
Introspective Classification with Convolutional Nets

Long Jin
UC San Diego

longjin@ucsd.edu

Justin Lazarow
UC San Diego

jlazarow@ucsd.edu

Zhuowen Tu
UC San Diego
ztu@ucsd.edu

Abstract

We propose introspective convolutional networks (ICN) that emphasize the im-
portance of having convolutional neural networks empowered with generative
capabilities. We employ a reclassification-by-synthesis algorithm to perform train-
ing using a formulation stemmed from the Bayes theory. Our ICN tries to iteratively:
(1) synthesize pseudo-negative samples; and (2) enhance itself by improving the
classification. The single CNN classifier learned is at the same time generative
— being able to directly synthesize new samples within its own discriminative
model. We conduct experiments on benchmark datasets including MNIST, CIFAR-
10, and SVHN using state-of-the-art CNN architectures, and observe improved
classification results.

1 Introduction
Great success has been achieved in obtaining powerful discriminative classifiers via supervised
training, such as decision trees [34], support vector machines [42], neural networks [23], boosting
[7], and random forests [2]. However, recent studies reveal that even modern classifiers like deep
convolutional neural networks [20] still make mistakes that look absurd to humans [11]. A common
way to improve the classification performance is by using more data, in particular “hard examples”,
to train the classifier. Different types of approaches have been proposed in the past including
bootstrapping [31], active learning [37], semi-supervised learning [51], and data augmentation [20].
However, the approaches above utilize data samples that are either already present in the given
training set, or additionally created by humans or separate algorithms.

In this paper, we focus on improving convolutional neural networks by endowing them with synthesis
capabilities to make them internally generative. In the past, attempts have been made to build
connections between generative models and discriminative classifiers [8, 27, 41, 15]. In [44], a
self supervised boosting algorithm was proposed to train a boosting algorithm by sequentially
learning weak classifiers using the given data and self-generated negative samples; the generative via
discriminative learning work in [40] generalizes the concept that unsupervised generative modeling
can be accomplished by learning a sequence of discriminative classifiers via self-generated pseudo-
negatives. Inspired by [44, 40] in which self-generated samples are utilized, as well as recent success
in deep learning [20, 9], we propose here an introspective convolutional network (ICN) classifier and
study how its internal generative aspect can benefit CNN’s discriminative classification task. There is
a recent line of work using a discriminator to help with an external generator, generative adversarial
networks (GAN) [10], which is different from our objective here. We aim at building a single CNN
model that is simultaneously discriminative and generative.

The introspective convolutional networks (ICN) being introduced here have a number of properties. (1)
We introduce introspection to convolutional neural networks and show its significance in supervised
classification. (2) A reclassification-by-synthesis algorithm is devised to train ICN by iteratively
augmenting the negative samples and updating the classifier. (3) A stochastic gradient descent
sampling process is adopted to perform efficient synthesis for ICN. (4) We propose a supervised
formulation to directly train a multi-class ICN classifier. We show consistent improvement over
state-of-the-art CNN classifiers (ResNet [12]) on benchmark datasets in the experiments.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

2 Related work
Our ICN method is directly related to the generative via discriminative learning framework [40].
It also has connection to the self-supervised learning method [44], which is focused on density
estimation by combining weak classifiers. Previous algorithms connecting generative modeling
with discriminative classification [8, 27, 41, 15] fall in the category of hybrid models that are direct
combinations of the two. Some existing works on introspective learning [22, 3, 38] have a different
scope to the problem being tackled here. Other generative modeling schemes such as MiniMax
entropy [50], inducing features [6], auto-encoder [1], and recent CNN-based generative modeling
approaches [48, 47] are not for discriminative classification and they do not have a single model that
is both generative and discriminative. Below we discuss the two methods most related to ICN, namely
generative via discriminative learning (GDL) [40] and generative adversarial networks (GAN) [10].

Relationship with generative via discriminative learning (GDL) [40]

ICN is largely inspired by GDL and it follows a similar pipeline developed in [40]. However, there is
also a large improvement of ICN to GDL, which is summarized below.
• CNN vs. Boosting. ICN builds on top of convolutional neural networks (CNN) by explicitly

revealing the introspectiveness of CNN whereas GDL adopts the boosting algorithm [7].
• Supervised classification vs. unsupervised modeling. ICN focuses on the supervised classifi-

cation task with competitive results on benchmark datasets whereas GDL was originally applied
to generative modeling and its power for the classification task itself was not addressed.
• SGD sampling vs. Gibbs sampling. ICN carries efficient SGD sampling for synthesis through

backpropagation which is much more efficient than the Gibbs sampling strategy used in GDL.
• Single CNN vs. Cascade of classifiers. ICN maintains a single CNN classifier whereas GDL

consists of a sequence of boosting classifiers.
• Automatic feature learning vs. manually specified features. ICN has greater representational

power due to the end-to-end training of CNN whereas GDL relies on manually designed features.

Comparison with Generative Adversarial Networks (GANs) [10]
Recent efforts in adversarial learning [10] are also very interesting and worth comparing with.
• Introspective vs. adversarial. ICN emphasizes being introspective by synthesizing samples

from its own classifier while GAN focuses on adversarial — using a distinct discriminator to
guide the generator.
• Supervised classification vs. unsupervised modeling. The main focus of ICN is to develop a

classifier with introspection to improve the supervised classification task whereas GAN is mostly
for building high-quality generative models under unsupervised learning.
• Single model vs. two separate models. ICN retains a CNN discriminator that is itself a generator

whereas GAN maintains two models, a generator and a discriminator, with the discriminator in
GAN trained to classify between “real” (given) and “fake” (generated by the generator) samples.
• Reclassification-by-synthesis vs. minimax. ICN engages an iterative procedure, reclassification-

by-synthesis, stemmed from the Bayes theory whereas GAN has a minimax objective function to
optimize. Training an ICN classifier is the same as that for the standard CNN.
• Multi-class formulation. In a GAN-family work [36], a semi-supervised learning task is devised

by adding an additional “not-real” class to the standard k classes in multi-class classification; this
results in a different setting to the standard multi-class classification with additional model param-
eters. ICN instead, aims directly at the supervised multi-class classification task by maintaining
the same parameter setting within the softmax function without additional model parameters.

Later developments alongside GAN [35, 36, 49, 3] share some similar aspects to GAN, which
also do not achieve the same goal as ICN does. Since the discriminator in GAN is not meant to
perform the generic two-class/multi-class classification task, some special settings for semi-supervised
learning [10, 35, 49, 3, 36] were created. ICN instead has a single model that is both generative and
discriminative, and thus, an improvement to ICN’s generator leads to a direct means to ameliorate its
discriminator. Other work like [11] was motivated from an observation that adding small perturbations
to an image leads to classification errors that are absurd to humans; their approach is however taken
by augmenting positive samples from existing input whereas ICN is able to synthesize new samples
from scratch. A recent work proposed in [21] is in the same family of ICN, but [21] focuses on
unsupervised image modeling using a cascade of CNNs.

2

3 Method
The pipeline of ICN is shown in Figure 1, which has an immediate improvement over GDL [40]
in several aspects that have been described in the previous section. One particular gain of ICN is
its representation power and efficient sampling process through backpropagation as a variational
sampling strategy.

3.1 Formulation
We start the discussion by introducing the basic formulation and borrow the notation from [40].
Let x be a data sample (vector) and y ∈ {−1,+1} be its label, indicating either a negative or
a positive sample (in multi-class classification y ∈ {1, ...,K}). We study binary classification
first. A discriminative classifier computes p(y|x), the probability of x being positive or negative.
p(y = −1|x) + p(y = +1|x) = 1. A generative model instead models p(y,x) = p(x|y)p(y), which
captures the underlying generation process of x for class y. In binary classification, positive samples
are of primary interest. Under the Bayes rule:

p(x|y = +1) =
p(y = +1|x)p(y = −1)

p(y = −1|x)p(y = +1)
p(x|y = −1), (1)

which can be further simplified when assuming equal priors p(y = +1) = p(y = −1):

p(x|y = +1) =
p(y = +1|x)

1− p(y = +1|x)
p(x|y = −1). (2)

Reclassification Step:

training on the given training data + generated pseudo-negatives

Synthesis Step:

synthesize pseudo-negative samples

C
o

n
v

o
lu

ti
o
n
al

 N
eu

ra
l

N
et

w
o

rk
s

Introspective Convolutional Networks:
• Synthesis

• Reclassification

Initial Classification
(given training data)

Final Classification
(given training data +

self-generated

pseudo-negatives)

Synthesis

Classification

Figure 1: Schematic illustration of our reclassification-by-synthesis algorithm for ICN training. The top-left
figure shows the input training samples where the circles in red are positive samples and the crosses in blue are
the negatives. The bottom figures are the samples progressively self-generated by the classifier in the synthesis
steps and the top figures show the decision boundaries (in purple) progressively updated in the reclassification
steps. Pseudo-negatives (purple crosses) are gradually generated and help tighten the decision boundaries.

We make two interesting and important observations from Eqn. (2): 1) p(x|y = +1) is dependent
on the faithfulness of p(x|y = −1), and 2) a classifier C to report p(y = +1|x) can be made
simultaneously generative and discriminative. However, there is a requirement: having an in-
formative distribution for the negatives p(x|y = −1) such that samples drawn x ∼ p(x|y = −1)

3

have good coverage to the entire space of x ∈ Rm, especially for samples that are close to the
positives x ∼ p(x|y = +1), to allow the classifier to faithfully learn p(y = +1|x). There seems
to exist a dilemma. In supervised learning, we are only given a set of limited amount of training
data, and a classifier C is only focused on the decision boundary to separate the given samples and
the classification on the unseen data may not be accurate. This can be seen from the top left plot
in Figure 1. This motivates us to implement the synthesis part within learning — make a learned
discriminative classifier generate samples that pass its own classification and see how different these
generated samples are to the given positive samples. This allows us to attain a single model that has
two aspects at the same time: a generative model for the positive samples and an improved classifier
for the classification.

Suppose we are given a training set S = {(xi, yi), i = 1..n} and x ∈ Rm and y ∈ {−1,+1}. One
can directly train a discriminative classifier C, e.g. a convolutional neural networks [23] to learn
p(y = +1|x), which is always an approximation due to various reasons including insufficient training
samples, generalization error, and classifier limitations. Previous attempts to improve classification
by data augmentation were mostly done to add more positive samples [20, 11]; we instead argue
the importance of adding more negative samples to improve the classification performance. The
dilemma is that S = {(xi, yi), i = 1..n} is limited to the given data. For clarity, we now use p−(x)
to represent p(x|y = −1). Our goal is to augment the negative training set by generating confusing
pseudo-negatives to improve the classification (note that in the end pseudo-negative samples drawn
x ∼ p−t (x) will become hard to distinguish from the given positive samples. Cross-validation
can be used to determine when using more pseudo-negatives is not reducing the validation error).
We call the samples drawn from x ∼ p−t (x) pseudo-negatives (defined in [40]). We expand
S = {(xi, yi), i = 1..n} by Ste = S ∪ Stpn, where S0

pn = ∅ and for t ≥ 1

Stpn = {(xi,−1), i = n+ 1, ..., n+ tl}.

Stpn includes all the pseudo-negative samples self-generated from our model up to time t. l indicates
the number of pseudo-negatives generated at each round. We define a reference distribution p−r (x) =
U(x), where U(x) is a Gaussian distribution (e.g. N (0.0, 0.32) independently). We carry out
learning with t = 0...T to iteratively obtain qt(y = +1|x) and qt(y = −1|x) by updating classifier
Ct on Ste = S ∪ Stpn. The initial classifier C0 on S0

e = S reports discriminative probability
q0(y = +1|x). The reason for using q is because it is an approximation to the true p due to limited
samples drawn in Rm. At each time t, we then compute

p−t (x) =
1

Zt

qt(y = +1|x)

qt(y = −1|x)
p−r (x), (3)

where Zt =
∫ qt(y=+1|x)
qt(y=−1|x)p

−
r (x)dx. Draw new samples xi ∼ p−t (x) to expand the pseudo-negative

set:
St+1
pn = Stpn ∪ {(xi,−1), i = n+ tl + 1, ..., n+ (t+ 1)l}. (4)

We name the specific training algorithm for our introspective convolutional network (ICN) classifier
reclassification-by-synthesis, which is described in Algorithm 1. We adopt convolutional neural
networks (CNN) classifier to build an end-to-end learning framework with an efficient sampling
process (to be discussed in the next section).

3.2 Reclassification-by-synthesis
We present our reclassification-by-synthesis algorithm for ICN in this section. A schematic illustration
is shown in Figure 1. A single CNN classifier is being trained progressively which is simultaneously a
discriminator and a generator. With the pseudo-negatives being gradually generated, the classification
boundary gets tightened, and hence yields an improvement to the classifier’s performance. The
reclassification-by-synthesis method is described in Algorithm 1. The key to the algorithm includes
two steps: (1) reclassification-step, and (2) synthesis-step, which will be discussed in detail below.

3.2.1 Reclassification-step
The reclassification-step can be viewed as training a normal classifier on the training set Ste = S∪Stpn
where S = {(xi, yi), i = 1..n} and S0

pn = ∅. Stpn = {(xi,−1), i = n+ 1, ..., n+ tl} for t ≥ 1. We
use CNN as our base classifier. When training a classifier Ct on Ste, we denote the parameters to be
learned in Ct by a high-dimensional vector Wt = (w

(0)
t ,w

(1)
t) which might consist of millions of

parameters. w(1)
t denotes the weights of the top layer combining the features φ(x;w

(0)
t) and w

(0)
t

4

carries all the internal representations. Without loss of generality, we assume a sigmoid function for
the discriminative probability

qt(y|x;Wt) = 1/(1 + exp{−yw(1)
t · φ(x;w

(0)
t)}),

where φ(x;w
(0)
t) defines the feature extraction function for x. Both w

(1)
t and w

(0)
t can be learned by

the standard stochastic gradient descent algorithm via backpropagation to minimize a cross-entropy
loss with an additional term on the pseudo-negatives:

L(Wt) = −
i=1..n∑

(xi,yi)∈S

ln qt(yi|xi;Wt)−
i=n+1..n+tl∑
(xi,−1)∈Stpn

ln qt(−1|xi;Wt). (5)

Algorithm 1 Outline of the reclassification-by-synthesis algorithm for discriminative classifier
training.

Input: Given a set of training data S = {(xi, yi), i = 1..n} with x ∈ Rm and y ∈ {−1,+1}.
Initialization: Obtain a reference distribution: p−r (x) = U(x) and train an initial CNN binary classifier C0

on S, q0(y = +1|x). S0
pn = ∅. U(x) is a zero mean Gaussian distribution.

For t=0..T
1. Update the model: p−t (x) =

1
Zt

qt(y=+1|x)
qt(y=−1|x)p

−
r (x).

2. Synthesis-step: sample l pseudo-negative samples xi ∼ p−t (x), i = n+ tl + 1, ..., n+ (t+ 1)l from the
current model p−t (x) using an SGD sampling procedure.
3. Augment the pseudo-negative set with St+1

pn = St
pn ∪ {(xi,−1), i = n+ tl + 1, ..., n+ (t+ 1)l}.

4. Reclassification-step: Update CNN classifier to Ct+1 on St+1
e = S ∪ St+1

pn , resulting in qt+1(y = +1|x).
5. t← t+ 1 and go back to step 1 until convergence (e.g. no improvement on the validation set).
End

3.2.2 Synthesis-step
In the reclassification step, we obtain qt(y|x;Wt) which is then used to update p−t (x) according to
Eqn. (3):

p−t (x) =
1

Zt

qt(y = +1|x;Wt)

qt(y = −1|x;Wt)
p−r (x). (6)

In the synthesis-step, our goal is to draw fair samples from p−t (x) (fair samples refer to typical
samples by a sampling process after convergence w.r.t the target distribution). In [40], various Markov
chain Monte Carlo techniques [28] including Gibbs sampling and Iterated Conditional Modes (ICM)
have been adopted, which are often slow. Motivated by the DeepDream code [32] and Neural
Artistic Style work [9], we update a random sample x drawn from p−r (x) by increasing qt(y=+1|x;Wt)

qt(y=−1|x;Wt)

using backpropagation. Note that the partition function (normalization) Zt is a constant that is not
dependent on the sample x. Let

gt(x) =
qt(y = +1|x;Wt)

qt(y = −1|x;Wt)
= exp{w(1)

t · φ(x;w
(0)
t)}, (7)

and take its ln, which is nicely turned into the logit of qt(y = +1|x;Wt)

ln gt(x) = w
(1)
t · φ(x;w

(0)
t). (8)

Starting from x drawn from p−r (x), we directly increase w
(1)T
t φ(x;w

(0)
t) using stochastic gradient

ascent on x via backpropagation, which allows us to obtain fair samples subject to Eqn. (6). Gaussian
noise can be added to Eqn. (8) along the line of stochastic gradient Langevin dynamics [43] as

∆x =
ε

2
∇(w

(1)
t · φ(x;w

(0)
t)) + η

where η ∼ N (0, ε) is a Gaussian distribution and ε is the step size that is annealed in the sampling
process.

Sampling strategies. When conducting experiments, we carry out several strategies using stochastic
gradient descent algorithm (SGD) and SGD Lagenvin including: i) early-stopping for the sampling
process after x becomes positive (aligned with contrastive divergence [4] where a short Markov chain
is simulated); ii) stopping at a large confidence for x being positive, and iii) sampling for a fixed,
large number of steps. Table 2 shows the results on these different options and no major differences
in the classification performance are observed.

5

Building connections between SGD and MCMC is an active area in machine learning [43, 5, 30]. In
[43], combining SGD and additional Gaussian noise under annealed stepsize results in a simulation
of Langevin dynamics MCMC. A recent work [30] further shows the similarity between constant
SGD and MCMC, along with analysis of SGD using momentum updates. Our progressively learned
discriminative classifier can be viewed as carving out the feature space on φ(x), which essentially
becomes an equivalent class for the positives; the volume of the equivalent class that satisfies
the condition is exponentially large, as analyzed in [46]. The probability landscape of positives
(equivalent class) makes our SGD sampling process not particularly biased towards a small limited
modes. Results in Figure 2 illustrates that large variation of the sampled/synthesized examples.

3.3 Analysis
The convergence of p−t (x)

t=∞→ p+(x) can be derived (see the supplementary material), inspired by
the proof from [40]: KL[p+(x)||p−t+1(x)] ≤ KL[p+(x)||p−t (x)] where KL denotes the Kullback-
Leibler divergence and p(x|y = +1) ≡ p+(x), under the assumption that classifier at t+ 1 improves
over t.

Remark. Here we pay particular attention to the negative samples which live in a space that is
often much larger than the positive sample space. For the negative training samples, we have
yi = −1 and xi ∼ Q−(x), where Q−(x) is a distribution on the given negative examples in
the original training set. Our reclassification-by-synthesis algorithm (Algorithm 1) essentially
constructs a mixture model p̃(x) ≡ 1

T

∑T−1
t=0 p−t (x) by sequentially generating pseudo-negative

samples to augment our training set. Our new distribution for augmented negative sample set thus
becomes Q−new(x) ≡ n

n+TlQ
−(x) + Tl

n+Tl p̃(x), where p̃(x) encodes pseudo-negative samples that
are confusing and similar to (but are not) the positives. In the end, adding pseudo-negatives might
degrade the classification result since they become more and more similar to the positives. Cross-
validation can be used to decide when adding more pseudo-negatives is not helping the classification
task. How to better use the pseudo-negative samples that are increasingly faithful to the positives
is an interesting topic worth further exploring. Our overall algorithm thus is capable of enhancing
classification by self-generating confusing samples to improve CNN’s robustness.

3.4 Multi-class classification
One-vs-all. In the above section, we discussed the binary classification case. When dealing with
multi-class classification problems, such as MNIST and CIFAR-10, we will need to adapt our
proposed reclassification-by-synthesis scheme to the multi-class case. This can be done directly using
a one-vs-all strategy by training a binary classifier Ci using the i-th class as the positive class and
then combine the rest classes into the negative class, resulting in a total of K binary classifiers. The
training procedure then becomes identical to the binary classification case. If we have K classes,
then the algorithm will train K individual binary classifiers with

< (w
(0)1
t ,w

(1)1
t), ..., (w

(0)K
t ,w

(1)K
t) > .

The prediction function is simply

f(x) = arg max
k

exp{w(1)k
t · φ(x;w

(0)k
t)}.

The advantage of using the one-vs-all strategy is that the algorithm can be made nearly identical to
the binary case at the price of training K different neural networks.

Softmax function. It is also desirable to build a single CNN classifier to perform multi-class
classification directly. Here we propose a formulation to train an end-to-end multiclass classifier
directly. Since we are directly dealing with K classes, the pseudo-negative data set will be slightly
different and we introduce negatives for each individual class by S0

pn = ∅ and:

St
pn = {(xi,−k), k = 1, ...,K, i = n+ (t− 1)× k × l + 1, ..., n+ t× k × l}

Suppose we are given a training set S = {(xi, yi), i = 1..n} and x ∈ Rm and y ∈ {1, ..,K}. We
want to train a single CNN classifier with

Wt =< w
(0)
t ,w

(1)1
t , ...,w

(1)K
t >

where w
(0)
t denotes the internal feature and parameters for the single CNN, and w

(1)k
t denotes the

top-layer weights for the k-th class. We therefore minimize an integrated objective function

L(Wt)=−(1−α)
∑n
i=1 ln

exp{w
(1)yi
t ·φ(xi;w

(0)
t)}∑K

k=1
exp{w

(1)k
t ·φ(xi;w

(0)
t)}

+α
∑n+t×K×l
i=n+1 ln(1+exp{w

(1)|yi|
t ·φ(xi;w0

t)}) (9)

6

The first term in Eqn. (9) encourages a softmax loss on the original training set S. The second term
in Eqn. (9) encourages a good prediction on the individual pseudo-negative class generated for the
k-th class (indexed by |yi| for w

(1)|yi|
t , e.g. for pseudo-negative samples belong to the k-th class,

|yi| = | − k| = k). α is a hyperparameter balancing the two terms. Note that we only need to build
a single CNN sharing w

(0)
t for all the K classes. In particular, we are not introducing additional

model parameters here and we perform a direct K-class classification where the parameter setting is
identical to a standard CNN multi-class classification task; to compare, an additional “not-real” class
is created in [36] and the classification task there [36] thus becomes a K + 1 class classification.

4 Experiments

Figure 2: Synthesized pseudo-negatives for the MNIST dataset by our ICN classifier. The top row shows some
training examples. As t increases, our classifier gradually synthesize pseudo-negative samples that become
increasingly faithful to the training samples.

We conduct experiments on three standard benchmark datasets, including MNIST, CIFAR-10 and
SVHN. We use MNIST as a running example to illustrate our proposed framework using a shallow
CNN; we then show competitive results using a state-of-the-art CNN classifier, ResNet [12] on
MNIST, CIFAR-10 and SVHN. In our experiments, for the reclassification step, we use the SGD
optimizer with mini-batch size of 64 (MNIST) or 128 (CIFAR-10 and SVHN) and momentum equal
to 0.9; for the synthesis step, we use the Adam optimizer [17] with momentum term β1 equal to 0.5.
All results are obtained by averaging multiple rounds.

Training and test time. In general, the training time for ICN is around double that of the baseline
CNNs in our experiments: 1.8 times for MNIST dataset, 2.1 times for CIFAR-10 dataset and 1.7
times for SVHN dataset. The added overhead in training is mostly determined by the number of
generated pseudo-negative samples. For the test time, ICN introduces no additional overhead to the
baseline CNNs.

4.1 MNIST
Table 1: Test errors on the MNIST dataset. We compare
our ICN method with the baseline CNN, Deep Belief
Network (DBN) [14], and CNN w/ Label Smoothing
(LS) [39]. Moreover, the two-step experiments combin-
ing CNN + GDL [40] and combining CNN + DCGAN
[35] are also reported, and see descriptions in text for
more details.

Method One-vs-all (%) Softmax (%)
DBN - 1.11

CNN (baseline) 0.87 0.77
CNN w/ LS - 0.69
CNN + GDL 0.85 -

CNN + DCGAN 0.84 -
ICN-noise (ours) 0.89 0.77

ICN (ours) 0.78 0.72

We use the standard MNIST [24] dataset, which
consists of 55, 000 training, 5, 000 validation
and 10, 000 test samples. We adopt a simple
network, containing 4 convolutional layers, each
having a 5× 5 filter size with 64, 128, 256 and
512 channels, respectively. These convolutional
layers have stride 2, and no pooling layers are
used. LeakyReLU activations [29] are used after
each convolutional layer. The last convolutional
layer is flattened and fed into a sigmoid output
(in the one-vs-all case).

In the reclassification step, we run SGD (for 5
epochs) on the current training data Ste, includ-
ing previously generated pseudo-negatives. Our
initial learning rate is 0.025 and is decreased by
a factor of 10 at t = 25. In the synthesis step, we use the backpropagation sampling process as
discussed in Section 3.2.2. In Table 2, we compare different sampling strategies. Each time we
synthesize a fixed number (200 in our experiments) of pseudo-negative samples.

We show some synthesized pseudo-negatives from the MNIST dataset in Figure 2. The samples in
the top row are from the original training dataset. ICN gradually synthesizes pseudo-negatives, which
are increasingly faithful to the original data. Pseudo-negative samples will be continuously used
while improving the classification result.

7

Table 2: Comparison of different sampling strategies in the
synthesis step in ICN.

Sampling Strategy One-vs-all (%) Softmax (%)
SGD (option 1) 0.81 0.72
SGD Langevin (option 1) 0.80 0.72
SGD (option 2) 0.78 0.72
SGD Langevin (option 2) 0.78 0.74
SGD (option 3) 0.81 0.75
SGD Langevin (option 3) 0.80 0.73

Comparison of different sampling
strategies. We perform SGD and SGD
Langevin (with injected Gaussians), and
try several options via backpropagation
for the sampling strategies. Option 1:
early-stopping once the generated sam-
ples are classified as positive; option 2:
stopping at a high confidence for sam-
ples being positive; option 3: stopping
after a large number of steps. Table 2
shows the results and we do not observe significant differences in these choices.

Ablation study. We experiment using random noise as synthesized pseudo-negatives in an ablation
study. From Table 1, we observe that our ICN outperforms the CNN baseline and the ICN-noise
method in both one-vs-all and softmax cases.

Figure 3: MNIST test error against the number of training examples (std dev. of the test error is also displayed).
The effect of ICN is more clear when having fewer training examples.

Effects on varying training sizes. To better understand the effectiveness of our ICN method, we
carry out an experiment by varying the number of training examples. We use training sets with
different sizes including 500, 2000, 10000, and 55000 examples. The results are reported in Figure 3.
ICN is shown to be particularly effective when the training set is relatively small, since ICN has the
capability to synthesize pseudo-negatives by itself to aid training.

Comparison with GDL and GAN. GDL [40] focuses on unsupervised learning; GAN [10] and
DCGAN [35] show results for unsupervised learning and semi-supervised classification. To apply
GDL and GAN to the supervised classification setting, we design an experiment to perform a two-step
implementation. For GDL, we ran the GDL code [40] and obtained the pseudo-negative samples
for each individual digit; the pseudo-negatives are then used as augmented negative samples to
train individual one-vs-all CNN classifiers (using an identical CNN architecture to ICN for a fair
comparison), which are combined to form a multi-class classifier in the end. To compare with
DCGAN [35], we follow the same procedure: each generator trained by DCGAN [35] using the
TensorFlow implementation [16] was used to generate positive samples, which are then augmented
to the negative set to train the individual one-vs-all CNN classifiers (also using an identical CNN
architecture to ICN), which are combined to create the overall multi-class classifier. CNN+GDL
achieves a test error of 0.85% and CNN+DCGAN achieves a test error of 0.84% on the MNIST
dataset, whereas ICN reports an error of 0.78% using the same CNN architecture. As the supervised
learning task was not directly specified in DCGAN [35], some care is needed to design the optimal
setting to utilize the generated samples from DCGAN in the two-step approach (we made attempts to
optimize the results). GDL [40] can be made into a discriminative classifier by utilizing the given
negative samples first but boosting [7] with manually designed features was adopted which may not
produce competitive results as CNN classifier does. Nevertheless, the advantage of ICN being an
integrated end-to-end supervised learning single-model framework can be observed.

To compare with generative model based deep learning approach, we report the classification result
of DBN [14] in Table 1. DBN achieves a test error of 1.11% using the softmax function. We also
compare with Label Smoothing (LS), which has been used in [39] as a regularization technique by
encouraging the model to be less confident. In LS, for a training example with ground-truth label,
the label distribution is replaced with a mixture of the original ground-truth distribution and a fixed
distribution. LS achieves a test error of 0.69% in the softmax case.

8

In addition, we also adopt ResNet-32 [13] (using the softmax function) as another baseline CNN
model, which achieves a test error of 0.50% on the MNIST dataset. Our ResNet-32 based ICN
achieves an improved result of 0.47%.

Robustness to external adversarial examples. To show the improved robustness of ICN in dealing
with confusing and challenging examples, we compare the baseline CNN with our ICN classifier on
adversarial examples generated using the “fast gradient sign” method from [11]. This “fast gradient
sign” method (with ε = 0.25) can cause a maxout network to misclassify 89.4% of adversarial
examples generated from the MNIST test set [11]. In our experiment, we set ε = 0.125. Starting
with 10, 000 MNIST test examples, we first determine those which are correctly classified by the
baseline CNN in order to generate adversarial examples from them. We find that 5, 111 generated
adversarial examples successfully fool the baseline CNN, however, only 3, 134 of these examples
can fool our ICN classifier, which is a 38.7% reduction in error against adversarial examples. Note
that the improvement is achieved without using any additional training data, nor knowing a prior
about how these adversarial examples are generated by the specific “fast gradient sign method” [11].
On the contrary, of the 2, 679 adversarial examples generated from the ICN classifier side that fool
ICN using the same method, 2, 079 of them can still fool the baseline CNN classifier. This two-way
experiment shows the improved robustness of ICN over the baseline CNN.

4.2 CIFAR-10
Table 3: Test errors on the CIFAR-10 dataset. In both one-
vs-all and softmax cases, ICN shows improvement over the
baseline ResNet model. The result of convolutional DBN is
from [19].

Method One-vs-all (%) Softmax (%)
w/o Data Augmentation

Convolutional DBN - 21.1
ResNet-32 (baseline) 13.44 12.38

ResNet-32 w/ LS - 12.65
ResNet-32 + DCGAN 12.99 -

ICN-noise (ours) 13.28 11.94
ICN (ours) 12.94 11.46

w/ Data Augmentation
ResNet-32 (baseline) 6.70 7.06

ResNet-32 w/ LS - 6.89
ResNet-32 + DCGAN 6.75 -

ICN-noise (ours) 6.58 6.90
ICN (ours) 6.52 6.70

The CIFAR-10 dataset [18] consists of
60, 000 color images of size 32× 32. This
set of 60, 000 images is split into two sets,
50, 000 images for training and 10, 000 im-
ages for testing. We adopt ResNet [13] as
our baseline model [45]. For data augmen-
tation, we follow the standard procedure
in [26, 25, 13] by augmenting the dataset
by zero-padding 4 pixels on each side; we
also perform cropping and random flipping.
The results are reported in Table 3. In
both one-vs-all and softmax cases, ICN
outperforms the baseline ResNet classifiers.
Our proposed ICN method is orthogonal to
many existing approaches which use vari-
ous improvements to the network structures
in order to enhance the CNN performance.
We also compare ICN with Convolutional
DBN [19], ResNet-32 w/ Label Smoothing (LS) [39] and ResNet-32+DCGAN [35] methods as
described in the MNIST experiments. LS is shown to improve the baseline but is worse than our ICN
method in most cases except for the MNIST dataset.

4.3 SVHN Table 4: Test errors on the SVHN dataset.
Method Softmax (%)

ResNet-32 (baseline) 2.01
ResNet-32 w/ LS 1.96

ResNet-32 + DCGAN 1.98
ICN-noise (ours) 1.99

ICN (ours) 1.95

We use the standard SVHN [33] dataset. We combine the
training data with the extra data to form our training set
and use the test data as the test set. No data augmentation
has been applied. The result is reported in Table 4. ICN is
shown to achieve competitive results.

5 Conclusion

In this paper, we have proposed an introspective convolutional nets (ICN) algorithm that performs
internal introspection. We observe performance gains within supervised learning using state-of-the-art
CNN architectures on standard machine learning benchmarks.

Acknowledgement This work is supported by NSF IIS-1618477, NSF IIS-1717431, and a Northrop
Grumman Contextual Robotics grant. We thank Saining Xie, Weijian Xu, Fan Fan, Kwonjoon Lee,
Shuai Tang, and Sanjoy Dasgupta for helpful discussions.

9

References

[1] P. Baldi. Autoencoders, unsupervised learning, and deep architectures. In ICML Workshop on
Unsupervised and Transfer Learning, pages 37–49, 2012.

[2] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[3] A. Brock, T. Lim, J. Ritchie, and N. Weston. Neural photo editing with introspective adversarial

networks. In ICLR, 2017.
[4] M. A. Carreira-Perpinan and G. Hinton. On contrastive divergence learning. In AISTATS,

volume 10, pages 33–40, 2005.
[5] T. Chen, E. B. Fox, and C. Guestrin. Stochastic gradient hamiltonian monte carlo. In ICML,

2014.
[6] S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE

transactions on pattern analysis and machine intelligence, 19(4):380–393, 1997.
[7] Y. Freund and R. E. Schapire. A Decision-theoretic Generalization of On-line Learning And

An Application to Boosting. Journal of computer and system sciences, 55(1):119–139, 1997.
[8] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1.

Springer series in statistics Springer, Berlin, 2001.
[9] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm of artistic style. arXiv preprint

arXiv:1508.06576, 2015.
[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and

Y. Bengio. Generative adversarial nets. In NIPS, 2014.
[11] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In

ICLR, 2015.
[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,

2016.
[13] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In European

Conference on Computer Vision, pages 630–645. Springer, 2016.
[14] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural

computation, 18(7):1527–1554, 2006.
[15] T. Jebara. Machine learning: discriminative and generative, volume 755. Springer Science &

Business Media, 2012.
[16] T. Kim. DCGAN-tensorflow. https://github.com/carpedm20/DCGAN-tensorflow.
[17] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
[18] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. CS Dept., U Toronto,

Tech. Rep., 2009.
[19] A. Krizhevsky and G. Hinton. Convolutional deep belief networks on cifar-10. Unpublished

manuscript, 40, 2010.
[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Convolutional

Neural Networks. In NIPS, 2012.
[21] J. Lazarow, L. Jin, and Z. Tu. Introspective neural networks for generative modeling. In ICCV,

2017.
[22] D. B. Leake. Introspective learning and reasoning. In Encyclopedia of the Sciences of Learning,

pages 1638–1640. Springer, 2012.
[23] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel.

Backpropagation applied to handwritten zip code recognition. In Neural Computation, 1989.
[24] Y. LeCun and C. Cortes. The MNIST database of handwritten digits, 1998.
[25] C.-Y. Lee, P. W. Gallagher, and Z. Tu. Generalizing pooling functions in convolutional neural

networks: Mixed, gated, and tree. In AISTATS, 2016.
[26] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-supervised nets. In AISTATS,

2015.
[27] P. Liang and M. I. Jordan. An asymptotic analysis of generative, discriminative, and pseudolike-

lihood estimators. In ICML, 2008.

10

https://github.com/carpedm20/DCGAN-tensorflow

[28] J. S. Liu. Monte Carlo strategies in scientific computing. Springer Science & Business Media,
2008.

[29] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network
acoustic models. In ICML, 2013.

[30] S. Mandt, M. D. Hoffman, and D. M. Blei. Stochastic gradient descent as approximate bayesian
inference. arXiv preprint arXiv:1704.04289, 2017.

[31] C. Z. Mooney, R. D. Duval, and R. Duvall. Bootstrapping: A nonparametric approach to
statistical inference. Number 94-95. Sage, 1993.

[32] A. Mordvintsev, C. Olah, and M. Tyka. Deepdream - a code example for visualizing neural
networks. Google Research, 2015.

[33] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading Digits in Natural
Images with Unsupervised Feature Learning. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, 2011.

[34] J. R. Quinlan. Improved use of continuous attributes in c4. 5. Journal of artificial intelligence
research, 4:77–90, 1996.

[35] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolu-
tional generative adversarial networks. In ICLR, 2016.

[36] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved
techniques for training gans. In NIPS, 2016.

[37] B. Settles. Active learning literature survey. University of Wisconsin, Madison, 52(55-66):11,
2010.

[38] A. Sinha, M. Sarkar, A. Mukherjee, and B. Krishnamurthy. Introspection: Accelerating neural
network training by learning weight evolution. arXiv preprint arXiv:1704.04959, 2017.

[39] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architec-
ture for computer vision. In CVPR, 2016.

[40] Z. Tu. Learning generative models via discriminative approaches. In CVPR, 2007.
[41] Z. Tu, K. L. Narr, P. Dollár, I. Dinov, P. M. Thompson, and A. W. Toga. Brain anatomical

structure segmentation by hybrid discriminative/generative models. Medical Imaging, IEEE
Transactions on, 27(4):495–508, 2008.

[42] V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag New York, Inc., 1995.
[43] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dynamics. In

ICML, 2011.
[44] M. Welling, R. S. Zemel, and G. E. Hinton. Self supervised boosting. In NIPS, 2002.
[45] Y. Wu. Tensorpack toolbox. https://github.com/ppwwyyxx/tensorpack/tree/

master/examples/ResNet.
[46] Y. N. Wu, S. C. Zhu, and X. Liu. Equivalence of julesz ensembles and frame models. Interna-

tional Journal of Computer Vision, 38(3), 2000.
[47] J. Xie, Y. Lu, S.-C. Zhu, and Y. N. Wu. Cooperative training of descriptor and generator

networks. arXiv preprint arXiv:1609.09408, 2016.
[48] J. Xie, Y. Lu, S.-C. Zhu, and Y. N. Wu. A theory of generative convnet. In ICML, 2016.
[49] J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network. In ICLR,

2017.
[50] S. C. Zhu, Y. N. Wu, and D. Mumford. Minimax entropy principle and its application to texture

modeling. Neural Computation, 9(8):1627–1660, 1997.
[51] X. Zhu. Semi-supervised learning literature survey. Computer Science, University of Wisconsin-

Madison, Technical Report 1530, 2005.

11

https://github.com/ppwwyyxx/tensorpack/tree/master/examples/ResNet
https://github.com/ppwwyyxx/tensorpack/tree/master/examples/ResNet

	Introduction
	Related work
	Method
	Formulation
	Reclassification-by-synthesis
	Reclassification-step
	Synthesis-step

	Analysis
	Multi-class classification

	Experiments
	MNIST
	CIFAR-10
	SVHN

	Conclusion

