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Image Segmentation by Data-Driven
Markov Chain Monte Carlo

Zhuowen Tu and Song-Chun Zhu

Abstract—This paper presents a computational paradigm called Data-Driven Markov Chain Monte Carlo (DDMCMC) for image
segmentation in the Bayesian statistical framework. The paper contributes to image segmentation in four aspects. First, it designs
efficient and well-balanced Markov Chain dynamics to explore the complex solution space and, thus, achieves a nearly global optimal
solution independent of initial segmentations. Second, it presents a mathematical principle and a K-adventurers algorithm for
computing multiple distinct solutions from the Markov chain sequence and, thus, it incorporates intrinsic ambiguities in image
segmentation. Third, it utilizes data-driven (bottom-up) techniques, such as clustering and edge detection, to compute importance
proposal probabilities, which drive the Markov chain dynamics and achieve tremendous speedup in comparison to the traditional jump-
diffusion methods [12], [11]. Fourth, the DDMCMC paradigm provides a unifying framework in which the role of many existing
segmentation algorithms, such as, edge detection, clustering, region growing, split-merge, snake/balloon, and region competition, are
revealed as either realizing Markov chain dynamics or computing importance proposal probabilities. Thus, the DDMCMC paradigm
combines and generalizes these segmentation methods in a principled way. The DDMCMC paradigm adopts seven parametric and
nonparametric image models for intensity and color at various regions. We test the DDMCMC paradigm extensively on both color and
gray-level images and some results are reported in this paper.

Index Terms—Image segmentation, Markov Chain Monte Carlo, region competition, data clustering, edge detection, Markov random
field.
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INTRODUCTION

657

MAGE segmentation is a long standing problem in computer

vision and itis found difficult and challenging for two main
reasons.

The first challenge is the fundamental complexity of
modeling a vast amount of visual patterns that appear in
generic images. The objective of image segmentation is to
parse an image into its constituent components. The latter
are various stochastic processes, such as attributed points,
lines, curves, textures, lighting variations, and deformable
objects. Thus, a segmentation algorithm must incorporate
many families of image models and its performance is
upper bounded by the accuracy of its image models.

The second challenge is the intrinsic ambiguities in
image perception, especially when there is no specific task
to guide the attention. Real world images are fundamentally
ambiguous and our perception of an image changes over
time. Furthermore, an image often demonstrates details at
multiple scales. Thus, the more one looks at an image, the
more one sees. Therefore, it must be wrong to think that a
segmentation algorithm outputs only one result. In our
opinion, image segmentation should be considered a
computing process not a vision task. It should output multiple
distinct solutions dynamically and endlessly so that these
solutions “best preserve” the intrinsic ambiguity.

Motivated by the above two observations, we present a
stochastic computing paradigm called data-driven Markov
chain Monte Carlo (DDMCMC) for image segmentation. We
proceed in five steps.
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First, we formulate the problem in a Bayesian/MDL
framework [15], [14], [29] with seven families of image
models which compete to explain various visual patterns in
an image, for example, flat regions, clutter, texture, smooth
shading, etc.

Second, we decompose the solution space into a union of
many subspaces of varying dimensions and each subspace
is a product of a number of subspaces for the image
partition and image models (see Fig. 3 for a space structure).
The Bayesian posterior probability is distributed over such
a heterogeneously structured space.

Third, we design ergodic Markov chains to explore the
solution space and sample the posterior probability. The
Markov chains consist of two types of dynamics: jumps and
diffusion. The jump dynamics simulate reversible split-and-
merge and model switching. The diffusion dynamics
simulate boundary deformation, region growing, region
competition [29], and model adaptation. We make the split
and merge processes reversible and the ergodicity and
reversibility enable the algorithm to achieve nearly global
optimal solution independent of initial segmentation condi-
tions. Thus, this demonstrates major progress over the
previous region competition algorithm (Zhu and Yuille) [29].

Fourth, we utilize data-driven techniques to guide the
Markov chain search and, thus, achieves tremendous speed-
up in comparison to previous MCMC algorithms [10], [12],
[11]. In the literature, there are various techniques for
improving the Markov chain speed, such as multiresolution
approaches [28], [3], causal Markov models [3], [22], and
clustering [28],[27], [2], [9]. In our DDMCMC paradigm, data-
driven methods, such as edge detection [4] and tracing, data
clustering [5], [6] are used. The results of these algorithms are
expressed as weighted samples (or particles), which
encode nonparametric probabilities in various subspaces.
These probabilities, respectively, approximate the marginal
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probabilities of the Bayesian posterior probability and they
are used to design importance proposal probabilities to drive
the Markov chains.

Fifth, we propose a mathematical principle and a
“K-adventurers” algorithm for selecting and pruning a set
of important and distinct solutions from the Markov chain
sequence and at multiple scales of details. The set of
solutions encode an approximation to the Bayesian poster-
ior probability. The multiple solutions are computed to
minimize a Kullback-Leibler divergence from the approx-
imative posterior to the true posterior and they preserve the
ambiguities in image segmentation.

In summary, the DDMCMC paradigm is about effec-
tively creating particles (by bottom-up clustering/edge
detection), composing particles (by importance proposals),
and pruning particles (by a K-adventurers algorithm) and
these particles represent hypotheses of various grainula-
rities in the solution space.

Conceptually, the DDMCMC paradigm also reveals the
roles of some well-known segmentation algorithms. Algo-
rithms such as split-and-merge, region growing, Snake [13]
and balloon/bubble [25], region competition [29], and
variational methods [14], and PDEs [24] can be viewed as
various MCMC jump-diffusion dynamics with minor mod-
ifications. Other algorithms, such as edge detection [4] and
clustering [6], [8] compute importance proposal probabilities.

We test the algorithm on a wide variety of gray-level and
color images and some results are shown in the paper. We
also demonstrate multiple solutions and verify the segmen-
tation results by synthesizing (reconstructing) images
through sampling the likelihood models.

2 PROBLEM FORMULATION AND IMAGE MODELS

In this section, we formulate the problem in a Bayesian
framework and discuss the prior and likelihood models that
are selected in our experiments.

2.1 The Bayesian Formulation for Segmentation
Let A={(i,j): 1<i<L,1<j<H} be an image lattice
and I, an image defined on A. For any point v € A, I, €
{0,...,G} is the pixel 1nten51ty for a gray-level 1mage or
I, = (Li,7 U,,V,) for a color image. ! The problem of image
segmentation refers to partitioning the lattice into an
unknown number of K disjoint regions

A=UK R, RiNR;=0, Yi#j. (1)

Each region R C A needs not to be connected for reason of
occlusion. We denote by I'; = OR; the boundary of R;. As a
slight complication, two notations are used interchangeably
in the literature. One treats a region R C A as a discrete
label map and the other treats a region boundary I'(s) = OR
as a continuous contour parameterized by s. The contin-
uous representation is convenient for diffusions while the
label map representation is better for maintaining the
topology. The level set method [23], [24] provides a good
transform between the two.

Each image region Iy is supposed to be coherent in the
sense that I is a realization from a probabilistic model p(I1g; ©). ©
represents a stochastic process whose type is indexed by /.

1. We transfer the (R, G, B) representation to (L*,u*,v*) for better color
distance measure.

Thus, a segmentation is denoted by a vector of hidden
variables W, which describes the world state for generating
the image I.

W= (K,{(Ri,t;;0:); i=1,2,...,K}).

In a Bayesian framework, we make inference about W
from I over a solution space €.

W~ p(WIL) o p(IW)p(W), W € Q.

As we mentioned before, the first challenge in segmenta-
tion is to obtain realistic image models. In the following, we
briefly discuss the prior and likelihood models selected in
our experiments.

2.2 The Prior Probability p(1V)

The prior probability p(W) is a product of the following
four probabilities.

1. An exponential model for the number of regions
p(K) oc e k.

2. A general smoothnes
boundaries p(T' f

3. A model for the size of each region. Recently, both
empirical and theoretical studies [1], [16] on the
statistics of natural images indicate that the size of a
region A = |R| in natural images follows a distribu-
tion, p(A) 4=, @ ~ 2.0. Such a prior encourages large
regions to form. In our experiments, we found this
prior is not strong enough to enforce large regions;
instead we take a distribution

Gibbs prior for the region

p(A) e, 2)

where ¢ = 0.9 is a constant. v is a scale factor which
controls the scale of the segmentation. This scale
factor is in spirit similar to the “clutter factor” found
by Mumford and Gidas [20] in studying natural
images. It is an indicator for how “busy” an image is.
In our experiments, it is typically set to v = 2.0 and is
the only free parameter in this paper.

4. The prior for the type of model p(¢) is assumed to be
uniform and the prior for the parameters © of an
image model penalizes model complexity in terms of
the number of parameters O, p(0|¢) o e 1€

In summary, we have the following prior model

Hp

K

Z[N% ds +~|Ri|“ + V|@i|} }
OR;

i=1

p(Oill:)
o exp{—/\oK—

2.3 The Likelihood p(I|1V) for Gray-Level Images

Visual patterns in different regions are assumed to
be independent stochastic processes specified by
(©;,4),i=1,2,...,K. Thus, the likelihood is,?

K
pAW) = [[p(r;6: ).
i=1

2. As a slight notation complication, ©, ¢ could be viewed as parameters
or hidden variables in W We use p(I, ©, ) in both situtations for simplicity.
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(d)

Fig. 1. Four types of regions in the windows are typical in real world images: (a) uniform, (b) clutter, (c) texture, and (d) shading.

The choice of models needs to balance model sufficiency
and computational efficiency. In studying a large image set,
we found that four types of regions appear most frequently
in real world images. Fig. 1 shows examples for the four
types of regions in windows: Fig. 1a shows the flat regions
with no distinct image structures, Fig. 1b shows the
cluttered regions, Fig. 1lc shows the regions with homo-
geneous textures, and Fig. 1d shows the inhomogeneous
regions with globally smooth shading variations.

We adopt the following four families of models for the
four types of regions. The algorithm can switch between
them by Markov chain jumps. The four families are indexed
by ¢ € {g1, 92, 93,94} and denoted by w,,, w,,, w,,, and w,,,
respectively. Let G(0; 0%) be a Gaussian density centered at
0 with variance o”.

1. Gray image model family ¢ = g;: w,,. This assumes
that pixel intensities in a region R are subject to
independently and identically distributed (iid)
Gaussian distribution,

pIr;0,91) = [[ G(L = p;0%), O = (1,0) €,

vER
3)

2. Gray image model family ¢ = g»: w,. This is a
nonparametric intensity histogram k(). In practice
h() is discretized as a step function expressed by a
vector (hg, hi, ..., he). Let n; be the number of pixels
in R with intensity level j.

G
p(Ir;0,90) = [[ h(L) = [ 17,
=0

veER
0 = (ho, hu,. ..

(4)

7hg) € wy,.

3. Grayimage model family ¢ = g3: w,,. Thisis a texture
model FRAME [30] with pixel interactions captured
by a set of Gabor filters. This family of models was
demonstrated to be sufficient in realizing a wide
variety of texture patterns. To facilitate the computa-
tion, we choose a set of eight filters and formulate the
model in pseudolikelihood form [31]. The model is
specified by a long vector © = (51, B2, . .., Om) € wy,,
m is the total number of bins in the histograms of the
eight Gabor filtered images. Let 0v denote the Markov
neighborhood of v € R and h(IL,|Iy,) the vector
including eight local histograms of filter responses
in the neighborhood of pixel v. Each of the filter
histograms counts the filter responses at pixels whose
filter windows cover v. Thus, we have

p(IR§ 0, 93) = Hp(Ile(%; @>

veR

1
= [T epi- < ©.h(L L) >},

veR TV

(5)

where < -,- > is the inner product between two
vectors and the model is considered nonparametric.
The reason for choosing the pseudolikelihood
expression is obvious: Its normalizing constant can
be computed exactly and O can be estimated easily
from images. We refer to a recent paper [31] for
discussions on the computation of this model and its
variations, such as patch likelihood, etc.

4. Gray image model family ¢ = g,: w,,. The first three
families of models are homogeneous, which fail in
characterizing regions with shading effects, such as
sky, lake, wall, perspective texture, etc. In the
literature, such smooth regions are often modeled
by low order Markov random fields, which again do
not model the inhomogeneous pattern over space
and often lead to over-segmentation. In our experi-
ments, we adopt a 2D Bezier-spline model with
sixteen equally spaced control points on A (ie., we
fix the knots). This is a generative type model. Let
B(z,y) be the Bezier surface, for any v = (z,y) € A,

B(x,y) = Ul x M x U, (6)
where
Uwy = (1 = 2)*,32(1 — 2)°, 32°(1 - 2),2"))"
and
M = (ma1, M1, M1z, ML -1, -+, Mg

Therefore, the image model for a region R is,

p(Ir;©,94) = H G(I, - BU;O'Q), 0 = (M,0) € w,,.
vER
(7)

In summary, four types of models compete to explain a
gray intensity region. Whoever fits the region better will have
a higher likelihood. We denote by @, the gray-level model
space,

9 _
0 € wy = w,, Uy, U, Um,,.

2.4 Model Calibration

The four image models should be calibrated for two reasons.
First, for computational efficiency, we prefer simple models
with less parameters. However, penalizing the number of
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parameters is not enough in practice. When a region is of size
over ~ 100 pixels, the data term dominates the prior and
demands more complex models. Second, the pseudolikeli-
hood models in family w,, are not a true likelihood as they
depend on a rather big neighborhood; thus they are not
directly comparable to the other three types of models.

To calibrate the likelihood probabilities, we did an
empirical study. We collected a set of typical regions from
natural images and manually divided them into four
categories. For example, Fig. 2 shows four typical images
in the first column, which are cropped from the images in
Fig. 1. We denote the four images by I9",i = 1,2,3,4 on a
lattice A,. For each image I°™, we compute its per pixel
coding length (minus log-likelihood) according to an
optimal model within family @, computed by a maximum
likelihood estimation for j = 1,2, 3, 4.

log p(I?™; ©, g;)
|A,] ’

Lij = min —
[~ ElC]

for1 <i,j<4. (8)

We denote by ©}; € wy; optimal fit within each family and
draw a typical sample (synthesis) from each fitted model,
L~ p(;05;,9), forl<i,j<d4.

We show I, I,f‘fn, and L;; in Fig. 2 for 1 <4, < 4.

The results in Fig. 2 show that the spline model has
obviously the shortest coding length for the shading region,
while the texture model fits the best for the three other
regions. Then, we choose to rectify these models by a
constant factor e~% for each pixel v,

]3(1”; 97 g/) = p(I’U; @7 gj)eicj

¢j,j=1,2,3,4 are chosen so that the rectified coding
length L;; reaches minimum when ¢ = j. That is, uniform
regions, clutter regions, texture regions, and shading
regions are best fitted by the models in w;, @, w;, and
wy, respectively.

2.5 Image Models for color

In experiments, we work on both gray-level and color
images. For color images, we adopt a (L*,u*,v*) color
space and adopted three families of models indexed by
e {c1,c2,c3}. Let G(0;X) denote a 3D Gaussian density.

forj=1,2,3,4.

1. Color image model family c¢;: w.. This is an iid
Gaussian model in (L*, u*, v*) space.

HGIv_llw , ©=

veER

p(Ir;©,¢1) (1, X) € w,,.

(9)

2. Colorimage model family c;: w,,. This is a mixture of
two Gaussians and is used for modeling textured color

regions,
pIr; 0, 0) = [ [l G(L, — i3 %)
vER
+ OZQG(IU — s 22)]
Thus,

0= (041’/1‘17213042’/—"23 22) € W,

are the parameters.

observed @ wWg, W g4
obs syn syn syn syn
I3 I3 I I I

L1 = 1.957 L1 L1z = 1.680

=1.929

Ly = 1.765

obs
IZ
W2
obs
13
obs syn sy syn
I3 1% 1) 1A
Ly» =3.050 | Liz = 1.259 | Las = 0.944

Fig. 2. Comparison study of four families of models. The first column is
the original image regions cropped from four real world images shown in
Fig. 1. The images in the 2-5 columns are synthesized images I;}" ~
p(IR;(%;‘j) sampled from the four families, respectively, each after an
MLE fitting. The number below each synthesized image shows the per-
pixel coding bits L;; using each family of model.

3. Color image model family c;: w.. We use three
Bezier spline surfaces (see (6)) for L*, v*, and v¥,
respectively, to characterize regions with gradually
changing colors such as sky, wall, etc. Let B(z, y) be
the color value in (L*,u*,v*) space for any
v=(z,y) €A,

B(z,y) =(Ul,) x Mp x Uy, Ul x My x Uy,
U ) X M, ><UJ>)

.’L’

Thus, the model is

IR, @ 03

=[]ca.

veR

-B;Y),

where © = (M, M,, M,, %) are the parameters.

In summary, three types of models compete to explain a
color region. Whoever fits the region better will have higher
likelihood. We denote by w§ the color model space, then

¢ _
Wg = We, U e, U wy,.

3 ANATOMY OF SOLUTION SPACE

Before we design an algorithm, we need to study the
structures of the solution space (2 in which the posterior
probability p(W|I) is distributed.

We start with the partition space for all possible partitions
of a lattice A. When a lattice A is segmented into k disjoint
regions, we call it a k-partition denoted by =,

T = (Rl,RQ, e

Ry, U R =A RNR =0 Vij.

(10)
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Fig. 3. The anatomy of the solution space. The arrows represent Markov chain jumps, and the reversible jumps between two subspace 25 and g

realize a split-and-merge of a region.

Ifall pixelsin each region are connected, then 7, is a connected
component partition [28]. The set of all k-partitions, denoted
by w,,, is a quotient space of the set of all possible k-colorings
divided by a permutation group PG for the labels.

wm: = {(Rl,RQ,...,
|R;| >0, Vi=1,2,...

Ry) = m;
Jk}/PG.

Thus, we have a general partition space w, with the number
of regions 1 < k < |A|,

(11)

A
Ulk ‘lwm
Then, the solution space for IV is a union of subspaces (2,
and each ;. is a product of one k-partition space w,, and
k spaces for the image models

Q_ukA'IQk_ukAl{wﬂkxw@)xMXWe], (12)
~———
k

where wg = U} @, for gray-level images and wo =
U?_, @, for color images.

Fig. 3 illustrates the structures of the solution space. In
Fig. 3, the four image families @y, ¢ = gi,g2,93,94 are
represented by the triangles, squares, diamonds, and
circles, respectively. we = w, is represented by a hexagon
containing the four shapes. The partition space wy, is
represented by a rectangle. Each subspace €, consists of a
rectangle and k hexagons, and each point W' € €2, represents
a k-partition plus k image models for k regions.

We call €2 the scene spaces. w,, and wy, { = g1, g2, g3, g4 (OF
¢ = ¢y, ¢, c3) are the basic components for constructing (2 and,
thus, are called the atomic spaces. Sometimes, we call w, a
partition space and wy, ¢ = g1, g2, 93, g4, C1, C2, ¢35 the cue
spaces.

4 EXPLORING THE SOLUTION SPACE BY
ErRGobIC MARKOV CHAINS

The solution space in Fig. 3 is typical for vision problems.
The posterior probability p(W/|I) not only has an enormous
number of local maxima but is distributed over subspaces
of varying dimensions. To search for globally optimal
solutions in such spaces, we adopt the Markov chain Monte
Carlo (MCMC) techniques.

4.1 Three Basic Criteria for Markov Chain Design
There are three basic requirements for Markov chain design.

First, the Markov chain should be ergodic. That is, from
an arbitrary initial segmentation W, € €2, the Markov chain
can visit any other states W € in finite time. This
disqualifies all greedy algorithms. Ergodicity is ensured
by the jump-diffusion dynamics [12]. Diffusion realizes
random moves within a subspace of fixed dimensions.
Jumps realize reversible random walks between subspaces
of different dimensions, as shown by the arrows in Fig. 3.

Second, the Markov chain should be aperiodic. This is
ensured by using the dynamics at random.

Third, the Markov chain has stationary probability
p(W/I). This is replaced by a stronger condition of detailed
balance equations which demands that every move should be
reversible [12], [11]. The jumps in this paper all satisfy
detailed balance and reversibility.

4.2 Five Markov Chain Dynamics

We adopt five types of Markov chain dynamics which are
used at random with probabilities g(1), . . ., ¢(5), respectively.
The dynamics 1-2 are diffusion and dynamics 3-5 are
reversible jumps.

Dynamics 1: Boundary Diffusion/Competition. For mathe-
matical convenience, we switch to a continuous boundary
representation for regions R;,i=1,...,K. These curves
evolve to maximize the posterior probability through a
region competition equation [29]. Let I';; be the boundary
between R;,R;, Vi,j, and ©;,©0; the models for the two
regions, respectively. The motion of points T';(s) =
(x(s),y(s)) follows the steepest ascent equation of the
logp(W|I) plus a Brownian motion dB along the curve
normal direction 7i(s). By variational calculus, this is [29],

dFl,(s) o
dt
Forior(s) +log§ 8868 E 0 g}i + /2T (t)dB

The first two terms are derived from the prior and
likelihood, respectively. The Brownian motion is a normal
distribution whose magnitude is controlled by a tempera-
ture T'(t) which decreases with time ¢. The Brownian motion
helps to avoid local small pitfalls. The log-likelihood ratio
requires that the image models are comparable. Dynamics 1
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realizes diffusion within the atomic (or partition) space w,,
(i.e., moving within a rectangle of Fig. 3).

Dynamics 2: Model Adaptation. This is simply to fit the
parameters of a region by steepest ascent. One can add a
Brownian motion, but it does not make much of a difference in
practice.

do; _ Ologp(Ig,;©i, L)
dt 00;.

This realizes diffusion in the atomic (or cue) spaces w;, £ €
{91,923, 91,¢1,c2,c3} (move within a triangle, square,
diamond, or circle of Fig. 3).

Dynamics 3-4: Split and Merge. Suppose at a certain time
step, aregion R;, withmodel O is splitinto tworegions R; and
R; with models ©;, ©;, or vice verse, and this realizes a jump
between two states W to W’ as shown by the arrows in Fig. 3.

W = (K, (Ry, lk, O),
(K+ 13 (R7>€1a@7)7 (ijéﬁ(aj)? W,) = W/v

W_)e—

where W_ denotes the remaining variables that are un-
changed during the move. By the classic Metropolis-
Hastings method [19], we need two proposal probabilities
G(W — dW') and G(W' — dW). G(W — dW’) is a condi-
tional probability for how likely the Markov chain proposes
to move to W’ at state W and G(W’ — dW) is the proposal
probability for coming back. The proposed split is then
accepted with probability

(N ! !
a0 — aw’) = nin (1, S = TUPEEIT

G(W = dW")p(W|T)dWw

There are two routes (or “pathways” in a psychology
language) for computing the split proposal G(W — dW’).

In route 1, it first chooses a split move with probability
q(3), then chooses region Rj, from a total of K regions at
random; we denote this probability by ¢(Rj). Given Ry, it
chooses a candidate splitting boundary I';; within R, with
probability ¢(I';;|Ry.). Then, for the two new regions R;, R;,
it chooses two new model types ¢; and ¢; with probabilities
q(¢;) and ¢(¢;), respectively. Then, it chooses ©; € w,, with
probability ¢(©;|R;,¢;) and chooses ©; with probability
(0| R, ;). Thus,

GW — dW') = q(3)q(Ry)q(Ts;| Ri)q(L:)

RENGE:
q(©4| Ri, £i)q(£;)q(O;| R, £;)dW". (13)

In route 2, it first chooses two new region models ©; and
©; and, then, decides the boundary I';;. Thus,

G(W — dW') = q(3)q(Ri)q(£:)q(£;)q(©i, ©j| Ry, €5, £;)

14
q(Tij|Ri., ©4,0;)dW". (14)

We shall discuss in later a section that either of the two
routes can be more effective than the other depending on
the region Rj.

Similarly, we have the merge proposal probability,

G(W' — dW) = q(4)q(Ri, Rj)q(,)q(Ok| Ry, €x)dW . (15)

q(R;, R;j) is the probability of choosing to merge two regions
R; and R; at random.

Dynamics 5: Switching Image Models. This switches the
image model within the four families (three for color

images) for a region R;. For example, from texture
description to a spline surface, etc.

W= (6,0, W) (6, 6], W_) = W
The proposal probabilities are

G(W — dW') = q(5)q(R:)q(¢;)q(O]| R;, £;) AW,
GW' — dW) = q(5)q(R;)q(£;)a(©:| Ri, £:)dW .

(16)
(17)

4.3 The Bottlenecks

The speed of a Markov chain depends critically on the design
of its proposal probabilities in the jumps. In our experiments,
the proposal probabilities, such as ¢(1),...,¢(5), ¢(Rx),
q(R;, Rj), q(£) are easy to specify and do not influence the
convergence significantly. The real bottlenecks are caused by
two proposal probabilities in the jump dynamics.

1. ¢(T'|R)in (13): Where is a good I" for splitting a given
region R? ¢(T'|R) is a probability in the atomic (or
partition) space w;.

2. ¢(O|R,?) in (13), (15), and (17): For a given region R
and a model family ¢ € {g1,..., g4, ¢1, 2,3}, what is
a good ©? ¢(O|R,¢) is a probability in the atomic
(cue) space w;.

It is worth mentioning that both probabilities ¢(I'| R) and
q(O|R, ) cannot be replaced by deterministic decisions
which were used in region competition [29] and others [15].
Otherwise, the Markov chain will not be reversible and,
thus, reduce to a greedy algorithm. On the other hand, if we
choose uniform distributions, it is equivalent to blind search
and the Markov chain will experience exponential “wait-
ing” time before each jump. In fact, the length of the waiting
time is proportional to the volume of the cue spaces. The
design of these probabilities need to strike a balance
between speed and robustness (nongreediness).

While it is hard to analytically derive a convergence
rate for complicated algorithms that we are dealing with, it
is revealing to observe the following theorem in a simple
case [18]:

Theorem 1. Sampling a target density p(x) by independence
Metropolis-Hastings algorithm with proposal probability q(x).
Let P"(x,,y) be the probability of a random walk to reach
point y at n steps. If there exists p > 0 such that,

@zm v,

p(z)

then the convergence measured by a Ly norm distance
1P (o, ) = pll < (1= p)".

This theorem states that the proposal probability ¢(x)
should be very close to p(z) for fast convergence. In our
case, ¢(T'|R) and ¢(O|R,¢) should be equal to the
conditional probabilities of some marginal probabilities
of the posterior p(W|I) within the atomic spaces w, and

wy, respectively. That is,
ql*"(l_‘i]"R/c) = p(rile Rk‘)a qé)(®|R7 E) = p(®|17 R, é)v VL.

(18)
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Input I

Color clusters and their saliency maps S;*,i =1,...,6

Fig. 4. A color image and its clusters in (L*, u*,v*) space for w,,, the second row are six of the saliency maps associated with the color clusters.

Unfortunately, ¢i and ¢ have to integrate information
from the entire image I and, thus, are intractable. We must
seek approximations and this is where the data-driven
methods step in.

In the next section, we discuss data clustering for each
atomic space wy, £ € {c1,¢2,¢3} and £ € {g1, 92, 93,94} and
edge detection in w,. The results of clustering and edge
detection are expressed as nonparametric probabilities for
approximating the ideal marginal probabilities ¢ and ¢, in
these atomic spaces, respectively.

5 DATA-DRIVEN METHODS

5.1 Method I: Clustering in Atomic Spaces w,

for L € {c1,c2,¢3,91, 92,93, 94}
Given an image I (gray or color) on lattice A, we extract a
feature vector F! at each pixel v € A. The dimension of F!
depends on the image model indexed by ¢. Then, we have a
collection of vectors

U ={F': ve A}

In practice, v can be subsampled for computational ease.
The set of vectors are clustered by either an EM method [7]
or a mean-shift clustering [5], [6] algorithm to ‘. The EM-
clustering approximates the points density in U’ by a
mixture of m Gaussians and it extends from the m-mean
clustering by a soft cluster assignment to each vector F,.
The mean-shift algorithm assumes a nonparametric dis-
tribution for &’ and seeks the modes (local maxima) in its
density (after some Gaussian window smoothing). Both

algorithms return a list of m weighted clusters ©%, 05, ..., 0!,
with weights w!,i = 1,2,...,m and we denote by
Pl={(,0): i=1,2,...,m. }. (19)

We call (wf,0f) a weighted atomic (or cue) particle in
for € {ci,c3,91,92,93,94}.> The size m is chosen to be
conservative or it can be computed in a coarse-to-fine

3. The atomic space w,, is a composition of two w, and, thus, is
computed from w,,.

strategy with a limit m = |i/‘|. This is well discussed in the
literature [5], [6].

In the clustering algorithms, each feature F and, thus, its
location v is classified to a cluster ©f with probability S¢

1,07

Yv e A, VL.

Sfm = p(Ff; @f), with Z Sﬁz) =1,
=1
This is a soft assignment and can be computed by the
distance from F, to the cluster centers. We call
Sf={8,: veA}

for i=1,2,...,m, V¢ (20)

a saliency map associated with cue particle ©F.
In the following, we discuss each model family with
experiments.

5.1.1 Computing Cue Particles in w,

For color images, we take F, = (L,,U,,V,) and apply a
mean-shift algorithm [5], [6] to compute color clusters in
w,,. For example, Fig. 4 shows a few color clusters (balls) in
a cubic ((L*, u*, v*)-space) for a simple color image (left), the
size of the balls represents the weights w;'. Each cluster is
associated with a saliency map S;* for ¢ =1,2,...,6 in the
second row and the bright areas mean high probabilities.
From left to right are, respectively, background, skin, shirt,
shadowed skin, pant and hair, highlighted skin.

5.1.2 Computing Cue Particles in w,,

Each point v contributes its color I, = (L,, U,,V,) as “sur-
face heights” and we apply an EM-clustering to find the
spline surface models. Fig. 5 shows the clustering result for
the woman image. Fig. 5a, Fig. 5b, Fig. 5¢, and Fig. 5d are
saliency maps S;* for i = 1,2,3,4. Fig. 5e, Fig. 5f, Fig. 5g,
and Fig. 5h are the four reconstructed images according to
fitted spline surfaces which recover some global illumina-
tion variations.

5.1.3 Computing Cue Particles in w,,

In this model, the feature space F, =1, is simply the
intensity and ¥ is the image intensity histogram. We
simply apply a mean-shift algorithm to get the modes
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(@ (b) (© (d)

(e) (f) (9) (h)

. (e)-(h) are the color spline surfaces for the four clusters.

Fig. 6. A clustering map (left) for w,, and six saliency maps S?',i = 1..6 of a zebra image (input is in Fig. 14a).

Fig. 7. A clustering map (left) for ,, and six saliency maps S¢*,i =1,.

(peaks) of the histogram and the breadth of each peak
decides its variance.

Fig. 6 shows six saliency maps S',i = 1,2,..., 6 forazebra
image (the original image is shown in Fig. 14a. In the
clustering map on the left in Fig. 6, each pixel is assigned to its
most likely particle. We show the clustering by pseudocolors.

5.1.4 Computing the Cue Particles in w,,
For clustering in w,,, at each subsampled pixel v € A, we
compute F, as a local intensity histogram F,, = (hy, . .., hy)
accumulated over a local window centered at v. Then, an
EM clustering is applied to compute the cue particles and
each particle ©%,i =1,...,m is a histogram. This model is
used for clutter regions.

Fig.7 shows the clustering results on the same zebra image.

5.1.5 Computing Cue Particles w,,

At each subsampled pixel v € A, we compute a set of eight
local histograms for eight filters over a local window of
12 x 12 pixels. We choose eight filters for computational
convenience: one ¢ filter, two gradient filters, one Laplacian of
Gaussian filter, and four Gabor filters. Each histogram has

., 6 of a zebra image (input is in Fig. 14a).

nine bins. Then, F%* = (hy 11, ..., hygy) is the feature. An EM
clustering is applied to find the m mean histograms
h;,i=1,2,...,m. We can compute the cue particles for
texture models ©% from h; for i = 1,2,...,m. A detailed

account of this transform is referred to a previous paper [31].
Fig. 8 shows the texture clustering results on the zebra

image with one clustering map on the left and five saliency
maps for five particles ©%,i =1,2,...,5.

5.1.6 Computing Cue Particles in w,,

Each point v contributes its intensity I, = F, as a “surface
height” and we apply an EM-clustering to find the spline
surface models. Fig. 9 shows a clustering result for the zebra
image with four surfaces. The second row shows the four
surfaces which recover some global illumination variations.
Unlike the texture clustering results which capture the zebra
strips as a whole region, the surface models separate the black
and white stripes as two regions—another valid perception.
Interestingly, the black and white strips in the zebra skin both
have shading changes which are fitted by the spline models.
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A clustering map

Four saliency maps and surfaces

Fig. 9. Clustering result on the zebra image under Bezier surface model. The left image is the clustering map. The first row of images on the right side
are the saliency maps. The second row shows the fitted surfaces using the surface height as intensity.

5.2 Method II: Edge Detection

We detect intensity edges using Canny edge detector [4]
and color edges using a method in [17] and trace edges to
form a partition of the image lattice. We choose edges at
three scales according to edge strength and, thus, compute
the partition maps in three coarse-to-fine scales. We choose
not to discuss the details, but show some results using the
two running examples: the woman and zebra images.

Fig. 10a shows a color image and three scales of partitions.
Since this image has strong color cue, the edge maps are very
informative about where the region boundaries are. In
contrast, the edge maps for the zebra image are very messy,
as Fig. 11 shows.

6 COMPUTING IMPORTANCE PROPOSAL
PROBABILITIES

It is generally acknowledged in the community that cluster-
ing and edge detection algorithms can sometimes produce
good segmentations or even perfect results for some images,
but very often they are far from being reliable for generic
images, as the experiments in Figs. 4,5, 6,7, 8,9, 10, and 11
demonstrate. It is also true that sometimes one of the image
models and edge detection scales could do a better job in
segmenting some regions than other models and scales, but
we do not know a priori what types of regions present in a
generic image. Thus, we compute all models and edge
detection at multiple scales and, then, utilize the clustering
and edge detection results probabilistically. MCMC theory
provides a framework for integrating this probabilistic
information in a principled way under the guidance of a
globally defined Bayesian posterior probability.

We explain how the importance proposal probabilities
q(O|R, ¢) and ¢(T';;|R;) in Section 4.3 are computed from the
data-driven results.

6.1 Computing Importance Proposal

Probability ¢(O|R, )

The clustering method in an atomic (cue) space @, outputs a
set of weighted cue particles P'. P' encodes a nonpara-

metric probability in wy,

q(OIA,0) =) wiG(O - 6)),

with » of =1,  (21)
=1 =1

where G(z) is a Parzen window centered at 0. As a
matter of fact, ¢(6|A, ¢) = ¢(O|I)) is an approximation to a
marginal probability of the posterior p(W|I) on cue space
wi, b € {g1,92,93,091,¢1,c3} since the partition 7 is inte-
grated out in EM-clustering.

q(®|A,¢) is computed once for the whole image and
q(O|R, ¢) is computed from ¢(O|A, ¢) for each R at runtime.
It proceeds in the following. Each cluster ©f,i =1,2,...,m
receives a real-valued vote from the pixel v € R in region R
and the accumulative vote is the summation of the saliency

map S! associated with O, i.e.,

1

_ L s
—@ZSW i=1,2,...,m, VL.

vER

Di

Obviously, the clusters which receive high votes should
have high chance to be chosen. Thus, we sample a new
image model © for region R,

0~ q(O|R.0) =3 GO - ©). (22)
i=1

Equation (22) explains how we choose (or propose) an
image model for a region R. We first draw a cluster ¢ at

=

(a) (b) (c)

Fig. 10. Partition maps at three scales of details for a color image.
(a) Input image. (b) Partition map at scale 1. (c) Partition map at scale 2.
(d) Partition map at scale 3.
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(c)

Fig. 11. A gray-level image and three partition maps at three scales. (a) Input image. (b) Partition map at scale 1. (c) Partition map at scale 2.

(d) Partition map at scale 3.

scale 1

scale 2

scale 3

Fig. 12. A candidate region R, is superimposed on the partition maps at three scales for computing a candidate boundary I';; for the pending split.

random according to probability p = (p1,p2,...,pn) and,
then, do a random perturbation at ©¢. Thus, any © € w; has
a nonzero probability to be chosen for robustness and
ergodicity. Intuitively, the clustering results with local votes
propose the “hottest” portions of the space in a probabilistic
way to guide the jump dynamics.

In practice, one could implement a multiresolution (on a
pyramid) clustering algorithm over smaller local windows,
thustheclusters©',i = 1,2, ..., mwillbemore effective at the
expense of some overhead computing.

6.2 Computing Importance Proposal
Probability ¢(T'|R)

By edge detection and tracing, we obtain partition maps
denoted by A®
partition map A

at multiple scales s = 1,2,3. In fact, each
consists of a set of “metaregions”

=12, n
A(s)(A) = {rgs) ci=1,2,...,n,U", rgs) = A},
for s =1,2,3.

These metareglons are then used in combination to form
K < n regions R% 7R2 - RK ,

Ve A, vi=1,2,... K.

RES> = Ujr;‘9>, with T;S

One could put a constraint that all metaregions in a region
RY are connected

Let 7rk (R ...,R;(f)) denote a k-partition based
on AW, Tr,f) is dlfferent from the general k-partition
because regions RES),i =1,....,K in 7r§:) are limited to the
metaregions. We denote by 1'[,(:) the set of all k-partitions
based on a partition map A

n = (R, RY,... Ry ==\ U RY =A}. (23)
We call each 7\ in TI\" a k-partition particle in atomic

(partition) space w,. Like the clusters in a cue space, HE:) is

a sparse subset of w,, and it narrows the search in w,, to
the most promising portions.

So each partition map A®) encodes a probability in the
atomic (partition) space wry,.

|

¢ (my Z G(my, — 7723 for s=1,2,3. Vk. (24)

G() is a smooth window centered at 0 and its smoothness
accounts for boundary deformations and forms a cluster
around each partition particle and m;, — 7r§fz measures the
difference between two partition maps 7, and 7T§:]) Martin et
al. [21] recently proposed a method of measuring such
difference and we use a simplified version. In the finest
resolution, all metaregions reduce to pixels and H is then
equal to the atomic space w,,. We adopt equal welghts for
all partitions 7r§:> and one may add other geometric

preferences to some partitions.
In summary, the partition maps at all scales encode a
nonparametric probability in w,,,

> q(s)d'

S

(i) = J(m), k.
This ¢(m;) can be considered as an approximation to the
marginal posterior probability p(m;|I).

The partition maps A®), Vs (or ¢(y), Vk implicitly) are
computed once for the whole image, then the importance
proposal probability ¢(I'|R) is computed from ¢(7) for each
region as a conditional probability at run time, like in the cue
spaces.

Fig. 12 illustrates an example. We show partition maps
AB(A) at three scales and the edges are shown at width
3,2,1, respectively, for s =1,2,3. A candidate region R is
proposed to split. ¢(T'|R) is the probability for proposing a
splitting boundary I.

We superimpose R on the three partition maps. The
intersections between R and the metaregions generate
three sets

A<S>(R) = {’I‘;s) : )
and U; T£S> = R},

= RN forr; € AP(A),
s=1,2,3.
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For example, in Fig. 12,

1 1 9 2 2 2 2
AD(R) = (1, /Y, AR R) = (P, e e ),

etc.

Thus, we can define 7®(R)= (R R\ ... .R¥)) as
a c-partition of region R based on A®)(R) and define a
c-partition space of R as

¢ (R) = {(RY”, Ry, ..., RY) (25)
=7 (R) : U_,RY = R}, Vs.
We can define distributions on TI*)(R).
e ()|
(B = o 2 Gl B g

for s=1,2,3, Ve

Thus, one can propose to split Rinto ¢ pieces, in a general case,

me(R) ~ q(me(R)) = Y a(s)d" (me(R)).

That is, we first select a scale s with probability ¢(s). ¢(s)
depends on R. For example, for a large region R, we can
choose coarse scale with higher probability and choose a
fine scale for small regions. Then, we choose a c-partition
from the set I1{¥)(R). In our implementation, ¢ = 2 is chosen
as a special case for easy implementation. It is trivial to
show that an arbitrary c-partition of region R, m.(R), can be
generated through composing m(R) in multiple steps.
Obviously, there is a big overhead for choosing large c.

6.3 Computing q(@i, @j|R, Ei, é]) and q(Fij|R, ("‘)7;, 6])
In some cases, we find the second route useful for splitting a
region which we discussed in designing MCMC dynamics
3-4 (see (14)).

For example, there are two ways to perceive the zebra in
Fig. 14. One perceives the zebra as one textured region (by a
model in @, ). The other sees it as one region of black stripes
plus one region of white strips and, thus, uses two models in
@, or wy,. The Markov chain should be able to switch between
the two perceptions effectively (see results in Fig. 14b, Fig. 14c,
and Fig. 14d. This is necessary and typical for the transitions
between any texture regions and intensity regions.

Because the number of strips in such textures is large, the
first split procedure (route 1) is very ineffective and it works
on one strip at a time. This motivates the second pathway
for split dynamics.

For a candidate region R, we first propose two new
region models (we always assume the same labels ¢; = ¢;),
which can be done by twice sampling the importance
proposal probabilities ¢(O|R, ¢), so

(©4,0;) ~ q(©;,0;|R, £;, £;) = q(©;|R, £;)q(O;|R, ¢;).

Obviously, we exclude ©; from the candidate set when we
select ©;. Then, we decide on the boundary I ¢(I';;| R, ©;, ©;)
by randomly labeling the pixels in R according to probabil-
ities of the saliency maps.

6.4 A Unifying Framework

To summarize this section, the DDMCMC paradigm
provides a unifying framework for understanding the roles

of many existing image segmentation algorithms. First,
edge detection and tracing methods [4], [17] compute
implicitly a marginal probability ¢(7|]I) on the partition
space w,. Second, clustering algorithms [5], [6] compute a
marginal probability on the model space w, for various
models /. Third, the split-and-merge and model switching
[2] realize jump dynamics. Fourth, region growing and
competition methods [29], [24] realize diffusion dynamics
for evolving the region boundaries.

7 CoMPUTING MULTIPLE DISTINCT SOLUTIONS

7.1 Motivation and a Mathematical Principle

The DDMCMC paradigm samples solutions from the
posterior W ~ p(W|I) endlessly, as we argued in the
introduction that segmentation is a computing process not
a task. To extract an optimal result, one can take an
annealing strategy and use the conventional maximum a
posteriori (MAP) estimator

W* = argmax p(W|I).
WeQ

In this paper, we argue that it is desirable and often critical
to have the ability of computing multiple distinct solutions
for the following reasons.

First, natural scenes are intrinsically ambiguous and for
an image I, many competing organizations and interpreta-
tions exist in visual perception.

Second, for robustness, decisions should be left to the last
stage of computation when a segmentation process is
integrated with a specific task. Therefore, it is best to
maintain a set of typical solutions.

Third, preserving multiple solutions is necessary when
the prior and likelihood models are not perfect. Because the
globally optimal solution may not be semantically more
meaningful than some other inferior local maxima.

However, simply keeping a set of samples from the
Markov chain sequence is not enough because it often collects
a set of segmentations which are trivially different from each
other. Here, we present a mathematical principle for
computing important and distinctive solutions in space €.
(Our result was presented earlier in a CVPR2000 paper.)

Let S = {(w;,W;):i=1,...,K} be a set of K weighted
solutions which we call “scene particles,” the weight is its
posterior probability w; = p(W|I),i =1,2,..., K. (Note that
there is a slight abuse of notation, we use K for the number
of regions in W before. Here, it is a different K). S encodes a
nonparametric probability in ,

K K

. Wi

W) = Z;G(W W), D wi=w
=1 =1

G is a Gaussian window in 2.

As all image ambiguities are captured in the Bayesian
posterior probability to reflect the intrinsic ambiguities, we
should compute the set of solutions S which best preserves
the posterior probability. Thus, we let p(W|I) approach
p(W|I) by minimizing a Kullback-Leibler divergence D(p||p)
under a complexity constraint | S| = K,

p(WD)
p(WD)

S* = arg mir}l{ D(p||p) = arg ‘g‘lir}{/p(W\I) log dw.

K
(27)
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Fig. 13. Segmenting a color image by DDMCMC with two solutions. See text for explanation.

This criterion extends the conventional MAP estimator (see
Appendix for further discussion).

7.2 A K-Adventurers Algorithm for Multiple
Solutions

Fortunately, the KL-divergence D(p||p) can be estimated
fairly accurately by a distance measure D(p||p) which is
computable, thanks to two observations of the posterior
probability p(W/|I) which has many separable modes. The
details of the calculation and some experiments are given in
the appendix. The idea is simple. We can always represent
p(W|I) by a mixture of Gaussian, i.e., a set of N particles
with N large enough. By ergodicity, the Markov chain is
supposed to visit these significant modes over time! Thus,
our goal is to extract K distinct solutions from the Markov
chain sampling process. Here, we present a greedy
algorithm for computing S* approximately. We call the
algorithm—" K-adventurers” algorithm.*

Suppose we have a set of K particles S at step t. At time
t + 1, we obtain a new particle (or a number of particles) by
MCMC, usually following a successful jump. We augment
the set S to S, by adding the new particle(s). Then, we
eliminate one particle (or anumber of particles) from S, to get
anew Shew by minimizing the approximative KL divergence
D(p+ | |pncw)-

The k-adventurers algorithm
1. Initializing S and p by repeating one initial solution
K times.
2. Repeat
3. Compute a new particle (w1, Xk11) by DDMCMC
after a successful jump.

4. S = SN (wrs1,xk41)}-
5. p—S,.

6. Fori=1,2,..., K+1do
7. S,i — S+/{(wi,xi)}.
8. ﬁ,i — S,i.

9. di = D(p|[p-i)-

10. " = argmingeqi o . xy1y di
1. S84, p—pp

4. The name follows a statistics metaphor told by Mumford to one of the
authors Zhu. A team of K adventurers want to occupy K largest islands in
an ocean while keeping apart from each other’s territories.

In practice, we run multiple Markov chains and add new
particles to the set S in a batch fashion. From our
experiments, the greedy algorithm did a satisfactory job
and it is shown to be optimal in two low dimensional
examples in the Appendix.

8 EXPERIMENTS

The DDMCMC paradigm was tested extensively on many
gray-level, color and textured images. This section shows
some examples and more are available on our website.” Tt
was also tested in a benchmark data set of 50 natural images
in both color and gray-level [21] by the Berkeley group,®
where the results by DDMCMC and other methods such as
[26] are displayed in comparison to those by a number of
human subjects. Each tested algorithm uses the same
parameter setting for all the benchmark images and, thus,
the results were obtained purely automatically.

We first show our working example on the color woman
image. Following the importance proposal probabilities for
the edges in Fig. 10 and for color clustering in Fig. 4, we
simulated three Markov chains with three different initial
segmentations shown in Fig. 13 (top row). The energy
changes (—logp(W|I)) of the three MCMCs are plotted in
Fig. 13 against time steps. Fig. 13 shows two different
solutions W;, W, obtained by a Markov chain using
K-adventurers algorithm. To verify the computed solution
W;, we synthesized an image by sampling from the
likelihood I*™ ~ p(I|W;),7 = 1,2. The synthesis is a good
way to examine the sufficiency of models in segmentation.

Fig. 14 shows three segmentations on a gray-level zebra
image. As we discussed before, the DDMCMC algorithm in
this paper has only one free parameter v which is a “clutter
factor” in the prior model (see (2)). It controls the extents of
segmentations. A big 7 encourages coarse segmentation
with large regions. We normally extract results at three
scales by setting v =1.0,2.0,3.0, respectively. In our
experiments, the K-adventurers algorithm is effective only
for computing distinct solutions in a certain scale. We
expect the parameter 7 can be fixed to a constant if we form
an image pyramid with multiple scales and conduct

5. See www.cis.ohio-state.edu/oval/Segmentation/DDMCMC/
DDMCMC.htm.

6. See www.cs.berkeley.edu/~dmartin/segbench/BSDS100/html/
benchmark.
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(e)

(9)

Fig. 14. Experiments on the gray-level zebra image with three solutions: (a) input image, (b)-(d) are three solutions, W;,: = 1,2, 3, for the zebra
image, (e)-(g) are synthesized images I*" ~ p(I|W}) for verifying the results.

segmentation with K-adventurers algorithm at each scale
and, then, propagate and refine the results to the next finer

scale sequentially. This will be done in future research.
For the zebra image, W; segments out the black and

white stripes while W, and W treat the zebra as a texture
region. The synthesized images I'" ~ p(I|W;),i=1,2,3
show that the texture model is not sufficient because we
choose only eight small filters for computational ease. Also
the spline surface model plays an important role in
segmenting the ground and background grass and this is

verified by the global shading changes in I)" and I;".
Figs. 15 and 16 display some other gray-level and color

images using the same algorithm. We show the input (left)
and a segmentation (middle) starting with arbitrary initial
conditions and a synthesized image (right) drawn from the
likelihood I?" ~ p(I|IW). The ~y values for these images are
mostly set up as 1.5 with a few obtained at 1.0-3.5. It took
about 10-50 minutes, depending upon the complexity of
image contents, on a Pentium III PC to segment an image
with medium size, such as 350 x 250 pixels, after learning

the pseudolikelihood texture models at the beginning.
The synthesis images show that we need to engage more

stochastic models such as point, curve process, and object like
faces, etc. For example, in the first row of Fig. 16. The music
band in a football stadium forms a point process which is not

captured. The face is also missing in the synthesis.
Fig. 17 shows three gray-level images out of the

50 natural images in both color and gray-level for the
benchmark study. The input (left), the segmentation results
by DDMCMC (middle), and the manual segmentation by a
human subject (right) are displayed.

9 DISCUSSION

In future work, we shall extend the DDMCMC paradigm in
three directions:

1. Integrating other image models, such as point, curve
processes for perceptual organization, and object
models such as face, for object recognition.

2. Incorporating specific vision tasks with this sto-
chastic inference engine. When there is a special
purpose, the computing process is tuned (attended
in a psychology term) to minimize some criterion,
such as a risk function, which guides the selection
and pruning of results.

3. Analyzing the DDMCMC convergence rate and
linking it to the goodness of the set of heuristics gs.

APPENDIX
APPROXIMATING THE KL-DIVERGENCE

For simplicity of notation, we denote by p(x) an arbitrary
distribution in space 2. In our case, p(x) represents the
posterior p(W|I).

For segmentation problems, we observe that p(x) has
two important properties.

1. p(x) has an enormous number of local maxima
(called modes in statistics). A significant mode
corresponds to a distinct interpretation of the image
and the cloud surrounding a mode is local small
perturbation of the region boundaries or model
parameters. These significant modes of p(x), de-
noted by x;,i=1,2,..., are well separated from
each other due to the high dimensions.

2. Each mode x; has a weight w; = p(x;) and its energy
is defined as E(x;) = —logp(x;). The energies of



670 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO.5, MAY 2002

input segmentation synthesis

Fig. 15. Gray-level image segmentation by DDMCMC. Left: input images, middle: segmentation results W, right: synthesized images I**" ~ p(I|W)

with the segmentation results .

these modes are uniformly distributed in a broad
range [Emin, Emax], say, [1,000,10,000]. For example,
it is normal to have solutions (or local maxima)
whose energies differ in the order of 500 or more.
Thus, their probability (weights) differ in the order
of exp™® and our perception is interested in those
“trivial” local modes.
Intuitively, it helps to imagine that p(x) in § is distributed
like the mass of the universe. Each star is a mode as local
maximum of the mass density. The significant and devel-
oped stars are well separated from each other and their

masses could differ in many orders of magnitudes. The
above metaphor leads us to a mixture of Gaussian
representation of p(x). For a large enough N, we have,

1 N
p(x) :;lejG(x—xj,a?), w= X;wj.
= =

We denote by

N
So:{(wj’xj)7j:1’27...7N}7 Zw]:w7

J=1
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input

segmentation

synthesis

Fig. 16. Color image segmentation by DDMCMC. Left: input images, middle: segmentation results W, right: synthesized images I ~ p(I|WW) with

the segmentation results W.

input

segmentation by
DDMCMC

manual
segmentation

[

Fig. 17. Some segmentation results by DDMCMC for the benchmark test by Martin. The errors for the above results by DDMCMC (middle) compared
with the results by a human subject (right) are 0.1083, 0.3082, and 0.5290, respectively, according to their metrics.

the set of weighted particles (or modes). Thus, our task is to
select K << N particles S from S,. We define a mapping
from the index in S to the index in S,,

ri{1,2,..., K}—{1,2,....,N}.
Therefore,
S ={(wrii), Xr(s)); 1 =1,2,...,K}

S encodes a nonparametric model for approximating p(x) by

VIR R Y
B) =D wrnGx = Xe(0,0%;), @ =D wry.
=1 =1

Our goal is to compute

S = in D(p||p)-
arg min_ D(pl[p)

Fornotational simplicity, weassumeall Gaussians have the

same variance in approximating p(x), 0; =0,j=1,2,..., N.

By analogy, all “stars” have the same volume, but differ in
weight. With the two properties of p(x), we canapproximately
compute D(p||p) in the following. We start with an observa-
tion for the KL-divergence for Gaussian distributions.

Let pi(z) = G(x — pu;0°) and po(x) = G(x — pp;0”) be
two Gaussian distributions, then it is easy to check that

(1 — M2)2.

D(p1llp2) = 202

We partition the solution space 2 into disjoint domains
Q=U¥D;, D;ND;=0, Vi#j.

D; is the domain where p(x) is decided by a particle (w;, x;).
The reason for this partition is that the particles in S are far
apart from each other in high dimensional space and their
energy varies significantly as the two properties state. Within
each domain D;, it is reasonable to assume that p(x) is
dominated by one term in the mixture and the other N —1
terms are neglectable.
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(a) (b)

Fig. 18. (a) A 1D dist. p(x) with four particles x;,i = 1,2, 3,4. (b) A 2D dist p(x) with 50 particles we show log p(x) in the image for visualization.
(c) p1(x) with six particles that minimizes D(p||p) or D(p||p). (d) p=(x) with six particles that minimizes |p — p|.

TABLE 1
Distances between p(x) and p(z) for Different Particle Set S;

chosen S3: | {z1,z2,23} | {z1,22,24} | {21,273, 24} | {®2,23,234}
D(p||p): 3.5487 1.1029 0.5373 2.9430
D(p||p): 3.5487 1.1044 0.4263 2.8230
lp— Pl 0.1000 0.1000 0.3500 1.2482

—x;;0%), x€D; i=1,2,...,N.

p(x)

The size of D; is much larger than o2. After removing N —

zﬂG(x
w

K particles in the space, a domain D; is dominated by a

nearby particle that is selected in S.
We define a second mapping function

c:{1,2,...,N} - {1,2,..., K},
so that p(x) in D; is dominated by a particle x.(;) € Sx,
~ ch(i) N L2 .
p(X)N—G(X XT((f(i))7U)’ XEDMZ*LQM'"’N'

a
Intuitively, the N domains are partitioned into K groups,
each of which is dominated by one particle in Sg. Thus, we
can approximate D(p||p).

’LG Y
{10g5+10g - G(X e ). 2 }dx
w Wr(e(n) G (X = Xr(e(n)); 0%)
N 9
Xn — Xr(c¢(n
=39 log® 4 Tog— Ll ()
= @ w Wr(e(n)) 20

S — X )2 .
A] — D(p|lp)-

202

Equation (28) has some intuitive meanings. The second
term suggests that each selected x.((;), should have large
weight Wr(c(i) . The third term is the attractlon forces from
particles in S to particles in S. Thus, it helps to pull apart
the particles in S;, and also plays the role of encouraging to
choose particles with big weight like the second term. It can
be shown that (27) generalizes the traditional (MAP)
estimator when K = 1. .

To demonstrate the goodness of approximation D(p||p)
to D(p||p), we show two experiments below. Fig. 18a
displays a 1D distribution p(x), which is a mixture of N = 4
Gaussians (particles). We index the centers from left to right
X; <Xy < X3 < X4. Suppose we want to choose K =3
particles for Sk and p(x). Table 1 displays the distances
between p(x) and p(x) over the four possible combinations.
The second row shows the KL-divergence D(p||p) and the
third row is D(p||p). The approximation is very accurate
given the particles are well separable.

Both measures choose (1, x3, x4) as the best S. Particle x is
not favored by the KL-divergence because it is near z;,
although ithas much higher weight than =3 and z4. The fourth
row shows the absolute value of the difference between p(x)
and p(z). This distance favors (1, z9, x3) and (z1, z9, 24). In
comparison, the KL-divergence favors particles that are apart
from each other and picks up significant peaks in the tails.

This idea is better demonstrated in Fig. 18. Fig. 18a
shows log p(x) = —E(x) which is renormalized for display-
ing. p(x) consists of N =50 particles whose centers are
shown by the black spots. The energies E(x;),i=1,2,...,N
are uniformly distributed in an interval [0, 100]. Thus, their
weights differ in exponent1al order. Fig. 18b shows log p(x)
with k = 6 particles that minimize both D(p||p) and D(p||p).
Fig. 18c shows the six particles that minimize the absolute
difference |p — p|. Fig. 18b has more disperse particles.

For segmentation, a remaining question is: How do we
measure the distance between two solutions W; and W5?
This distance measure is to some extent subjective. We
adopt a distance measure which simply accumulates the
differences for the number of regions in Wi, W, and the
types ¢ of image models used at each pixel by W, and W.
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