8

0
7

9
8

2

7
6

94
3 9

6
47

6

5

1

5

8
8

04 0

55

1

1
8

9 0
3

1

9
2

2

5 3

9

9

4
0

3

0098
1

5

7

0
8

24
7

0
2

3

6

3

8

5

0

3
43 9

0

6

1
0

9

1

07

9

1

2

6 9

3
46 0 0

6
66

3

2

6

1

8

2
1

6

8
6

8

0
4 0
7

7
5

5
3

5
23

4
1

7

546

1

9

3

6

6

9

3

8
0

7

26 25

8

54

6
8

99 1

0
2

2

7

3

2

8
0

9

5

8

1

9

4

1
3

8

1

4
7

9

4

2
7

07

0

66
9

0
9

2

8

7 2
25

1
2

6

2

9

6

2

3
0

3

9

8

7

88
4

01 8

2
7

9

3

6
1

9

0

7

3
7

4

5

0

0

2 9
3

4
0 6

2 5

3

7

3

7 2
5

3

1

1

4

9

9

5

7

5

0

2
2

29

7
3

94
3

5

4

6

5

6

1

4
3

4
4

3
7

8

3

7
8

0

5

7

6 0

5

4

8

6 8

5

5 9
99

5

0

1
0

8

1

1
8

0
2

2
046

5

4 9
4

7

99
4

5

66
1

5
3

8

95 8
5 7

0
7

0

5

0

0
46

9
0

9

5

6
6

6
2

9

0

1

7

6

7 5

9
1

6

25

5

5

8

5

9
4

6

432

0
7

6

2
2

3

9

7

9

2

6
7

1

3

6

6

8

9

7 5

4
0 8

4 0

9
3

4 8
9

6
9

2
6

1
4 7

3

53 85

0

2

1
6

4

3

3

9

6
988

5

8

66

2

1
7

7
12

7

9

9

4 4

1
2

5

6
8

7

6

8

3

0
5

5

3

07

91

3
4

4

5

3

9

5 69 2
11

4

1
9

4 76 3

8

9

0

1

3

6

3

6

3

2

0

3

1

05

9
6 4

8
96

9
6

3
0
3 22

7 83
8

2

7
5

7

2

4

8

7

4
29 88

6

8
8

7
4

3

38
4

9
4

8
8

1

8 2

1

3

6 5

4 2

79 9

4

1

4

1

3 2

7

0

7

9

7
66

2
5

9

2

9 1

2
2

6
8

2

1

3
6

6
0

1

2
7

0
5 46

1

64 02
26

0

5

91

7

6
7

0

3

96
8

3 034

7

7
1

47

2

 Ave pooling

3

8

8
0

6
6

1

6 3

1

0

9

5

7

9

85

7

8

67

0

4

9

5

2

4

0

9

6
6

5

4

5

9 2

4

1

9

5

4

6

5

60

9

3 9

7 6

9

8

0

3
8
8

7

7

4

6

7

3

6

3

6

2
1

2

3

7

2

6

8

8 0

2

9

3

3
8

8

11

7
2

5

2
78

9

0

38

6

4

66

0

0

7

4

5

6 3

1
1

3

6

8

7

4

0

6
2

1

3

0

4

2

7

8

3

1

2

8

0

8

3
5

2

4

1

8
9

1

2

9

7

2

9

6

5

6

3

8

7

6

2
5

2

8

9

6
0

0
5

2

9

5

4

2

1 6

6

8

4

8

4

5

0

9

9

9

8

9

9

3

7

5
0

0
5

2

2

3

8
6

34

0

5
8

0

1

72

8

8

7

8

5

1
8

7

1

3
0

5

7

9

7

4

5

9
8

0

7

9

8

2

7

6

9

4

3

9

6

4
7

6

5

1

5

8

8

0

4

0

55

11

8

9

0

3

1

9
2

2

5
3

9

9

4

0

3

0 0

9

8

1

5 7

0

8
2

4

7

0

2
3

6

3

8
50

3

4

3

9

0

6

1

0

9 1

0

7

9
1

2

6

9

3

4

6

0

0

6 6
6

3

2

6
1

8
2

1

6

8

6

8

0

4

0

7

7

55

3
5

2

3

4

1 7

5

4

6
1

9

3

6

6

9

3

8

0

7

2 6

2

58

5

4 6
8

9

9

1

0

2

2
7

3
2

8

0

9

5

8

1

9

41

38

1

4

79

4
27

0 7

0

66

9

0

9

28

7

2 2

5

1

2

6

29

6

2
3

0

3

9

8
7

8

8

4

0

1

8

2

7
9

3

6

1
9

0

7

3

7

4 5
0

0

2

9

3

4

0

6 2

5

3

73

7

2

5
3

1

1

4

9

9

5

7

50

2

2

2

9

7
3

9

4

3

5

4

6

5

6

1

4

3

4

4

3
7

8

3

7

8
0

5

7

6

0

5

4

8 6

8

5

5

9

9

9

5

0

1

0

8

1

1

8
0

2

2

0

4

6
5

4

9

4

7

9

9

4

5

6

6

1

53

8

9

5

8

5

7

0

7

0

5

0

0

4

6

9

0

9

5

6
6

6

2

9
0

1

7 6

7

5

9

1

6

2

5

55

8

5

9

4

6
4

3

2

0

7 6

2

2

3

9

7

9
2

6

7

1

36

6

8

9
7

5

4

0

8
4

0

9
3

4

8

9

6

9

2

6

1

4

7

3

53

8

5

0

2

1

6
4

3

3

9

6

9

88

5

8

6 62

1

7

7

1

2

7

9

9
4

4

1

2

5

6
8

7

6

8 3

0
5

5

3

0

79

1

3

4

4

5
3

9

5

6

9

2

1

1
4

1

9

4
7

6

3

8

9

0

1

3

6

36

3

2

0

3

1

0

5

9

64

8

9

6

9

6

3

0

3

2
2

7

8

3

8
2

7

5

7

2

4

8

7
4

2

9

88

6

8

8
7

4

3
3

8 4

9

4
8

8

1

8

2

1

3

6

5

4

2

7

9

9

4

1
4

1

3

2

7

0

7

9

7
6

6 25

9

2

9 1

2

2

6

8

2

1

3 6

6

0

1

2

7 0

54
6

1

6

4

0

2

2

6

0

5

9 1

7
6

7

0

3

9 6

8
3

0

3

4

7

7

1

4

7

2

 Ave pooling

3

88 0

6
6

1

6

3

1 09
5

7

9
8

5

7
8

6

7

0
4

9

5

2

4

0

9

6

6 5

4

5

9
2

4

1

9

5

46

5

6

0

9

3

97

6

9

8

0
3

8

8

7

7

4
6

7
3

6

3
6

2

1

2
3

7 2

6

8 8
0

2

9
3

3

8

8

1

17

25

2

7
8

9 03

86

4

6

6

00
74

5
6

3

1
1 3

6

8

7

4

0

62

1

3

0
4

2

7
8

3

1

2

8

0

8

3
5

2

4

1

8

9

1

2

9

7

2

96

5

6

3

8

7

62 52

896 0
0

5

2

9

5

4

2

1

6
6

8

48

4

5

0

9
9

9 8

9

9

3
7

5

00

52

2

3
8

6

3 4

0
5

8

0

1
7

2

8

8
7

8

5

1

8

7

1

3

0

5

7

9

7

4

5
9

8

07
9 8

2

7

6

9
4

3

9

6
4

7

6

5

1

5

8

8

0

4 0
5

5

1
1 8

9
0
3

1

9

2
2

5
3

9

9

4
0

3

0
0

9
8

1

5

7

0

8

2

4 7
0 2

3
6

3

8

5

03

4
3

9

0

6

1
09

1

0

7

91

2

6
9

3
4

6
0

0

6

66

3

2
6

1

8 21

6

8

6
8

04
0

7

7
5

5

3
5 2

3

4
1

7

5

4
6

1

9
3

6

6

9

3

8 0

7
2

6
2

5
8

54

6

8

9

9
1

0

2
2

7 3

2

8

0

9

5

81

9

4

1

3

81

4

7

9

4

2 7

0
7

0

6

6

9

0

9

2

8

7

2

2
5

1 2

6

2

9

6

2

3

0

3

9

8

7

88

4

0

1 8

2

7

9

3

6 1
9

07

3

7

4

5

0
0

2
9

3

4

0
6

2 53
7

3

7

2

5

3

1

1

4

99

5

7

5

0

2

2

2
9

7 3

94

3

5

4

6

5

6

1

4

3

44
37

8

3

7
8

0

5

7

6 0

5

4

8
6 85

5
9

9

9

5
01

0 8

1

1
8

0

22
046

5

4

9

4

7

9
9

4

56
6

1

5

3

8

9

5

8

5

7
0

7

0

5

0

0

4
6

90

9

5

66 6 2
9

0

1

7
6

7 5

9

1

6

2

5

5

5

8

5

9

4
6

43
2

07 62

2

3

9

7

9 2

6
7

1

3

6
6

8

9
7

5

4 0
8

4

0
9

34

8

9

6
9

2
6

1
47

3

53

8

5

0

2

1

6

4

3

3

9

6

9 8
8

5

866

2

1

7

71

2

7

9

9

4 4

1

2

5

68

7

6

8

3

0
5

5
3

07

91

3

44

5

3
9

5

6

9

2

1

1

4

1
9

4

7

6

3

8

9

0

1

3

6

3

6

3
2

0

3

1

0
5

9

6 4

8

96
9

6

3

0

3
2

2
7

8
38

2
7

5

72

4

8

7 4
2

9

8 8

6

8

8
7

4

3

3
8

4
9

4

8
8

1

8

2

1

3
6

5

4

2

7

9

9

4

1

4

1

32
7

0
7

97
6
6

2
5

9

2

9 1

2
2

6 8

2

1

3
6

6 0
1

2
7

0

5 4

6

1

6
4

0

2
26

0

5

9

17
67

0

3

96
8

30

34

7

7

1

4
7

2

 Max pooling

3
8

8 0

6

6

1

6

3

1

0

9

5

7
9

8

5

7

86

7

0

4

9

5

2

4

0

9

66

5

4

5

9

2

4
1

9

5

4

6

5

6
0

9

3

9

7

6

9 8

0

3
8

8
7 7

4

6

7

3

63

6

2
1

2

3

7

26

8

8
0

2

9

3

3
8

8
1

17

2

5
2

7

8

9

0

3

86

4

6

6

0 0

7

4

5

6
3

1
1

3

6

8

7

4

0

6

2

1

3

0

4

2

7

8
3

1

2

8

0

8

3 5

2

4

1
8

9
1

2

9

7

2 96

56

3

8
7

6

2 5

2

8

9

6

0

0

5

2

9

5

4

2

1

6

6
8

4

84

5

0

9

9

9

8

9

9

3

7

5

0

0

5

2

2

3

86

3

4

0
5

8
0

1

7 2

8

8

7 8

5

1

8

7 1

3

0

5

7 9

7
4

5

9

8

0

7

9

8

2

7

6

9

4

3

9

6

4

76

5

1

5

8

8

0

4

0

5
5

1

1

8

9

0

3

1

9

2
2

5
3

9

94

0

3

0
0

9

8

1

5

7

0

8

2

4
7

0
2

3
6

3

8

5

0

3

4

3

9

0

6

1
0

9

1

0

7

9

1

2

6

9

3

4

6 0
0

666

3

2

6

18

2

1

6

86

8

0

4

0

77

5

5
3

5

2

3

4

1

7

5

4

6

1

9

36
6

9

3

8

0

7

2

6

2

5 8
5

4

6
8

9

9

1

0

2

2

7
3

2

8

0

9

5

8

1
9

4

1

3 8

1

4

7

9

4

2

7

0

7

06
6

9

0

9

2
8

7

2

2
5

1

2

6

2

9

6

2

3

03

9

8

7

8
8

4

0

1

8

2

7

9

36

1

9

0

7

3 7

4

5
0

0

2

9

3
4 0

6

2

5

3

7

3

7

2

5

3 1

1

4

99

5

7

5 0

2

2

2

9

7

3

9

4

3

5
4

65
6

1

4

3

4 4

3

7 8

3

7

8

0

5

7

60

5

4

86

8

5
5

9

9
9

5

0

1

0

8

1

1
8

0
2

2

0

4

6

54

9

4
7

9

9

4

5

6

6

1

5

3

8

9

5

8
5

7

0

7

0

5

0

0

4

6

9

0

9

5

6

6

6
2 9

0

1

7

6

7

5

9

1

6

2

5

5

5

8

5

9

4

6
43

2

0

7

6

2
2

3

9

7

92

6

7
1

3

6

6

8

9

7

5

4 0

8

4

0

9

3
4

8

9

6

9

2

6

1

4

7

3

5

3

8

5

0

2

1

6

4

3

3

9

6

9

88

5

8

6

6
2

1
7

7

1

2

7

9
9

4
4

1

2

5

6

8

7

6
8

3

0

5

5
3 0

7

9
1

3

4

4

5

3

9

5

6

9

2

1

1

4 1

9

4 7

6

3 8

9

0

1

3
6

3 63

2
0

3

1

0

5

9

6
4

8

9

6

9

6
3

0
3

22

7

8

3

8

2

7

5

7

2

4

8

7

4

2

9

8
8

6
8

8

7

4

3 3

84

9

4

8

8

1

8

2

1

3
6

5

4

2

7

9

9

4

1

4 1

3

2

7

0

7

97

6

6

2

5

9

2

9
1

2

2

6

8

2

1

3

66
0

1

2

7

0

5

4

6

1

6
4

0

2

2

6

0

5

917

6

7

0
3

9

6

8

3 0
3

4
7

7

1

4

7
2

 Max pooling

3

8

8

0

6

616

3

1

0 9

5

7

9 8

5

7
8 6

7

0

4

9

5
24

0

9

6

6
5

4

5

9 2

4

1

9

5

4

6

5

6

0

9

3
9

7

6

9

8

0

3

8

8

7

7

4
6

7
3

6

3 6

2

1

2

3

7

2
6

8
8

0

2

9

3

3

8

8

1

1

7

25 2

78

9

0

38

6

4

6
60

0

7
4

56

3

1

1 3

6

8

7 4

0

6

2

1

3

0

4

2

7

8

3
12

8

0

8

3

5

2

4

1

8

9

1
2

9

7
2

9

6

5

6

3

8
7

62
5

2

8

9
6

0

0
5

2

9
5

4

2

1

6

6

8

4
8

4

5

0
9

9

98

9

9

3

7

5
00

5
2 2

3 8

6

3

4

0

5
80

1

7

2

8

8

7

8

5

1

8

7
1

3

0

5 7
9

7

4

59

8

0

7

9

8

2

7
6

943

9

6
4

7

6

5

1

5

8

8

0

4

05

5

1

1

8

9

0

3

1

9 2

2

5
3

9

9

4

0

3

0
0

9

8 1

5

7

0

8 2 4

7

0

2
3

6

3

8

5

0

3

4
3

9

0

6

1
0

9

1

0

7

9

1

2
6

9

3

4

6

0
0

66

6

3

2
6

1

8
2

1

6

8

6

8

0

4

0
7

7

5

5

3

5

2

3

4

1

7

5

4

6

1

9

36

6

9

3

8

0
7

2

62

5

8

5 4

6
8

9

9
1

0

2

2

7

3

2

8

0 9

5

8

1

9

4

1

3

8

1

4

7

9

4

2

7

0

7

0

6

6

9

0

9

2

8

7

2

2

5

1

2

6

2

9

6

2

3

0

3

9

8

7

8
8

4

0

1

8

2

7

9

3

6

1

9

0

7

3

7

4

5

0

0
2

9
34

0
6

2

5 3
7

3

7
2

5

3

1

1

4

9
9

5

75

0

2

2

2

9

7
3

9

4

3
5

46

5
6

1

4

3

4
4

37

8

3

7

8
0

5

7

6

0

5

4

8 6
8 5

5

9 9

9

5

0

1

0

8

1

1
8

0

2

2
0

4

6

5

4

9

4
7

9

9 4

5

6
6

1

5

3

8

9

5

8

5
7

0

7

0

5

0

0

4

6

9

0

9

5

6

66
2

9

0

1

7
6

7
5

9

1

6

2

5

5

5

8

5
9

4
6

43

2

0

7
6

2

2

3

9

7

9

2

6
7

1
3

6 6

8

9

7
5

4

0

8

4

0

9 3

4

8

9

6

9

2

6

1

4

7

3

5

3

8

5

0

2

1

64
3

3

9

6

9

8

8

5

86

6

2

1

7

7

1

2
7

9

9

4

4

1

2

5

6
8

7

6

8
3

0

5

5

3

0

7

9

1
3

4
4

5

3

9

5

6

9

2

1

1
4

1

9

4

7

6

3

8

9

0

1

3

6

3

6

3

2

0

31

0

5

9

64

8

9

6

9

6

3

0

32

2

7

8

38

2

7

5

7

2

4

8

7

4
2

9

88

6

8
8

7 4

33
8

4
94

8

8

1

8 2

1

3

6
5

4

2

7 9

9

4
1

4

1

3

2 7

0

7
9

7

6

62
5

9

2

91

2

2

6
8

2

1

36

6

0
1

2 7

0

5
4

6
1

64

0

2

2 6

0

5

9

1

7

6

7

0

3

9

6

8

3

0

3 4

7

7

1

4 7

2

 Max-Ave pooling

3 88

0

6
6 1

6

3

1

0

9

5

7

9

8

5

7

8

6

7

0

4

9

5

24

0

9

6
6

5

4

5

92

4

1
9

5 4

6

5

6 0

9

3

9

7
6

9

8

0

3

8 8
7

7

4

6

7

3

6

3

6

2 1

2

3

7

26

8

8
0

2

9

3

3
8

8 1

1

7

2

52
7 8

9

0

3 8

6

4

6
6

0

0

7

4

5

6
3

1

1

3
6 8

7

4

0

6
2

13

0

4

2

7

8

3

1

2

8

0

8

3

5

2

4

1
8

91

2

9

7

2
9

6

5

6
3

87

6

2
5

2

8

9

6
0

0

5

2

9

5
4

2

1

6

6

8

4

8

4

5

0

9

9

9

8

9

9

3

7

5

0

05

2

2

3

8
6

3

4

0

5

8

0

1

72

8

8

7

8

5

1

8

7 1

3

0

5

7

9

7

4

5

9

80
7

9

8
2

7

6

9

4

3

9

64

7

6

5

1

5

8
8

0

4

0

5
5

1 1

8
9

0
3

1

9

2

2
53

9

9

4
0

3

0
0

9

8

1

5
7

0

8
2

4

7

0

2

3

6

3

85

0

3
4

3

9

0

6
1

0

9

1

0

7

9

1

2

6
9

3

4

6

0
0

66 6

3 2

6
1

8

2

1

6
8

6

8

0

4

0

7 7

5

5

3 5

2

34

17

5

46

1

9

3

6

6

9

3

8

0

7

2

6

2

5

8

5

4

6

8

99

1

0

2

2

7

3 2

8

0

9

5

8

1

9

4

1

3
8

1

4

7

9

4

2

7

0
7

06 6 9

0

9

2

8

7
2

25

1

2

6

2

9

6

2

3

0
3

9

8
7

8
8

4

0

1

8

2

7

93

6
1

9

0
7

3

7

4

5

0

02

9

3
4

06

2
5

3

7

3

7

2

53

1

1

4

9
9

5

7

5

0

2

2

2

9

7

3

9

4

35
4 6

5

6

1

4

3

4
4

3

7

8

3
7

8 0

5 7

6

0

5

4

8

6

8

5

5
9

9

9

5

0

1

0

8

1 1

8

0

2

2

0

46

5

4

9

4

7

9

9

4

5

6

6

1

5

3

8

9

5

8
5

7 07

05

0

0

4

6

9

0

9

5

6
66

2

9

0

1

7

6

7

5

9

16

2

5

5

5

85

9

4
6

4
3

2

0

7

6
2

2 3

9

7

9

2

6

7
1

3

6

6

8

9

7

5

4

0

8

4

0

9

3

4

8

9

6

9

2

6
1

4

7

3

53

8

5

0

2

1

6

4

3

3

9

6

9

8
8

5

8

6

6

2

1

7

7

1

2

7

9 9

4
4

1

2
5

6

8

7

6

8

3 0

5

5

3

0

7

91

3

4
4

5
3

9

5

6

9

2

1

1
4

1
9

4

7
6

3

8

9

0

1

3

6

3

6

3

2

0

3

1

0
5

9
6

4

8

9

6

9

6

3

0

3

2

2

7

8

3

8

2

7

5 7

2

4

8

7

4

2

9

8
8

6

8
8

7

4

33

8
4

9

4

8

8
1

8

2

1

3

6

5

4

2

7
9

9

4

1

4

1

3

2

7

0
7

9
7

6

6 2
5

9

2

9

1

2

2

6

8

2

1

3

6

6
0 1

2

7

0

5 4

6

1

6
4

0

2

2

6

0

5

91

7

6
7

0

3

9
6

8
3

0

3
4

7

7

1

4

7

2

 Max-Ave pooling

3

8
8

0

6 6

1 6

3

1
09

5

7

9

8

5

7 86
7

0

4

9

5

2

4

0
9

6

6
5

4

5

92

4

1

9

5

4

6

5
6

0

9

3

9

7 6

9

8

0

3

8

8

7

7

467

3

6

36

2
1

2

3

7

2

6 88

0
2

9

3

3

8
8

1

1

7
25

2 7
8

9

0

3 8

6

4

6

6

0

0

7
4

5
6

3

1 13

6

8

7

4

0

62

1

3

0

4 2

7

8

3
1

2

80
8

3

52

4

1
8

9

1

2
9

7

2

9

6

5

6

3

8

7
6

2
5

2

8

9
6

0
05

2

9
5

4

2

1

6
6

8
48

4
5 09

9

9 8

9

9
3

7

50
0

5

2

2

3
8

6 3

4

0

5 8 0

1

7
2 8

8

7

8

5

1

8

7
1

3

0

5
7

9

7

4

59

8

0

7

9
8

2 7
6

9

4 3

9
6

4

7

6

5

1

5

8

8

0

4

0

5
5

1

1

8

9

0
3

1

9

2

2

5
3

9

9

4
0

3

00

9

8
1

5
7

0

8
2
4

7
0

2
3

6

3

8

5

0
3

4 3

9

0

6

10
9

1 0

7

9
1
26

9

3

4
6

0

0

6
6

6

3

2
6

1

8
21

6
8

6 8

0

4

0
7

7
5

5

3

5
2

34

1
7

5
4

6

1
93 6

6

9

3

8

0
7

2

6

25

8

5

4

6
8

9

91
0

22

7

3

2
8

0

9

5

81

9

4

1

3

8

1

4 79

4

2

7
0

7
0

6

6

9

0
9

2

8

7
2

2

5

1
2

6

2
9

6

23

0
3

9

8

7

88

4

0

1

8

2

7

9

3

6

1

9
07

3
7

4

5

0

0

2 9
3

4

0

6
2 53

7

3
72

5

3

1

1

4

9
9

5

7
5

0

2

2 2
9

7
3

9
4

3
5

4
656

1

4

3

4
4

3
7

8

3

7

8

0

576 0

5

4
86

85
5 9 9

9

5

01

0
8

1 1
80

2

2
0

4
6

5

4

94
7

9

9

456
6

1

5
3

8

9

5

8

57

0

7

0

5

0

0

4
6

9
0

9

5

6

6 62 9

0

1

7

6

7
5

9

1

6 2

5

5

5

8

5

9

4

6

43

2

0

7

6
2

2

3

9

7

9

2

6
7

1
3

6
6

8

9

7 5

4 0

8

4

0

93

4

8

9

6

9
2

6

1
4

7

3 5

3

8

5

0

2

1

6
4

3

3

9

6

9
8

8

5

8
6

6

2
1

7
7

1
2

7

9

9

4

4

1

2

5

6
8

7

6

83 0

5

5

3

0

7

9

1

3
4

4

5 3

9

5

6

9

2
1

1 4

1

9
4

7
63

8

9

0

1

3

6

3

63

2

0

3 10

5

9

6
4

8

9

6

9

6
3

0

3 2
2

7

8

3 8

2

7

5 7

2

4

8

7

4

2

9

8
8

6 8
8

74
3

38

4 94

88

1

8
2

1

3

6

5

4

2
79

9

4
141

32
7

0

7
9

7
6

6
2

5

9
2

9

1
2

2
6

8

2

1

3
6

6 0
1

2
70

5

4
6

1

6
4

02
2

6

0

5

9

1

7
67

0

3

96 8

30

34
7

7

1

4

7

2

 Tree pooling

3

8

80 66

1

6

3

1

0

9

5

7

9

8
5

7

8
6

7

0

4

9

5

2
4

0

9

66

5 45

9

2 4

1

9

5

4

6

56
0

9

3

9
7

69

8
0

3

8
8

7
7

4
6

7

3

6

3

6

2

1

2

3
7

2

6

8

8

0

2

9

3 3

8
8

1

1

7

2

5 2

7

8

9

0

3
8

6
4 6

6

0

0

7

4
5

6 3

1

1

3

6

8
7

4

0

6
2

1

3

0

42

7

8

3

1

2

8

0

8

3

5

2

4

1

8

9

1

2

9 7

2
9

6

5
6

3

8 7

6

2
5

2

8

9

6

0

0

5

2

9

54

2

1

6 6

8

48

4
5

0

9

9

9

8

9

9

3

7

5

0
0

5

2

2

3

8 63

4

0

5
8

0

1

7

2

8
8

7

8

5

1

8

7
1

3

0

5

7

9

7

4

5

9

8

0

7

9

8

2
7

6

9

43

9

6

4
7

6

5

1

58

8

0

4

0

5

5

1

1

8

9

0

3

1

9

2

2

5
3

9

9

4

0

3

0

0

9

8

1

5
7

0

8

2

4

7

0

2 3

6

38

50 3
4

3

9

0 6

1

0

9

1

0

7
9

1

2

6

9

3

4

6

0

0

6
66

3

2 6

1

8

2

1

6

8

6

8
0

4

0

7

7

5

5

3

5

2

3

4

1

7

5

4
6

1

9

3

6

6

9

3

8

0

7

2

6

2

5

8

5
4

6

8

9
9

1

0

2

2
7

3

2

8

0

9

5

8

1

9

4

1

3

8

1

4

7

9

42

7

0

7

0

6

6

9

0

9

2

8

7

2
2

5

1

2

6

2

9

6

230

3

9

8

7

8

8

4

0

1

8

2

7

9

3

6

1
9

0
7 3

7
4

5

0
0

2

9

3

40

6 2
5

3

7

3

7

2

5
3

11

4

9
9

5

7

5

0

2

2

2
9

7

3

9

4

3

5
4

6

5

6

1

4
3

44
3

7

8

3

7

8
0

5

7

6

0
5

4

8 6

8

5

5
9

9

9

5

0

1

0

8

1

1

8
0

2

2

0

4 6

5

4

9

4

7

9

9

4

5

6

6

1

5

3

8

9

5

8

57
0

7

0

5

0

0

4

6
9

0

9

5

6 6

6
2

9

0

1

7
6

7

5

9

1
6

2

5

5

5

8 5

9

4

6

4

3

2

0

7

6

2
2

3
9

79
2
6

71

3

6

6

8 9

7

5 4
0

8

4

0

9
3 4

8

9

6

9

2

6

1

4

7

3

538

5
0

2

1

6
4

3

3

9

6

9

88

5

8

6

6

2

1

7

7

1

2

7

9
9

4

4

1
2

5

68

7

6

8
3

0

5

5
3

0

7

9

1

3

44

5
3

9

5
6

9

2

1

1 4

1

9

4

7

6

3

8

9

0

1

3

6

3

6

3

2

0
3

1

0
5

9

6

4

8

9

6

9

6

3

0

3

2

2

7

8

38
2

7
5

7

2

4

8

7

4

2

9

88 688 7

4
3

3

8

4

9

4

8

8

1

8

2

1

3

6
54

2

79

9

4

1

4

1

3 2

7

0

79

7

6
6

2

5

9

2

91

22

6

8
2

1

3

6

6

0

1

2

7

0

5
4

6

1

6 4

0

2
2

6

0

5

9

1

7

6

7

0

3

9 6

8
3

0

3

4

7

7

1

4

7

2

 Tree pooling

Fig. 6: t-SNE embeddings of the output responses from different pooling operations on the CIFAR10 test set (with
classes indicated). From top to bottom: average, max, gated max-avg, and (2 level) tree pooling. The first and the
second columns show the first and the second pooling layers, respectively. Best viewed in color.



13

Network layer configurations reported in Tables 1, 2, and 4.
DSN (baseline) mixed max-avg gated max-avg 2 level tree pool 3 level tree pool tree+gated max-avg pool

3x3 (standard) conv
3x3 (standard) conv

1x1 mlpconv
3x3 maxpool 3x3 mixed max-avg 3x3 gated max-avg 3x3 2 level tree pool 3x3 3 level tree pool 3x3 2/3 level tree pool

3x3 (standard) conv
3x3 (standard) conv

1x1 mlpconv
3x3 maxpool 3x3 mixed max-avg 3x3 gated max-avg 3x3 maxpool 3x3 maxpool 3x3 gated max-avg

3x3 (standard) conv
3x3 (standard) conv

1x1 mlpconv
1x1 mlpconv

8x8 global vote

TABLE 6: Here we provide explicit statement of the experimental conditions (specifically, network layer configura-
tions) explored in Tables 1, 2, and 4. We list all conv-like layers and pool-like layers, but ReLUs are suppressed to
lighten the amount of text; these follow each standard conv layer. Also, all network configurations incorporate deep
supervision after each standard convolution layer; this is also suppressed for clarity. We bold the changes made
to the baseline DSN layer configuration. We now describe the meaning of entries in the table. Each column in the
table lists the sequence of layer types used in that network configuration. When a row cell spans multiple columns
(i.e. configurations), this indicates that the layer type listed in that cell is kept the same across the corresponding
network configurations. Thus, every network in our experiments begins with a stacked pair of 3x3 (standard)
conv layers followed by a 1x1 mlpconv layer. For a specific example, let us consider the network configuration
in the column headed “mixed max-avg” - the sequence of layers in this configuration is: 3x3 (standard) conv, 3x3
(standard) conv, 1x1 mlpconv, 3x3 mixed max-avg pool, 3x3 (standard) conv, 3x3 (standard) conv, 1x1 mlpconv,
3x3 mixed max-avg pool, 3x3 (standard) conv, 3x3 (standard) conv, 1x1 mlpconv, 1x1 mlpconv, 8x8 global vote (cf.
[27]) (we again omit mention of ReLUs and deep supervision). CIFAR100 uses (2 level) tree+max-avg; CIFAR10
uses (3 level) tree+max-avg. As a final note: for the MNIST experiments only, the second pooling operation uses
2x2 regions instead of the 3x3 regions used on the other datasets.

layers, and so we omit the details. One can imagine
that the function fgate conv(x) performs two individual
convolutional operations via V1 and V2 matrices, and
then fuses the two separate activation maps via W to
produce the final output.

Method MNIST CIFAR10 CIFAR10+ CIFAR100
Max pooling 0.39 9.10 7.32 34.21
Gated conv pooling 0.35 8.59 6.98 33.58
Gated Max-Avg (ours) 0.29 7.90 6.36 32.37

TABLE 7: Classification error (in %) comparison between
the baselines (max pooling and gated convolutional layer
with stride 2 used in place of pooling) and the proposed
gated max-avg pooling. A superscripted + indicates the
standard data augmentation as in [24], [27], [38]. We can
see that pooling by combining the responses from two
sets of convolutional operations (gated conv pooling)
reduces the error rates on all four cases. However, this
cross-channel pooling operation does not outperform the
channel-by-channel gated max-average pooling.

To see whether we might again find similar perfor-
mance boosts by replacing the max pooling in the base-
line network configuration with the introduced gated
convolutional layer with stride 2, we performed another
set of experiments on MNIST, CIFAR-10, and CIFAR-100
shown in Table 7. We observe that pooling by combining
the responses from two sets of convolutional operations
reduces the error rates on all four cases. However, this

cross-channel pooling operation does not outperform the
channel-by-channel gated max-average pooling. Further-
more, each gated convolutional pooling requires around
extra 0.3M parameters while each gated max-average
pooling only adds 9 parameters. Gated max-average
pooling is also computationally light compared to gated
convolutional pooling.

ACKNOWLEDGMENTS

This work is supported by NSF awards IIS-1216528
(IIS-1360566), IIS-0844566(IIS-1360568), IIS-1618477, and
a Northrop Grumman Contextual Robotics grant. We
are grateful for the generous donation of the GPUs
by NVIDIA. We thank the anonymous reviewers for
their constructive comments, and in particular about the
suggestion to compare with grouped convolutions.

REFERENCES

[1] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning
activation functions to improve deep neural networks,” in ICLR,
2015.

[2] Y. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun, “Ask the
locals: multi-way local pooling for image recognition,” in ICCV,
2011.

[3] Y. Boureau, J. Ponce, and Y. LeCun, “A Theoretical Analysis of
Feature Pooling in Visual Recognition,” in ICML, 2010.

[4] S. R. Bulo and P. Kontschieder, “Neural Decision Forests for
Semantic Image Labelling,” in CVPR, 2014.

[5] A. Coates and A. Y. Ng, “Selecting receptive fields in deep
networks,” in NIPS, 2011.



14

[6] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and
Y. Bengio, “Maxout Networks,” in ICML, 2013.

[7] B. Graham, “Fractional Max-Pooling,” arXiv preprint
arXiv:1412.6071, 2014.

[8] C. Gulcehre, K. Cho, R. Pascanu, and Y. Bengio, “Learned-norm
pooling for deep feedforward and recurrent neural networks,” in
MLKDD, 2014.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling
in deep convolutional networks for visual recognition,” in ECCV,
2014.

[10] G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–
1554, 2006.

[11] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interac-
tion and functional architecture in the cat’s visual cortex,” Journal
of Physiology, vol. 160, no. 1, pp. 106–154, 1962.

[12] Y. Ioannou, D. Robertson, D. Zikic, P. Kontschieder, J. Shot-
ton, M. Brown, and A. Criminisi, “Decision forests, convo-
lutional networks and the models in-between,” arXiv preprint
arXiv:1603.01250, 2016.

[13] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML,
2015.

[14] O. Irsoy and E. Alpaydin, “Autoencoder Trees,” in NIPS Deep
Learning Workshop, 2014.

[15] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is
the best multi-stage architecture for object recognition?” in ICCV,
2009.

[16] Y. Jia, C. Huang, and T. Darrell, “Beyond spatial pyramids,” in
CVPR, 2012.

[17] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulo, “Deep
neural decision forests,” in ICCV, 2015.

[18] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny
Images,” CS Dept., U Toronto, Tech. Rep., 2009.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Clas-
sification with Deep Convolutional Neural Networks,” in NIPS,
2012.

[20] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. Howard,
W. Hubbard, and L. Jackel, “Backpropagation applied to hand-
written zip code recognition,” Neural Computation, vol. 1, no. 4,
pp. 541–551, 1989.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[22] Y. LeCun and C. Cortes, “The MNIST database of handwritten
digits,” 1998.

[23] C.-Y. Lee, P. W. Gallagher, and Z. Tu, “Generalizing pooling
functions in convolutional neural networks: Mixed, gated, and
tree,” in AISTATS, 2016.

[24] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-
Supervised Nets,” in AISTATS, 2015.

[25] W. Li, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regulariza-
tion of NNs using DropConnect,” in ICML, 2013.

[26] M. Liang and X. Hu, “Recurrent CNNs for Object Recognition,”
in CVPR, 2015.

[27] M. Lin, Q. Chen, and S. Yan, “Network in network,” in ICLR,
2013.

[28] J. Minker, Logic-Based Artificial Intelligence. Springer Science &
Business Media, 2000, vol. 597.

[29] D. Mishkin, N. Sergievskiy, and J. Matas, “Systematic evaluation
of cnn advances on the imagenet,” arXiv preprint arXiv:1606.02228,
2016.

[30] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading Digits in Natural Images with Unsupervised Feature
Learning,” in NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

[31] J. R. Quinlan, “C4. 5: Programming for machine learning,” Morgan
Kauffmann, vol. 38, 1993.

[32] M. Ranzato, Y.-L. Boureau, and Y. LeCun, “Sparse Feature Learn-
ing for Deep Belief Networks,” in NIPS, 2007.

[33] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “FitNets: Hints for Thin Deep Nets,” in ICLR, 2015.

[34] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet
large scale visual recognition challenge,” IJCV, vol. 115, no. 3, pp.
211–252, 2015.

[35] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling
operations in convolutional architectures for object recognition,”
ICANN, pp. 92–101, 2010.

[36] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio,
“Robust object recognition with cortex-like mechanisms,” PAMI,
vol. 29, no. 3, 2007.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in ICLR, 2015.

[38] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for Simplicity,” in ICLR, 2015.

[39] J. T. Springenberg and M. Riedmiller, “Improving deep neural
networks with probabilistic maxout units,” in ICLR, 2014.

[40] N. Srivastava and R. R. Salakhutdinov, “Discriminative transfer
learning with tree-based priors,” in NIPS, 2013.

[41] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway net-
works,” in ICML Deep Learning Workshop, 2015.

[42] M. Stollenga, J. Masci, F. J. Gomez, and J. Schmidhuber, “Deep
Networks with Internal Selective Attention through Feedback
Connections,” in NIPS, 2014.

[43] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR, 2015.

[44] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
JMLR, vol. 9, no. Nov, pp. 2579–2605, 2008.

[45] J. Wang, Z. Wei, T. Zhang, and W. Zeng, “Deeply-fused nets,”
arXiv preprint arXiv:1605.07716, 2016.

[46] M. D. Zeiler and R. Fergus, “Stochastic Pooling for Regular-
ization of Deep Convolutional Neural Networks,” arXiv preprint
arXiv:1301.3557, 2013.

Chen-Yu Lee Chen-Yu Lee received the Bach-
elor and Master degrees from National Chiao
Tung University. He received the PhD degree
from the University of California, San Diego
(UCSD). He is now researcher at Magic Leap,
Inc. His research interests are in computer vi-
sion, machine learning, and deep learning.

Patrick Gallagher Patrick Gallagher received
the PhD degree in Cognitive Science from the
University of California, San Diego in 2014,
where he also spent a year as a post-doctoral
researcher. His research interests include ma-
chine learning, deep learning, and mathematical
optimization.

Zhuowen Tu Zhuowen Tu received the PhD
degree in computer science from Ohio State
University. He received the BE degree from
Beijing Information Technology Institute and the
ME degree from Tsinghua University. He is an
associate professor of cognitive science at Uni-
versity of California, San Diego (UCSD). His
main research interests include computer vision,
machine learning, and neural computation.


