
Segmentation of Sub-Cortical Structures by the
Graph-Shifts Algorithm

Jason J. Corso1, Zhuowen Tu1, Alan Yuille2, and Arthur Toga1

1 Center for Computational Biology
Laboratory of Neuro Imaging

2 Department of Statistics
University of California, Los Angeles, USA

jcorso@ucla.edu

Abstract. We propose a novel algorithm called graph-shifts for performing im-
age segmentation and labeling. This algorithm makes use of a dynamic hierarchi-
cal representation of the image. This representation allows each iteration of the
algorithm to make large changes in the segmentation, similar to methods such as
split and merge. In particular, at each iteration we are able to rapidly compute the
optimal change to be performed. We apply graph-shifts to the task of segmenting
sub-cortical brain structures. First we formalize this task as energy function mini-
mization where the energy terms are learned from a training set of labeled images.
Then we apply the graph-shifts algorithm. We show that the labeling results are
comparable to other approaches but are obtained considerably faster (by orders
of magnitude). We also quantitatively demonstrate robustness to initialization and
avoidance of local minima in which conventional boundary PDE methods fall.

1 Introduction

Segmenting an image into a number of labeled regions is a classic medical imaging
and vision problem, see [1,2,3,4] for an introduction to the enormous literature. The
problem is typically formulated in terms of minimizing an energy function or, equiv-
alently, maximizing a posterior probability distribution. In this paper, we deal with a
special case where the number of labels is fixed. Our specific application is to segment
the subcortical structures of the brain, see section (2). The contribution of this paper is
to provide a novel algorithm called graph-shifts which is extremely fast and effective
for subcortical segmentation.

A variety of algorithms, reviewed in section (2), have been proposed to solve the
energy minimization task for segmentation and labeling. For most of these algorithms,
each iteration is restricted to small changes in the segmentation. For those methods
which allow large changes, there is no procedure for rapidly calculating which change
most decreases the energy.

Graph-shifts is a novel algorithm that builds a dynamic hierarchical representation
of the image. This representation enables the algorithm to make large changes in the
segmentation which can be thought of as a combined split and merge (see [4] for recent
work on split and merge). Moreover, the graph-shifts algorithm is able to exploit the
hierarchy to rapidly calculate the best change to make at each iteration. This gives an
extremely fast algorithm which also has the ability to avoid local minima that might
trap algorithms which rely on small local changes to the segmentation.

m1

m1

m1 m1 m1

m1 m2

m2

m2

Initial State

m1

m1

m1

m2

m2

m2

m2

m2 m2

Shift 1

m1

m1

m1

m2

m2

m2

m2

m2m1

Shift 2

Fig. 1. Intuitive Graph-
Shifts Example.

The hierarchy is structured as a set of nodes at a series of
layers, see figure (1). The nodes at the bottom layer form the
image lattice. Each node is constrained to have a single parent.
All nodes are assigned a model label which is required to be the
same as its parent’s label. There is a neighborhood structure de-
fined at all layers of the graph. A graph shift alters the hierarchy
by changing the parent of a node, which alters the model label
of the node and of all its descendants. This is illustrated in fig-
ure (1), which shows three steps in a three layer graph coloring
potential shifts that would change the energy black and others
gray. The algorithm can be understood intuitively in terms of
competing crime families as portrayed in films like the Godfa-
ther. There is a hierarchical organization where each node owes
allegiance to its unique parent node (or boss) and, in turn, to its
boss’s boss. This gives families of nodes which share the same
allegiance (i.e. have the same model label). Each node has a
subfamily of descendants. The top level nodes are the “bosses
of all bosses” of the families. The graph-shift algorithm pro-
ceeds by selecting a node to switch allegiance (i.e. model label)
to the boss of a neighboring node. This causes the subfamily of
the node to also switch allegiance. The algorithm minimizes a
global energy and at each iteration selects the change of alle-
giance that maximally decreases the energy.

The structure of this paper is as follows. In section (2) we give a brief background
on segmentation. Section (3) describes the graph-shift algorithm for a general class of
segmentation problems. In section (4), we formulate the task of subcortical labeling in
terms of energy function minimization and derive a graph-shifts algorithm. Section (5)
gives experimental results and comparisons to other approaches.

2 Background
Many algorithms have been applied to segmentation, so we restrict our review to those
methods most related to this paper. A common approach includes taking local gradients
of the energy function at the region boundaries and thereby moving the boundaries. This
region competition approach [2] can be successful when used with good initialization,
but its local nature means that at each iteration step it can only make small changes to
the segmentation. This can cause slowness and also risks getting stuck in local min-
ima. See [5] for similar types of partial differential equations (PDE) algorithms using
level sets and related methods. Graph cuts [3] is an alternative deterministic energy
minimization algorithm that can take large leaps in the energy space, but it can only
be applied to a restricted class of energy functions (and is only guaranteed to converge
for a subset of these) [6]. Simulated annealing [1] can in theory converge to the opti-
mal solution of any energy function but, in practice, is extremely slow. The data-driven
Markov chain Monte Carlo method [4] can combine classic methods, including split
and merge, to make large changes in the segmentation at each iteration, but remains
comparatively slow.

There have been surprisingly few attempts to define segmentation algorithms based
on dynamic hierarchical representations. But we are influenced by two recent papers.
Segmentation by Weighted Aggregation (SWA) [7] is a remarkably fast algorithm that

builds a hierarchical representation of an image, but does not attempt to minimize a
global energy function. Instead it outputs a hierarchy of segments which satisfy certain
homogeneity properties. Moreover, its hierarchy is fixed and not dynamic. The mul-
tiscale Swendson-Wang algorithm [8] does attempt to provide samples from a global
probability distribution. But it has only limited hierarchy dynamics and its convergence
rate is comparatively slow compared to SWA.

Our application is to the important task of subcortical segmentation from three-
dimensional medical images. Recent work on this task includes [9,10,11,12,13,14].
These approaches typical formulate the task in terms of probabilistic estimation or,
equivalently, energy function minimization. The approaches differ by the form of the
energy function that they use and the algorithm chosen to minimize it. The algorithms
are usually similar to those described above and suffer similar limitations in terms of
convergence rates. In this paper, we will use a comparatively simple energy function
similar to conditional random fields [15], where the energy terms are learnt from train-
ing examples by the probabilistic boosting tree (PBT) learning algorithm [16].

3 Graph-Shifts
This section describes the basic ideas of the graph-shifts algorithm. We first describe
the class of energy models that it can be applied to in section (3.1). Next we describe
the hierarchy in section (3.2), show how the energy can be computed recursively in
section (3.3), and specify the general graph-shifts algorithm in section (3.4).

3.1 The Energy Models

The input image I is defined on a lattice D of pixels/voxels. For medical image ap-
plications this is a three-dimensional lattice. The lattice has the standard neighborhood
structure and we define the notation N(µ, ν) = 1 if µ ∈ D and ν ∈ D are neighbors
on the lattice, and N(µ, ν) = 0 otherwise. The task is to assign each voxel µ ∈ D to
one of a fixed set of K models mµ ∈ {1, ...,K}. This assignment corresponds to a
segmentation of the image into K, or more, connected regions.

We want the segmentation to minimize an energy function criterion:

E[{mω : ω ∈ D}] =
∑
ν∈D

E1(φ(I)(ν),mν) +
1
2

∑
ν∈D,µ∈D:
N(ν,µ)=1

E2(I(ν), I(µ),mν ,mµ).

(1)
In this paper, the second term E2 is chosen to be a boundary term that pays a penalty
only for neighboring pixels/voxels which have different model labels (i.e.
E2(I(ν), I(µ),mν ,mµ) = 0 if mν = mµ). This penalty can either be a penalty for the
length of the boundary, or may include a measure of the strength of local edge cues. It
includes discretized versions of standard segmentation criteria such as boundary length∫

δR
ds and edge strength along boundary

∫
δR
|∇I|2ds. (Here s denotes arc length, R

denotes the regions with constant labels, and δR is their boundaries).
The first termE1 gives local evidence that the pixel µ takes modelmµ, where φ(I)(µ)

denotes a nonlinear filter of the image evaluated at µ. In this paper, the nonlinear filter
will give local context information and will be learnt from training samples, as de-
scribed in section (4.1). The model given in equation (1) includes a large class of exist-
ing models. It is restricted, however, by the requirement that the number of models is
fixed and that the models have no unknown parameters.

3.2 The Hierarchy
Define a graphG to be a set of nodes µ ∈ U and a set of edges. The graph is hierarchical
and composed of multiple layers. The nodes at the lowest layer are the elements of the
lattice D and the edges are defined to link neighbors on the lattice. The coarser layers
are computed recursively, as will be described in section (4.2). Two nodes at a coarse
layer are joined by an edge if any of their children are joined by an edge.

The nodes are constrained to have a single parent (except for the nodes at the top
layer) and every node has at least one child (except for nodes at the bottom layer). We
use the notation C(µ) for the children of µ, and A(µ) for the parent. A node µ on the
bottom layer (i.e. on the lattice) has no children, and hence C(µ) = ∅. We use the
notation N(µ, ν) = 1 to indicate that nodes µ, ν on the same layer are neighbors, with
N(µ, ν) = 0 otherwise.

At the top of the hierarchy, we define a special root layer of nodes comprised of a
single node for each of the K model labels. We write µk for these root nodes and use
the notationmk to denote the model variable associated with it. Each node is assigned a
label that is constrained to be the label of its parent. Since, by construction, all non-root
nodes can trace their ancestry back to a single root node, an instance of the graph G is
equivalent to a labeled segmentation {mµ : µ ∈ D} of the image, see equation (1).

3.3 Recursive Computation of Energy
This section shows that we can decompose the energy into terms that can be assigned
to each node of the hierarchy and computed recursively. This will be exploited in sec-
tion (3.4) to enable us to rapidly compute the changes in energy caused by different
graph shifts.

The energy function consists of regional and edge parts. These depend on the node
descendants and, for the edge part, on the descendants of the neighbors. The regional
energy E1 for assigning a model mµ to a node µ is defined recursively by:

E1(µ,mµ) =


φ(I)(µ,mµ) if C(µ) = ∅∑
ν∈C(µ)

E1(ν,mµ) otherwise (2)

where φ(I)(µ,mµ) is the energy at the pixel/voxel from equation (1). The edge energy
E2 between nodes µ1 and µ2, with models mµ1 and mµ2 is defined recursively by:

E2(µ1, µ2,mµ1 ,mµ2) =
E2(I(µ1), I(µ2),mµ1 ,mµ2) if C(µ1) = C(µ2) = ∅∑
ν1∈C(µ1), ν2∈C(µ2) :

N(ν1,ν2)=1

E2(ν1, ν2,mµ1 ,mµ2) otherwise (3)

where E2(I(µ1), I(µ2),mµ1 ,mµ2) is the edge energy for pixels/voxels in equation (1).
The overall energy (1) was specified at the voxel layer, but it can be computed at any

layer of the hierarchy. For example, it can be computed at the top layer by:

E({mµk
: k = 1, ...,K) =

K∑
k=1

E1(µk,mµk
) +

1
2

∑
i,j:1,..,K

N(µi,µj)=1

E2(µi, µj ,mµi
,mµj

).

(4)

3.4 Graph-Shifts

The basic idea of the graph-shifts algorithm is to allow a node µ to change its parent to
the parent A(ν) of a neighboring node ν, as shown in figure (1). We will represent this
shift as µ→ ν.

This shift not have any effect on the labeling of nodes unless the new parent has a
different label than the old one (i.e. when mA(µ) 6= mA(ν), or equivalently, mµ 6= mν).
In this case, the change in parents will cause the node and its descendants to change
their labels to that of the new parent. This will alter the labeling of the nodes on the
image lattice and hence will change the energy.

Hence we only need consider shifts between neighbors which have different labels.
We can compute the changes in energy, or shift-gradient caused by these shifts by using
the energy functions assigned to the nodes, as described in section (3.3). For example,
the shift from µ to ν corresponds to a shift-gradient ∆E:

∆E(µ→ ν) = E1(µ,mν)− E1(µ,mµ) +∑
η:N(µ,η)=1

[E2(µ, η,mν ,mη)− E2(µ, η,mµ,mη)] . (5)

The graph-shifts algorithm begins by initializing the graph hierarchy (section 4.2). Then
we calculate the shift-gradients of all the shifts using equations (2),(3), and (5). We
exploit recursion to calculate these shift-gradients extremely rapidly, see section (4.3).
In practice, very few of the neighbors in the hierarchy have different labels and so the
shift-gradients only need be computed for a small fraction of the total nodes. We throw
away all shift-gradients which are positive or zero, since these shifts do not decrease the
energy. The remaining shift-gradients are stored in a sorted, or unsorted, shift-gradient
list (we discuss the tradeoffs in section 4.3).

GRAPH-SHIFTS
Input: Volume I on lattice D.
Output: Label volume L on lattice D.
0 Initialize graph hierarchy (figure 3).
1 Compute exhaustive set of potential shifts S.
2 while S is not empty
3 s← the shift in S that best reduces the energy.
4 Apply shift s to the graph.
5 Update affected region and edge properties.
6 Recompute affected shifts on boundary and

update S. (5 & 6 discussed in section 4)
7 Compute label volume L from final hierarchy.

Fig. 2. Graph-shifts pseudo-code.

Graph-shifts proceeds by selecting
the steepest shift-gradient in the list
and makes the corresponding shift in
the hierarchy. This changes the labels
in the part of the hierarchy where the
shift occurs, but leaves the remainder
of the hierarchy unchanged. The al-
gorithm recomputes the shift-gradients
in the changed part of the hierarchy
and updates the weight list. We repeat
the process until convergence, when the
shift-gradient list is empty (i.e. all shift-
gradients in the graph are positive or zero).

Each shift is chosen to maximally decrease the energy, and so the algorithm is guar-
anteed to converge to, at least, a local minimum of the energy function. The algorithm
prefers to select shifts at the coarser layers of the hierarchy, because these typically alter
the labels of many nodes on the lattice and cause large changes in energy. These large
changes can ensure that the algorithm can escape from some bad local minima.

4 Segmentation of 3D Medical Images
Now we describe the specific application to subcortical structures. The specific energy
function is given in section (4.1). Sections (4.2) and (4.3) describe the initialization and
how the shifts are computed and selected for the graph-shifts algorithm.

4.1 The Energy

Our implementation uses eight models for subcortical structures together with a back-
ground model for everything else. The regional terms E1(µ,mµ) in the energy func-
tion (1) contain local evidence that a voxel µ is assigned a labelmµ. This local evidence
will depend on a small region surrounding the voxel and hence is influenced by the lo-
cal image context. We learn this local evidence from training data where the labeling
is given by an expert. This method is described in a separate paper submitted to this
conference, so we only give the basic ideas here.

We apply the probabilitic boosting tree (PBT) algorithm [16] to output a probability
distribution P (mµ|φ(I)(µ)) for the label mµ at voxel µ ∈ D conditioned on the re-
sponse of a nonlinear filter φ(I)(µ). This filter depends on voxels within an 11×11×11
window centred on µ, and hence takes local image context into account. The non-linear
filter φ is learnt by the PBT algorithm which is an extension of the AdaBoost algorithm
[17], [18]. PBT builds the filter φ(.) by combining a large number of elementary image
features. These are selected from a set of 5,000 features which include Haar basis func-
tions and histograms of the intensity gradient. The features are combined using weights
which are also learnt by the training algorithm.

We define the regional energy term by:

E1(µ,mµ) = − logP (mµ|φ(I)(µ)), (6)

which can be thought of as a pseudolikelihood approximation [16].
The edge energy term can take two forms. We can use it to either penalize the length

of the segmentation boundaries, or to penalize the intensity edge strength along the
segmentation boundaries. This gives two alternatives:

E2(I(ν), I(µ),mν ,mµ) = 1− δmν ,mµ , (7)
E2(I(ν), I(µ),mν ,mµ) = {1− δmν ,mµ}ψ(I(µ), I(ν)), . (8)

where ψ(I(µ), I(ν)) is a statistical likelihood measure of an edge between µ and ν.

4.2 Initializing the Hierarchy

We propose a stochastic algorithm to quickly initialize the graph hierarchy that will be
used during the graph shifts process. The algorithm recursively coarsens the graph by
activating some edges according to the intensity gradient in the volume and grouping
the resulting connected components up to a single node in the coarser graph layer. The
coarsening procedure begins by defining a binary edge activation variable eµν on each
edge in the current graph layer Gt between µ and ν such that N(µ, ν) = 1. The edge
activation variables are then sampled according to

eµν ∼ γU({0, 1}) + (1− γ) exp [−α |I(µ)− I(ν)|] (9)

where U is the uniform distribution on the binary set and γ is a relative weight between
U and the conventional edge gradient affinity (right-hand side). The convex combination

is used instead of solely the edge gradient to encourage some regions that cross spurious
intensity boundaries.

After the edge activation variables are sampled, a connected components algorithm
is used to form node-groups based on the edge activation variables. The size of a con-
nected component is constrained by a threshold τ , which governs the relative degree
of coarsening between two graph layers. On the next graph layer, a node is created for
each component. Following, edges in the new graph layer are induced by the connectiv-
ity on the current layer; i.e., two nodes in the coarse graph are connected if any two of
their children are connected. The algorithm recursively executes this coarsening proce-
dure until the size of the coarsened graph is within the range of the number of models,
specified by a scalar β. Complete pseudo-code for this hierarchy initialization is given
in figure 3.

Let GT be the top layer of the graph hierarchy after initialization. Then, we append
a model layer GM on the hierarchy that contains a single node per model. Each node in
GT becomes the child of the node in GM to which it has best fit, which is determined
by evaluating the model fit P (m|µ) defined in section 4.1. One necessary constraint is
that each node in GM has at least one child in GT . An example of the initialization is
given in figure 3(b).

HIERARCHY INITIALIZATION
Input: Volume I on lattice D.
Output: Graph hierarchy with layers G0, . . . , GT .
0 Initialize graph G0 from lattice D.
1 t← 0.
2 repeat
3 Sample edge activation variables in Gt using (9).
4 Label every node in Gt as OPEN.
5 while OPEN nodes remain in Gt.
6 Create new, empty connected component C.
7 Put a random OPEN node into queue Q.
8 while Q is not empty and |C| < 1/τ .
9 µ← removed head of Q.
10 Add ν to Q, s.t. N(µ, ν) = 1 and eµν = 1.
11 Add µ to C, label µ as CLOSED.
12 Create Gt+1 with a node for each C.
13 Define I(C) as mean intensity of its children.
14 Inherit connectivity in Gt+1 from Gt.
15 t← t + 1.
16 until

˛̨
Gt

˛̨
< β ∗K.

(b) Example initialization. Top-left is coronal,
top-right is sagittal, bottom-left is axial, and
bottom-right is a 3D view.

Fig. 3. Initialization pseudo-code (left) and example (right).

4.3 Computing and Selecting Graph-Shifts

The efficiency of the graph-shifts algorithm relies on fast computation of potential shifts
and fast selection of the optimal shift every iteration. We now describe how satisfy
these two requirements. To quickly compute potential shifts, we use an energy caching
strategy that evaluates the recursive energy formulas (2) and (3) for the entire graph
hierarchy following its creation (section 4.2). At each node, we evaluate and store

the energies, denoted Ê1(µ,mµ) and Ê2(µ, ν,mµ,mν) = E2(µ, ν,mµ,mν) for all
ν : N(µ, ν) = 1. These are quickly calculated in a recursive fashion.

Subsequently, we apply the cached energy to evaluate the shift-gradient (5) in the
entire hierarchy. At each node, we store the shift with the steepest gradient (largest
negative ∆E), and discard any shift with non-negative gradient. The remaining shifts
are stored in the potential shift list. In the volumes we have been studying, this list is
quite small: typically only about 2% of all edges numbering about 60, 000 for volumes
with 4 million voxels. The entire initialization including caching energies in the whole
hierarchy takes 10 – 15 seconds on these volumes, which amounts to about 30% of the
total execution time.

At step 3 in the graph-shifts algorithm (figure 2), we must find the optimal shift in the
potential shift list. One can use a sorted or unsorted list to store the potential shifts, with
tradeoffs to both; an unsorted list requires no initial computation, no extra computation
to add to the list, but anO(n) search at each iteration to find the best shift. The sorted list
carries an initial O(n log n) cost, an O(log n) cost for adding, but is O(1) for selecting
the optimal shift. Since every shift will cause modifications to the potential shift list,
and the size of the list decreases with time (as fewer potential shifts exist), we choose
to store an unsorted list and expend the linear search at each iteration.

As the graph shifts are applied, it is necessary to dynamically keep the hierarchy
in synch with the energy landscape. Recomputing the entire potential shift set is pro-
hibitively expensive. Fortunately, it is not necessary: by construction, a shift is a very
local change to the solution and only affects nodes along the boundary of the recently
shifted subgraph. The number of affected nodes is dependent on the node connectivity
and the height of the graph; the node connectivity is relatively small since the coars-
ening is roughly isotropic, and the height of the graph is logarithmic in the number of
input voxels.

First, we update the energy cache associated with each affected node. This amounts
to propagating the energy change up the graph to the roots. Let µ→ ν be the executed
shift. The region energy update must remove the energy contribution to A(µ) and add
it to A(ν), which is the new parent of µ after the shift. The update rule is

Ê1(A(µ),mµ))′ = Ê1(A(µ),mµ)− Ê1(µ,mµ) (10)

Ê1(A(ν),mν))′ = Ê1(A(ν),mν) + Ê1(µ,mν) , (11)

and it must be applied recursively to each parent until the root layer. Due to limited
space, we do not discuss the details of the similar but quite more tedious necessary
update to the edge energy cache terms Ê2.

Second, we update the potential shifts given the change in the hierarchy. All nodes
along the shift boundary both below and above the shift layer must be updated because
the change in the energy could result in changes to the shift-gradients, new potential
shifts, and expired potential shifts (between two now nodes with the same model). Gen-
erally, this remains a small set since the shifts are local moves. As before, at each of
these nodes, we compute and store the shift with the steepest negative gradient using
the cached energies and discard any shift with a non-negative gradient or between two
nodes with the same model.

Shift 5 Shift 50 Shift 500 Shift 5000
Fig. 4. Example of the graph-shifts process sampled during the minimization. Coronal and sagittal planes are
shown, top and bottom respectively.

0 1000 2000 3000 4000 5000
0

200

400

600

800

1000

1200

Shift Number

Sh
if

t M
as

s

0 1000 2000 3000 4000 5000
0

1

2

3

4

Shift Number

Sh
if

t L
ay

er

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Shift Number

C
um

ul
at

iv
e

Sh
if

t G
ra

di
en

t F
ra

ct
io

n
(a) (b) (c)

Fig. 5. (a) Graph shows the number of voxels (mass) that are moved per shift for 5000 shifts. (b) Graph shows
the level in the hierarchy at which at shift occurs. (c) Graph shows the cumulative fraction of the total energy
reduction that each shift effects.

5 Experimental Results

We use a dataset of 28 high-resolution 3D T1-weighted MR images acquired on a GE
Signa 1.5T scanner (each image is 179×121×179). Expert neuro-anatomists manually
labelled each volumes into the following sub-cortical structures: hippocampus (LH, RH
for left and right, resp. shown in green in figures), caudate (LC, RC in blue), putamen
(LP, RP in purple), and ventricles (LV, RV, in red). We arbitrarily split the dataset in
half and use 14 subjects for training and 14 for testing. The training volumes are used
to learn the PBT region models and the boundary presence models. During the hierarchy
initialization, we set the τ parameter to 0.15. We experimented with different values for
τ , and found that varying it does not greatly affect the segmentation result.

The graph-shifts algorithm is very fast. We show an example process in figure 4 (this
is the same volume as in figure 3(b)). Initialization, including the computation of the
initial potential shift set, takes about 15 seconds. The remaining part of the graph shifts
normally takes another 35 seconds to converge on a standard Linux PC workstation
(2GB memory, 3Ghz cpu). Convergence occurs when no potential energy-reducing shift
remains. Our speed is orders of magnitude faster than reported estimates on 3D medical
segmentation: Yang et al. [9] is 120 minutes, FreeSurfer [10] is 30 minutes, Region
Competition (PDE) [2] is 5 minutes.

In figure 5-(c), we show the cumulative weight percentage of the same sequence of
graph-shifts as figure 4. Here, we see that about 75% of the total energy reduction oc-

Table 1. Segmentation accuracy using volume and surface measurements. A comparison to the
Freesurfer method run on the same data is included for the volume measurements.

Training Set Testing Set
LH RH LC RC LP RP LV RV LH RH LC RC LP RP LV RV

Prec. 82% 70% 86% 86% 77% 81% 86% 86% 80% 58% 82% 84% 74% 74% 85% 85%
Rec. 60% 58% 82% 78% 72% 72% 88% 87% 61% 49% 81% 76% 67% 68% 87% 86%

Haus. 11.4 21.6 10.1 11.7 14.7 11.6 26.9 19.0 17.1 26.8 10.4 10.1 15.7 13.7 20.8 21.5
Mean 1.6 4.0 1.1 1.1 2.3 1.8 1.0 0.8 1.8 7.6 1.2 1.2 2.7 2.5 0.9 0.9
Med. 1.1 3.1 1.0 1.0 1.4 1.2 0.4 0.3 1.1 6.9 1.0 1.0 1.6 1.6 0.4 0.5

curs within the first 1000 graph shifts. This large, early energy reduction corresponds to
the shifts that occur at high layers in the hierarchy and have a large masses as depicted
in figure 5-(a) and (b). The mass of a shift is the number of voxels that are relabeled
as a result of the operation. Yet, it’s also clear from the plots that the graph-shifts at all
levels at considered throughout the minimization process; recall, at any given time the
potential shift list stores all energy reducing shifts and chooses the best one. Consider-
ing the majority of the energy reduction happens in the early stages of the graph-shift
process, it is possible to stop the algorithm early when the shift gradient drops below a
certain threshold.

0 2000 4000 6000 8000 10000
Shift Number

T
ot

al
 E

ne
rg

y

Graph−Shifts
PDE

Fig. 6. Total energy reduction comparison of
graph-shifts to a single layer PDE method.

In figure 6, we compare the total energy re-
duction of the dynamic hierarchical graph-shifts
algorithm to the more conventional single layer
PDE-type energy minimization approach. To
keep a fair comparison, we use the same struc-
ture and initial conditions in both cases. How-
ever, to approximate a PDE-type approach, we
restrict the graph shifts to occur across single
voxel boundaries (at the lowest layer in the hier-
archy) only. As expected, the large-mass moves
effect an exponential decrease in energy while
the decrease from the single voxel moves is
roughly linear.

To quantify the accuracy of the segmentation, we use the standard volume (precision
and recall), and surface distance (Hausdorff, mean and median) measurements. These
are presented in table 1; in each case, the average over the set is given. Our accuracy is

Table 2. FreeSurfer [10] accuracy.

LH RH LC RC LP RP LV RV
Prec. 48% 51% 77% 78% 70% 76% 81% 69%
Rec. 67% 75% 78% 76% 83% 83% 76% 71%

Haus. 25.3 11.5 23.0 26.1 13.1 10.8 31.9 51.8
Mean 3.9 2.1 1.9 2.0 1.8 1.4 1.8 9.6
Med. 2.1 1.5 1.0 1.0 1.3 1.0 0.9 3.9

comparable or superior to current state of
the art in subcortical segmentation. We
also show a visual example of the seg-
mentation in figure 7. To make a quan-
titative comparison, we computed the
same scores using the FreeSurfer [10]
method on the same data (results in ta-
ble 2).

The hierarchical representation makes it plausible to take large jumps in the energy
space therefore giving robustness to initialization and the potential avoid local minima
into which single-layer methods might fall. We carried out two experiments to test these
hypotheses. First, to evaluate robustness to initialization, we systematically perturbed

Graph-Shifts Manual

Fig. 7. An example of the sub-cortical structure segmentation result using the graph-shifts algorithm.

the initial hierarchy by taking random shifts with positive gradient to increase the en-
ergy by 50%. Then, we started the graph-shifts from the degraded initial condition. In
all cases, graph-shifts converged to (roughly) the same minimum; to quantify it, we
calculated the standard deviation (SD) of the precision + recall score for over 100 in-
stances. For all structures the SD is very small: LH: 0.0040, RH: 0.0011, LC: 0.0009,
RC: 0.0013, LP: 0.0014, RP: 0.0013, LV: 0.0009, RV: 0.0014.

1

2
Truth Init GS PDE

Fig. 8. Graph-shifts (GS) can avoid local min-
ima. See text for details.

Second, we created a synthetic test image con-
taining three separate i.i.d. Gaussian-distributed
brightness models (depicted as red, green, and
blue regions in figure 8). Following a simi-
lar perturbation as described above, we ran the
graph-shifts algorithm as well as a single-layer
PDE algorithm to compute the segmentation and
reach a minimum. As expected, the graph-shifts
method successfully avoids local minima that

the PDE method falls into; in figure 8, we show two such cases. In the figure, the left
column shows the input image and true labeling; the next three columns show the initial
state, the graph-shifts result and the PDE result for two cases (rows 1 and 2).

6 Conclusion
We proposed graph-shifts, a novel energy minimization algorithm that manipulates a
dynamic hierarchical decomposition of the image volume to rapidly and robustly mini-
mize an energy function. We defined the class of energy functions it can minimize, and
derived the recursive energy on the hierarchicy. We discussed how the energy functions
can include terms that are learned from labeled training data. The dynamic hierarchi-
cal representation makes it plausible to take both large and small jumps in the energy
space, and the energy caching approach provides a deterministic way to rapidly choose
the optimal move at each iteration.

We applied graph-shifts to the segmentation of sub-cortical brain structures in high-
resolution MR 3D volumes. The quantified accuracy for both volume and surface dis-
tances is comparable or superior to the state-of-the-art for this problem, and the algo-
rithm converges orders of magnitude faster than conventional minimization methods.

We demonstrated quantitative robustness to initialization and avoidance of local min-
ima in which local boundary methods (e.g., PDE) fell.

In this paper, we considered the class of energies which used fixed model terms that
were learned from training data. We are currently exploring extensions to the graph-
shifts algorithm that would update ther model parameters during the minimization. To
further improve subcortical segmentation, we are investigating a more sophisticated
shape model as well as additional subcortical structures.

References
1. Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distributions, and Bayesian Restora-

tion of Images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6 (1984) 721–741
2. Zhu, S.C., Yuille, A.: Region Competition: Unifying Snakes, Region Growing, and

Bayes/MDL for Multiband Image Segmentation. IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence 18(9) (1996) 884–900

3. Boykov, Y., Veksler, O., Zabih, R.: Fast Approximate Energy Minimization via Graph Cuts.
IEEE Trans. on Pattern Analysis and Machine Intelligence 23(11) (2001) 1222–1239

4. Tu, Z., Zhu, S.C.: Image Segmentation by Data-Driven Markov Chain Monte Carlo. IEEE
Trans. on Pattern Analysis and Machine Intelligence 24(5) (2002) 657–673

5. Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and
Stochastic Methods. Society for Industrial and Applied Mathematics, Phil., PA (2005)

6. Kolmogorov, V., Zabih, R.: What Energy Functions Can Be Minimized via Graph Cuts? In:
European Conference on Computer Vision. Volume 3. (2002) 65–81

7. Sharon, E., Brandt, A., Basri, R.: Fast Multiscale Image Segmentation. In: Proceedings of
IEEE CVPR. Volume I. (2000) 70–77

8. Barbu, A., Zhu, S.C.: Multigrid and Multi-level Swendsen-Wang Cuts for Hierarchic Graph
Partitions. In: Proceedings of IEEE CVPR. Volume 2. (2004) 731–738

9. Yang, J., Staib, L.H., Duncan, J.S.: Neighbor-Constrained Segmentation with Level Set
Based 3D Deformable Models. IEEE Trans. on Medical Imaging 23(8) (2004)

10. Fischl, B., Salat, D.H., Busa, E., Albert, M., Deiterich, M., Haselgrove, C., Kouwe, A.v.d.,
Killiany, R., Kennedy, D., Klaveness, S., Monttillo, A., Makris, N., Rosen, B., Dale, A.M.:
Whole brain segmentation: Automated labeling of neuroanatomical structures in the human
brain. Neuron 33 (January 2002) 341–355

11. Pohl, K.M., Fisher, J., Kikinis, R., Grimson, W.E.L., Wells, W.M.: A Bayesian Model for
Joint Segmentation and Registration. NeuroImage 31 (2006) 228–239

12. Pizer, S.M., Fletcher, P.T., Joshi, S., Thall, A., Chen, J.Z., Fridman, Y., Fritsch, D.S., Gashi,
A.G., Glotzer, J.M., Jiroutek, M.R., Lu, C., Muller, K.E., Tracton, G., Yushkevich, P.,
Chaney, E.L.: Deformable m-reps for 3d medical image segmentation. International Journal
of Computer Vision 55 (2003) 85–106

13. Cocosco, C., Zijdenbos, A., Evans, A.: A Fully Automatic and Robust Brain MRI Tissue
Classification Method. Medical Image Analysis 7 (2003) 513–527

14. Wyatt, P.P., Noble, J.A.: MAP MRF joint segmentation and registration. In: Conference on
Medical Image Computing and Computer-Assisted Intervention. (2002) 580–587

15. Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. In: Proc. of ICML. (2001)

16. Tu, Z.: Probabilistic Boosting-Tree: Learning Discriminative Models for Classification,
Recognition, and Clustering. In: Proc. of ICCV. (2005)

17. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-line Learning and an
Application to Boosting. Journal of Computer and System Science 55(1) (1997) 119–139

18. Schapire, R.E., Singer, Y.: Improved Boosting Algorithms Using Confidence-Rated Predic-
tions. Machine Learning 37(3) (1999) 297–336

