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Abstract

In this paper, we present an algorithm for parsing natural images into middle level vision

representations – regions, curves, and curve groups (parallel curves and trees). This al-

gorithm is targeted for an integrated solution to image segmentation and curve grouping

through Bayesian inference. The paper makes the following contributions. (1) It adopts

a layered (or 2.1D-sketch) representation integrating both region and curve models which

compete to explain an input image. The curve layer occludes the region layer and curves

observe a partial order occlusion relation. (2) A Markov chain search scheme Metropolized

Gibbs Samplers (MGS) is studied. It consists of several pairs of reversible jumps to tra-

verse the complex solution space. An MGS proposes the next state within the jump scope

of the current state according to a conditional probability like a Gibbs sampler and then

accepts the proposal with a Metropolis-Hastings step. This paper discusses systematic de-

sign strategies of devising reversible jumps for a complex inference task. (3) The proposal

probability ratios in jumps are factorized into ratios of discriminative probabilities. The

latter are computed in a bottom-up process, and they drive the Markov chain dynamics in

a data-driven Markov chain Monte Carlo framework. We demonstrate the performance of

the algorithm in experiments with a number of natural images.
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(a) input image (b) regions (c) curves            

(d) free curves (e) parallel curves (f) trees

Figure 1: An illustration of parsing an image into regions, curves, and curve groups. (a) is an input
image which is decomposed into two layers – (b) a layer of regions and (c) a layer of curves. These
curves are further divided into (d) free curves, (e) a parallel curve group for the fence, and (f) trees.
Curves observe a partial order occlusion relation.

1 Introduction

1.1 Objectives and contributions

In this paper, we present an algorithm for parsing natural images into middle-level vision represen-

tations – regions, curves, and curve groups (parallel curves and trees). This algorithm is targeted

for an integrated solution to image segmentation and curve grouping through Bayesian inference.

We adopt a generative model in a layered (or 2.1D sketch) [33, 43] representation illustrated in

Fig. (1). A region is a two-dimensional compact area with coherent intensity patterns. We specify

two types of coherence for regions. One is constant intensity with homogeneous texture, and the

other is smooth shading. Each type of coherence is specified by a family of probability models.

A curve is one-dimensional shape structure with smooth intensity profile at the cross section and

along the curve. It may be considered as a degenerated region. This is different from other works

which solely refer curves as the boundaries of 2D regions [24, 21, 29]. We are interested in three

types of curve structures in the paper. (1) free curves – independent and elongated 1D structures.

(2) parallel groups –curves that form a 1D Markov chain structure along their normal directions,
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such as railing and zebra stripes, and (3) trees – curves arranged as Markov tree structures. Curve

structures are assumed to observe a partial-order occlusion relation and they all occlude the region

layer.

While there is a wealthy body of work on image segmentation and curve detection/grouping

respectively, these two problems have not been studied together in explicit representations. The

integration is important for achieving improved results in either tasks since they jointly explain

the input image. On one side, conventional segmentation algorithms assume that images consist

of two-dimensional compact regions and thus produce degenerated results when they encounter

one-dimensional curve objects. For example, Fig. (2) shows a few examples of image segmentation

using a data-driven Markov chain Monte Carlo (DDMCMC) method [40] and the curves make the

segmentation rather cluttered. For comparison Figures (14-23) demonstrate significantly improved

results when the curve structures are represented and computed separately. On the other hand,

curve detection and grouping algorithms often lack models for background regions, and thus assume

uniform background, or as an alternative, they have to adopt discriminative curve models that work

on the differences between curves and background.

(a) (b) (c) (d)

Figure 2: Degraded results in image segmentation in the presence of curves. In comparison, Fig-
ures (14-23) show much improved results when the curve structures are represented and computed.

Given an input image, our objective is to infer an unknown number of regions, free curves,

parallel groups, and trees, with recovered occlusion relation and their probability models selected

and fitted – all in the process of maximizing (or simulating) a Bayesian posterior probability. This
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algorithm searches for optimal solutions in a complex state space which contains a large number of

subspaces of varying dimensions for the possible combinations of regions, curves, and curve groups.

This paper is mainly focused on studying a systematic search strategy in such a complex state

space by Markov chain Monte Carlo (MCMC) methods. The Markov chain simulates (or draw

samples) from a posterior probability. The following are three basic considerations in our MCMC

design.

Firstly, the Markov chain should be irreducible so that it can traverse the entire solution space.

This is done by designing a number of pairs of jumps to form an ergodic Markov chain. The

resulting Markov chain can reach any states from an arbitrary initialization.

Secondly, each jump operates on 1 − 2 curves or curve elements. We study the scopes of the

jumps within which the algorithm proposes the next state according to a conditional probability.

This is like a Gibbs sampler. The proposal is then accepted in a Metropolis-Hastings step, hence

its name, the Metropolized Gibbs Sampler (MGS [27]).

Thirdly, the computational cost at each jump step should be small. The proposal probability

ratios in our design are factorized and computed by discriminative probability ratios. These dis-

criminative probabilities are computed in bottom-up processes which are then used to activate the

generative models in a top-down process. As Fig. (12) illustrates, each jump maintains a list of

“particles” which are weighted hypotheses with the weights expressing the discriminative proba-

bility ratios. Then a particle is proposed at a probability proportional to its weight within the list

(scope). The higher the weight is, the more likely a particle will be chosen.

1.2 Relation to previous work and alternative methods

1. Relation to previous work on Markov chain Monte Carlo. Stochastic computing with reversible

jumps was pioneered in [18, 17]. A data-driven Markov chain Monte Carlo (DDMCMC) frame-

work [40, 46] was proposed to improve the speed of reversible jumps by computing the proposal

probabilities with factorized discriminative models. The DDMCMC framework was originally il-

lustrated in image segmentation. Lately, this framework has been applied to integrating high level

vision tasks such as face and text detection with the segmentation process [42]. The method pre-

sented in this paper has been extended in [19] to 3D scene reconstruction from a single image based

on the region and curve representation. In this paper we focus on the curve detection and grouping
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task, its interactions with image segmentation, and a general design principle of MGS. In recent

years, the Markov chain Monte Carlo methods have attracted considerable interests in vision and

demonstrated computational power in traditional tasks such as structure from motion [11, 13], 3D

modeling [12], object recognition [26] and tracking [44, 23]. There is a growing need for systematic

ways of designing and analyzing effective Markov chain searches in complex vision tasks. In this

paper we intend to provide detailed descriptions in an effort to make the MCMC designs simple

and easy to use.

2. Relation to the other work in curve detection and grouping. Curve detection and tracing have

been extensively studied in several areas. For example, active contours (SNAKE) [24], road tracing

in satellite images [15], medical image analysis [47], object tracking [21], curve reconstruction from

multiview images [22], and image coding using ridgelets and curvelets [6, 7]. Existing methods

have various restrictive assumptions. (1) Many methods require manual initialization of the curve

near the right position [24, 21, 10] or manually initializing the starting point for tracing [15]. (2)

Most algorithms assume uniform background [1, 47] since they lack generative models for them.

The popular SNAKE and active contour models use a discriminative representation that works

on the difference between the curves and background rather than generative models for images.

(3) Image coding algorithms [6, 7] assume a generative model that images are linear addition of

curve elements/bases. Our early attempt [41] adopted this additive model with the image bases

organized in a Markov chain. The additive model results in artifacts, such as blurry boundaries

while improved results in this paper using occlusion. (4) In vision, many perceptual grouping

methods work on edge maps rather than the original images. We argue that generative image

models are needed for recovering from errors in the edge detection stage and for interacting with

other types of objects in images.

3. Comparison with alternative methods. The Markov chain jumps can be considered as general-

izations to conventional gradient descent moves in three aspects. (1) A jump can change dimensions

in the state space by changing the number of objects, while gradient methods only move in spaces of

fixed dimensions. (2) A jump can move in a rather large scope at a single step, while gradient meth-

ods move within a small local neighborhood. (3) A jump samples the next state probabilistically

in its scope while gradient methods make a greedy decision.
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1.3 Organization of the paper

In Section (2) we first present the generative models for regions, curves, and curve groups, and

formulate the problem in a Bayesian framework. Then we present the algorithm in four sections.

In Section (3) we discuss the basic principles of Metropolized Gibbs Sampler (MGS) methods, speed

analysis, and strategies for good designs. In Section (4) we study reversible jumps for structural and

occlusion relation changes involving regions and free curves. Then we show a series of experiments

in Section (5) and conclude the paper with a discussion in Section (6).

2 Generative models and Bayesian formulation

In this section, we present generative models for both regions and curve structures, and formulate

the inference problem in a Bayesian framework.

2.1 Generative models of curves

(a) free curve (b) discretized curve (c) parallel group (d) tree

Figure 3: Representations of curves and curve groups. (a) A free curve in continuous representation.
(b) A free curve is discretized into a chain of “bars”. (c) Curves for a parallel group (d) Curves for
a Markov tree.

In this paper, we consider three types of curve models which are illustrated in Fig. (3).

1. Free curves. A free curve, denoted by C, is represented by its medial axis cm(s) = (xm(s), ym(s))

and its width 2w(s) for s = [0, L]. L is the curve length. In a continuous representation, a free

curve C occupies an elongated area or domain D(C) bounded by the left and right side bound-

aries denoted respectively by cl(s) = (xl(s), yl(s)) and cr = (xr(s), yr(s)). Fig. (3.a) shows the

boundaries in dashed lines.

cl(s) = cm(s) − w(s)n(s), cr(s) = cm(s) + w(s)n(s), (1)
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where n(s) is the unit normal of cm(s). Intuitively, a curve is a degenerated region parameterized

by its 1D medial axis. Usually w(s) is only 1 − 3 pixels wide and w << L. This causes major

topology problems in image segmentation where the two boundaries cl(s) and cr(s) could often

intersect generating numerous trivial regions. This problem will be resolved with the explicit

1D representation. The intensities of a curve often exhibit globally smooth shading patterns, for

example the curves in Fig. (14)-(23). Thus we adopt a quadratic function for curve intensities,

J(x, y; θ0) = ax2 + bxy + cy2 + dx + ey + f, (x, y) ∈ D(C), (2)

with parameters θ0 = (a, b, c, d, e, f). The validation of choosing an inhomogeneous model to

capture the smoothly changing intensity patterns can be found in [40]. Therefore, a free curve is

described by the following variables in continuous representation

C = (L, cm(s)Ls=0, w(s)Ls=0, θ0, σ).

where σ is the variance of the intensity noise. While this continuous representation is a convenient

model, we should also work on a discrete representation. Then the domain D(C) is a set of pixels

in a lattice and C is a chain of elongated bars as Fig. (3.b) illustrates.

The prior model for p(C) prefers smooth medial axes, narrow and uniform width, and it also

has a term for the area of the curve in order to match with the region prior.

p(C) ∝ p(D(C))p(c(s))p(w(s)) ∝ e−E(C). (3)

The energy E(C) is the sum of three terms

E(C) = γc|D(C)|ρ + λL + Eo(w), (4)

where ρ, λ are constants and are fixed in our experiments, and γc is a scale factor that can be

adjusted to control the number of curves. Eo(w) is a term which constrains width w(s) to be small.

We denote the intensities inside the curve domain by ID(C), and assume the reconstruction residue

follows iid Gaussian N (0;σ2). The image likelihood therefore is

p(ID(C)|C) =
∏

(x,y)∈D(C)

N (I(x, y) − J(x, y; θ0); σ2). (5)

2. Parallel curve groups. A parallel curve group consists of a number of nearly parallel curves

as Fig. (3.c) shows. Each curve Ci, i = 1, 2, ..., n is summarized by a short line segment connecting
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its end points. They represent curve structures, such as zebra stripes, grids, and railings shown in

the experiments. Grouping curves into a parallel group is encouraged in the model as it reduces

coding length and it is useful for perceiving an object, for example, a zebra. We denote a parallel

curve group by

pg = (n, {C1, C2, ..., Cn}, {α1, α2, ..., αn}),

αi ∈ {1, ..., n} is the index to the curve preceding Ci in the chain.

The prior model for a pg is a first order Markov model in a Gibbs form with a singleton energy

on individual curve and a pair energy for two consecutive curves as

p(pg) ∝ exp{−λ0n −
n∑

i=1

E(Ci) −
n∑

i=2

Epg(Ci, Cαi)}. (6)

The singleton E(Ci) is inherited from the free curve model. For the pair energy, we summarize each

curve Ci by five attributes: center (xi, yi), orientation θi of its associate line-segment, and length

Li of the line segment, curve average width (thickness) w̄i, and average intensity µi. Epg(Ci, Cαi)

measures the differences between these attributes.

3. Markov trees. Fig. (3.d) shows a number of curves in a Markov tree structure. We denote it

by

T = (n, {C1, C2, ...., Cn}, {β1, β2, ..., βn}).

βi ∈ {1, ..., n} is the index to the parent curve of Ci. Thus the prior probability is

p(T ) ∝ exp{−λ0n −
n∑

i=1

E(Ci) −
∑

αi �=∅
ET (Ci, Cβi

)}. (7)

Again, E(Ci) is inherited from the free curve. The term for Ci and its parent Cαi , ET (Ci, Cαi),

measures the compatibility such as end-point gap, orientation continuity, thickness, and intensity

between the parent and child curves.

The parallel group pg and tree T inherit the areas from the free curve, thus

D(pg) = ∪n
i=1D(Ci), and D(T ) = ∪n

i=1D(Ci). (8)

It also inherits the intensity function J(x, y; θi) from each free curve Ci, i = 1, 2, ..., n. In summary,

the intensity models for C, pg, T are all generative for image I as

I(x, y) = J(x, y; θ) + N (0;σ2), (x, y) ∈ D(Ci), D(pg), or D(T ). (9)
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2.2 Generative models of regions

Once the curves explain away the elongated patterns, what is left within each image are the regions

in the background. In this paper, we adopt two simple region models in comparison to the four

models in [40]. We denote a 2D region by R ⊂ Λ and IR the intensities inside R.

The first model assumes constant intensity with additive noise modeled by a non-parametric

histogram H.

J(x, y; 1, θ) = µ, I(x, y) = J(x, y) + η, η ∼ H, (x, y) ∈ R.

With a slight abuse of notation, we denote by θ = (µ,H) the parameters used in a region.

The second model assumes a 2D Bezier spline function with additive noise. The spline accounts

for global smooth shadings.

J(x, y; 2, θ) = B′(x)MB(y), I(x, y) = J(x, y; θ2) + η, η ∼ H, (x, y) ∈ R.

where B(x) = ((1 − x)3, 3x(1 − x)2, 3x2(1 − x), x3) is the basis and M is a 4 × 4 control matrix.

This is to impose an inhomogeneous model for capturing the gradually changing intensity patterns,

e.g. the sky. This model is important since regions with shading effects will be segmented into

separate pieces with homogeneous models. The parameters are θ = (M,H) and more details with

a validation can be found in [40] where we compare different models for different types of images.

The likelihood probability is

p(IR|R, θ) ∝
∏

(x,y)∈D(R)

H(I(x, y) − J(x, y; 	, θ)), 	 ∈ {1, 2}. (10)

The prior for a region R assumes short boundary length ∂R (smoothness) and compact area

|D(R)|,
p(R) ∝ exp{−γr|D(R)|ρ − 1

2
λ|∂R|}, (11)

where ρ and λ are constants that are fixed for all the experiments in this paper, and γr is a scale

factor that can be adjusted to control the number of regions in the segmentation.

2.3 Occlusion, partial order relation, and partition of lattice Λ

We collect all the curves, including free curves and the curves in the parallel groups and trees

in a set A = (C1, C2, ..., CN ). We then define a partially ordered set, poset [36], PR = 〈A,�〉.
b � c means that curve b occludes curve c or b is on top of c. PR is represented by a directed
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acyclic graph called a Hasse diagram. Figure (4) shows an example of the Hasse diagram for

PR = {〈a, b〉, 〈b, d〉, 〈a, d〉, 〈a, c〉, 〈c, d〉, 〈e, f〉} on a set A = {a, b, c, d, e, f}.

ba

c

d

e

f

Figure 4: A Hasse diagram for a partial order relation

As we define curves as the basic elements in A, the curves in a parallel group or a tree can

occlude each other. By default, all curves in A occlude the region layer. It is worth mentioning

that the occlusion representation is important for producing improved results over the additive

representation in our previous experiments [41] that generate images by superimposing image bases.

The occlusion relation between two curves are often evident at the T-junctions or cross-junctions

in images.

The occlusion relation PR forms a partition of the 2D discrete lattice Λ. Each curve C occupies

pixels in its domain D(C) minus the pixels covered by other curves occluding C,

ΛC = D(C) − ∪C′�CD(C ′). (12)

Therefore the domains for parallel groups and trees are respectively

Λpg = ∪C∈pgΛC and ΛT = ∪C∈TΛC . (13)

The visible part of a region R is ΛR = D(R) − ∪C∈AΛC .

2.4 Bayesian formulation for probabilistic inference

Given an image I, our objective is to compute a representation of the scene (world W ) in terms of

a number of regions W r, free curves W c, parallel curve groups W pg, trees W t, and a partial order

PR. We denote the representation by variables

W = (W r,W c,W pg,W t,PR).

9



The region representation W r includes the number of regions Kr, and each region Ri has a label

	i ∈ {1, 2} and parameter θi for its intensity model

W r = (Kr, {(Ri, 	i, θi) : i = 1, 2, ...,Kr}).

Similarly, we have W c = (Kc, C1, ..., CKc), W pg = (Kpg, pg1, pg2, ..., pgKpg ), and W t = (Kt, T1, T2, ..., TKt).

In this model, there is no need to define the background since each pixel either belongs to a region

or is explained by a curve/curve group.

The problem is posed as Bayesian inference in a solution space Ω.

W ∗ = arg max
W∈Ω

p(I|W )p(W ).

By assuming mutual independence between W r,W c,W pg,W t we have the prior model

p(W ) =
(
p(Kr)

Kr∏
i=1

p(Ri)
)(

p(Kc)
Kc∏
i=1

p(Ci)
)(

p(Kpg)
Kpg∏
i=1

p(pgi)
)(

p(Kt)
Kt∏
i=1

p(Ti)
)
. (14)

The prior for individual p(R), p(C), p(pg), p(T ) are given in the previous subsections.

As there are N curves in total including the free curves, and curves in the parallel groups and

trees, then the likelihood model follows the lattice partition and eqns (5) and (10).

p(I|W ) =
Kr∏
i=1

∏

(x,y)∈ΛRi

H((I(x, y) − J(x, y; 	i, θi)) ·
N∏

j=1

∏

(x,y)∈ΛCj

N ((I(x, y) − J(x, y; θj);σ2
j ). (15)

Since all objects use generative models for reconstructing I, these models are directly comparable

and they compete to explain the image. This property is crucial for the integration of region

segmentation and curve grouping.

Our goal is to design an algorithm to make inference of the W ∗ which maximizes the posterior

p(W |I) by sampling W in the solution space with a fast simulated annealing procedure. Since W ∗

is usually highly peaked, we hope that it will most likely be sampled if the algorithm converges

to the target distribution. This poses rather serious challenges even though we have simplified

the image models above. The main difficulty is to deal with objects with different structures and

explore a large number of possible combinations of regions, curves, and curve groups in an image.

Especially our objective is to achieve automatic and nearly globally optimal solutions.

We present the algorithm in the next sections. Limited by space, we only present novel com-

ponents for solving problems arising in the integration of segmentation and grouping. Readers
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are referred to [40] for details of image segmentation by DDMCMC. We focus on the analysis and

design of Metropolized Gibbs Sampler (MGS) and its approximation. We give a detailed discussion

of the reversible jumps for structural and occlusion relation changes involving regions, free curves,

and curve groups.

3 Searching complex solution space by Markov chain

A main technical challenge in the integrated image parsing problem is that we must infer an

unknown number of objects – regions, free curves, and curve groups, with their occlusion relations

computed. The algorithm must search for the optimal solution in space Ω which consists of a

large number of subspaces of varying dimensions. In this section, we overview the basic concepts,

principles, and speed criteria for designing Markov chains that can traverse the solution space.

3.1 Designing reversible jumps

In this subsection, we shall focus on the essential practical problems in designing the reversible

jumps for exploring the space Ω.

3.1.1 Overview of MCMC design

Our goal is to maximize a posteriori (MAP) probability p(W |I) in the solution space Ω by a

sampling strategy. Note that W has both discrete and continuous random variables and both can

be sampled with the reversible jumps[17]. In practice, diffusion processes are added to the reversible

jumps[18, 25, 38] for effective computation of some continuous variables, such as the boundary of

regions. In this paper, we shall focus on the reversible jumps for clarity and we omit the region

competition processes for boundary diffusion [45].

The sampling algorithm simulates a Markov chain denoted by a triplet MC =< Ω, ν,K >.

ν(Wo) is the probability for the initial state Wo at time t = 0, and K(WA,WB) denotes the

transition probability from state WA to state WB for any WA,WB ∈ Ω. The kernel K shall have a

unique stationary probability p(W |I), i.e.

∑
WA∈Ω

p(WA|I)K(WA,WB) = p(WB |I), ∀WB ∈ Ω. (16)

In practice, the requirement is replaced by a stronger condition – the detailed balance equation,

p(WA|I)K(WA,WB) = p(WB |I)K(WB ,WA), ∀WB 
= WA. (17)
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Our Markov chain consists of µ pairs of reversible jumps denoted by

Jm = (Jmr,Jml), m = 1, 2, ..., µ,

where Jmr and Jml are the right and left jumps respectively. These reversible jumps implement

operators on the curves and regions, such as death-birth, split-merge, switching models, switching

partial relation order, and grouping-ungrouping.

A pair of jumps Jm form a sub-kernel Km which is a weighted sum of the right and left sub-

kernels.

Km(WA,WB) = ωmrKmr(WA,WB) + ωmlKml(WA,WB). (18)

The overall kernel K is a linear summation of the sub-kernels

K(WA,WB) =
µ∑

m=1

ωmKm(WA,WB), ω1 + · · · + ωµ = 1, (19)

where ωm,m = 1, 2, ..., µ are the probability for choosing a specific move, and are time dependent.

For example, we should use the birth operators more often at the beginning.

3.1.2 The scopes of reversible jumps

)W( x1lΩ

)W( x1rΩ

)W( x2Ω
xW

)W(Ω yml

e
xW yW

)W(Ω xmr

(a) (b)

Figure 5: (a). Illustrations for the scope Ω(W ) at a state W . The round domain on the horizontal
plane represents the scope of a pair of symmetric jumps and the dumb-bells represent the left and
right scopes of a pair of asymmetric jumps. (b). A reversible jump Jm between two states WA and
WB . The overlap between Ωmr(WA) and Ωml(WB) affects the speed.

Each jump step can only change 1-2 variables in W and thus most entries in the transition

matrices Km(WA,WB) are zero. We define the scope of a jump as the following.
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Definition 1 At state W ∈ Ω, the scopes of the right and left jumps are the set of states connected

to W by Jmr and Jml respectively minus W itself,

Ωmr(W ) = {W ′ : Kmr(W,W ′) > 0, W ′ ∈ Ω, W ′ 
= W},

Ωml(W ) = {W ′ : Kml(W,W ′) > 0, W ′ ∈ Ω, W ′ 
= W}.

The scope of Jm at W is Ωm(W ) = Ωmr(W ) ∪ Ωml(W ).

Thus with µ pairs of jumps each state W is connected to a set

Ω(W ) = ∪µ
m=1Ωm(W ).

Fig. (5.a) illustrates the scope Ω(W ) with µ = 2 jumps in a 3-dimensional space. The scope Ω(W ) is

often small in comparison to the entire state space Ω, due to limited number of available operators

and the locality of the Markov chain.

For the jumps being reversible, we have the following observation,

WB ∈ Ωmr(WA) if and only if WA ∈ Ωml(WB), ∀m. (20)

Fig. (5.b) shows the scopes of Ωml(WB) and Ωmr(WA).

We classify a reversible jump as symmetric and asymmetric in the following. The design of the

jumps will be affected by this property as we show in the subsection below.

1. A pair of reversible jumps are said to be symmetric if Ωmr(W ) = Ωml(W ) for W ∈ Ω. An

example are the jumps for switching image models of a region in the next section where the

scope is the image model space and it is illustrated in Fig. (5.a) by the round domain in the

horizontal plane. Thus for any two connected states x and y, we have

WB ∈ Ωmr(WA) ∪ {WA} = Ωml(WB) ∪ {WB} � WA. (21)

2. A pair of reversible jumps are said to be asymmetric if Ωmr(W ) ∩ Ωml(W ) = ∅. For exam-

ple, the death-birth, split-merge jumps have disjoint right and left scopes. In Fig. (5.a) we

illustrated Ωmr(W ) and Ωml(W ) by the two dumb-bells respectively. In this case, for an edge

e = (WA,WB) shown in Fig. (5.b) we have

WB ∈ Ωmr(WA) ∪ {WA} 
= Ωml(WB) ∪ {WB} � WA. (22)

But the two sets Ωmr(WA) and Ωml(WB) overlap, as Fig. (5.b) displays. The overlap affects

the Markov chain speed.
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3.1.3 Gibbs and Metropolis-Hastings samplers

For a pair of symmetric jumps Jm, we use the Gibbs sampler [14] to design Km which will observe

the invariance eqn.(16). Because Jm is symmetric (see eqn.21), the normalization is the same

for both pmr,A(WB) and pml,B(WA). They are canceled when they are plugged in the invariance

equations (16).

This condition is unfortunately not observed for the asymmetric jumps. Therefore we design

the asymmetric jumps according to the stronger condition – the detailed balance equations in (17).

A standard way to satisfy the detailed balance equations is the Metropolis-Hastings design[32, 20].

Km(WA,WB) = Qmr(WA,WB)αmr(WA,WB), for WA 
= WB, m = 1, 2, ..., µ. (23)

Qmr(WA,WB) = Qmr(WB|WA) is a proposal (conditional) probability for moving from WA to WB

with jump Jmr and α(WA,WB) is the acceptance probability,

αmr(WA,WB) = min(1,
Qml(WA|WB)
Qmr(WB |WA)

· p(WB |I)
p(WA|I) ). (24)

It uses the target probability ratio p(WB|I)
p(WA|I) to rectify the proposal probability ratio Qml(WA|WB)

Qmr(WB |WA) .

Thus,

Kmr(WA,WA) = 1 −
∑

WB �=WA

Kmr(WA,WB), ∀WA ∈ Ω. (25)

The key issue is to design the proposal probabilities Qmr, Qml for fast computation. This the

subject of the next two subsections.

3.2 The Metropolized Gibbs sampler

In this subsection, we study a design scheme called Metropolized Gibbs sampler which combines

Metropolis-Hastings and Gibbs samplers. Basically it proposes a state WB at WA by a Gibbs

sampler strategy within the scope Jmr(WA) and then accepts the move by a Metropolis-Hastings

step.

Let us consider a pair of reversible jumps Jm = (Jmr,Jml) between two states WA and WB .

We design a pair of proposal probabilities following the target probability p normalized within the

scopes.

Q∗
mr(WB |WA) =

p(WB|I)∑

WC∈Ωmr(WA)

p(WC |I)
, for WB ∈ Ωmr(WA) (26)
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Q∗
ml(WA|WB) =

p(WA|I)∑

WC∈Ωml(WB)

p(WC |I)
, for WA ∈ Ωml(WB). (27)

We set Q∗
mr(WB |WA) = 0 and Q∗

ml(WA|WB) = 0 outside the two scopes respectively.

The proposal probability is the same as the Gibbs sampler except that we set Q∗
m(WA,WA) =

0, ∀WA (note that K(WA,WA) 
= 0) and the normalization factor is thus changed accordingly.

Ideally if the scope is large, the probabilities in the denominators sum to one, and Kmr(WA,WB)

is close to p(WB |I). Thus it generates fair samples rapidly.

This design is called the Metropolized Gibbs sampler (MGS) following a simple example in [27],

because it uses a Metropolis-Hasting step to rectify the proposal Q∗ designed by a Gibbs sampler

over the scope.

3.3 Approximating the MGS proposal by discriminative models

The computational time is decided by two factors: (1) the mixing time or first hitting time measured

by the number of steps t; (2) the computational cost at each step. The former demands large jump

scopes and good proposal probabilities, and the latter requires fast computation of the proposal

probabilities.

In eqns.(26) and (27), the MGS proposals Q∗
mr(Wx|Wy) and Q∗

ml(Wy|Wx) compute the target

probability p(WC |I) over two scopes WC ∈ Ωmr(WA) ∪ Ωml(WB). We observe that

Q∗
mr(WB |WA) =

p(WB |I)∑

WC∈Ωmr(WA)

p(WC |I)
=

p(WB|I)
p(WA|I)

∑

WC∈Ωmr(WA)

p(WC |I)
p(WA|I)

, for WB ∈ Ωmr(WA)

Q∗
ml(WA|WB) =

p(WA|I)∑

WC∈Ωml(WB)

p(WC |I)
=

p(WA|I)
p(WB |I)

∑

WC∈Ωml(WB)

p(WC |I)
p(WB |I)

, for WA ∈ Ωml(WB).

While it is hard to compute p(WC |I)) for every state WC ∈ Ωmr(WA)∪Ωml(WB) at each step,

it is much easier to compute the ratio p(WC |I)
p(WA|I) or p(WB |I)

p(WA|I) since WA and WC differ in just 1-2 items.

Most of the terms are thus canceled when we compute the ratios.

We approximate the MGS proposals in two steps so that they can be computed effectively. Note

that this approximation only changes the design of the proposal probabilities. Thus, the detailed

balance equations are still observed.

15



Firstly, the posterior probability ratios p(WA|I)
p(WB|I) can be written in a factorized form and we

approximate each factor by discriminative posterior probability ratios. Each discriminative proba-

bility ratio is computed by bottom-up methods and is treated as the weight of each candidate.

ωmr,A(WC) ≈ p(WC |I)
p(WA|I) , for WC ∈ Ωmr(WA), ωml,B(WC) ≈ p(WC |I)

p(WB |I) , for WC ∈ Ωml(WB).

Secondly, we replace the two continuous scopes Ωmr(WA) and Ωml(WB) by two finite sets of

“particles” Smr(WA) and Sml(WB) respectively. A particle is a candidate with non-trivial weight.

As Fig. (12) illustrates, these particles represent the promising candidates in the scopes.

Therefore the new proposal probabilities become,

Qmr(WB |WA) =
ωmr,A(WB)∑

WC∈Smr(WA)

ωmr,A(WC)
, for WB ∈ Ωml(WA).

Qml(WA|WB) =
ωml,B(WA)∑

WC∈Sml(WB)

ωml,B(WC)
, for WA ∈ Ωml(WB).

The weight ωmr,A(WB) for a candidate state WB ∈ Ωmr(WA) depends on the current state WA.

As we shall show in the next section, each pair of reversible jumps maintains a set of candidates

whose weights are updated on-line in the computational process.

The transition kernel for jump Jmr from WA to WB is then

Kmr(WA,WB) = Qmr(WB |WA)min(1,
Qml(WA|WB)
Qmr(WB |WA)

· p(WB|I)
p(WA|I) ). (28)

In computer vision and machine learning, there are abundant discriminative methods that can

compute the weights in various subspaces to approximate the posterior ratios. For example, it was

proved that the popular boosting methods for classification converge to the posterior probability

ratio on the class labels [35] as the number of features increases.

Figure (6.a) shows an approximation of the true posterior ratio by weights ω in a scope

Ωmr(WA). In a continuous space, these particles shall be considered as centers for Parzen windows

as a non-parametric representation for the space. In theory, we want to have this non-parametric

form to cover the jump scope so that the Markov chain is ergodic. However, we also want to limit

the window size so that the algorithm focuses more on the promising places. There needs to be

further investigation on the theoretical analysis of this topic. In practice, we add a small variation

to the particles when representing a continuous space.
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Figure 6: (a) Illustration of posterior probability p in scope Ωmr(WA) covered by the proposal
probability Qmr. Darker points have high probabilities. (b). With small scopes of jumps there will
be a long path or more steps between some states WA and WB . (b). The composite jumps enlarge
the scope of each jump and empirically result in shorter paths and less steps.

We seek to enlarge the scope of jumps so that the Markov chain mixes rapidly with the ease

of bottom-up proposals. This idea is illustrated in Figures (6.b) and (6.c). With jumps of small

scopes, the Markov chain needs more steps from a state WA to a state WB. If WA and WB are

two distinct modes, this path will have a very small probability to occur. With enlarged scopes

at each step, the proposal is generated over a long distance and thus the Markov chain may move

between state WA and WB in less steps and the probability for jumping between two distinct modes

increases.

4 Designing jumps using approximated MGS

In this section, we study seven pairs of reversible jumps using the approximated MGS design

discussed in the previous section for curve detection and grouping: (1) death-birth of an atomic

curve, (2) split-merge of a simple curve, (3) switch partial order between two simple curves, (4)

switching between a degenerated region and a curve, (5) switching intensity models, (6) group-

ing/ungrouping parallel curves, (7) grouping/ungrouping tree. (1-5) are simple jumps and (6-7)

are composite jumps. The reversible jumps for regions are referred to a previous paper [40].

4.1 Bottom-up computation of the candidate set and weights for simple jumps
on curves

One key idea in the DDMCMC framework is to use discriminative models to compute the proposal

probabilities. Some discussions about the interaction between discriminative and generative models

are referred to [42]. This paper mostly focuse on the curve part.
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(a) input image (b) curve candidates

Figure 7: (a) An example image. (b) Atomic curves (oriented bars) computed by a matching
pursuit detection and they are used as bottom-up candidates.

In the discrete form, a curve C consists of a number of oriented bars in a chain. In a bottom-up

process we compute an excessive number of candidates by a matching pursuit algorithm [31]. An

example is shown in Fig. (7). The matching pursuit algorithm convolves the image with an oriented

bar at each location (xi, yi) and a number of discretized angles θi, and the bars have certain width

wi and constant intensity fi. Large responses mean high likelihood that a curve passing through

the location with tangent directions coinciding with the bar orientation. By setting a sufficiently

low threshold, we obtain a set of “atomic curves” as bottom-up candidates in the jump type I which

is discussed in Section (4.2).

∆DD
c = {ci = (xi, yi, θi, wi, fi) : i = 1, 2, ...,MDD

c }.

where (xi, yi, θi) is the center and orientation, wi is the width and fi denotes the intensity. Each ci

has a weight ωi which measures the fitness of ci in the domain D(ci), and ωi = p(ID(ci)|ci)

Therefore we have a set of weighted atomic curves.

Sc = {(ci, ωi) : i = 1, 2, ...,MDD
c }. (29)

An example is shown in Fig. (7.b) where each atomic curve is represented by a bar. A new curve is

created by selecting an atomic curve in the set Sc or an existing curve can be extended by attaching

an atomic curve to one of its ends.

The detection of atomic curves can be reformulated as computing discriminative models p(	|F (I))

where 	 ∈ {+1,−1} is the label for “curve” or “non-curve” respectively. F (I) denotes a number

of features in detection. By setting a low threshold in the ratio test p(�=+1|F (I))
p(�=−1|F (I)) we can put all

non-trivial candidates as particles in the set.
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4.2 Jump pair I: death and birth of an atomic curve

J1 = (J1r,J1l) is a pair of jumps for adding an atomic curve from Sc or removing one from the

existing curves in current W . Adding an atomic curve results into two possible situations: (1) The

added atomic curve becomes a new curve itself or (2) it is attached to one end of an existing curve.

Likewise, an existing atomic curve can be removed if it is either on a curve with no other atomic

curve or it is on one of the two ends of a curve. This simulates a birth-death process between two

states WA and WB,

WA = (W−,Kc
A,PRA) ⇀↽ (W−, cB ,Kc

B(cB),PRB(cB)) = WB.

In the above notation, cB is the new-born atomic curve, W− denotes all other variables unchanged

in this reversible jump and they are the same for both WA and WB. The total number of curves,

Kc, and the partial order relation PR may change depending on whether cB is an independent

curve or merely an extension of an existing curve.

1C

2C

3C

1C

2C

WBWA

proposed

proposed

8 candidates

5 candidates

Propose to remove an 
atomic curve

Propose to add an 
atomic curve

Figure 8: An example of the birth and death of a curve. At state WA, there are 8 possible atomic
curves to be proposed, which are shown as ellipses in the upper middle figure. WB is the state
after selecting an atomic curve to be a new curve. From WB to WA, there are 5 candidate atomic
curves to be removed, which are shown in the lower middle figure. Choosing the same atomic curve
changes WB back to WA.

Fig. (8) shows an example. At state WA the birth jump has 8 candidate atomic curves and

one is proposed as cB in WB . Conversely, at state WB the death jump has 5 candidates and cB

is proposed. The birth and death jumps have different scopes Ω1r(WA) 
= Ω1l(WB), and thus they

are asymmetric.
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To design the reversible jumps, we calculate the proposal probabilities following the Metropolized

Gibbs sampler (MGS) design and then approximate them by discriminative models in a factorized

form.

We first consider the birth jump. For any state W ∈ Ω1r(WA), it has an extra atomic curve c1r

and we denote it by W = (W−, c1r,K
c
1r,PR+). W = WB is an instance in Ω1r(WA) when c1r = cB .

The MGS proposal probability for selecting cB is a conditional posterior probability over the jump

scope Ωmr(WA),

Q∗
1r(WB |WA) =

p(WB|I)∑
W∈Ω1r(WA) p(W |I) =

p(WB|I)
p(WA|I)∑

c1r∈S1r

p(W |I)
p(WA|I)

. (30)

We divide both the nominator and the denominator by p(WA|I) since the probability ratios are

much easier to compute due to cancellation. Note that the likelihoods p(I|W ) and p(I|WA) differ

only in the way they explain pixels covered by c1r in a domain D(c1r). The former explains ID(c1r)

by the new model in c1r while the latter explains ID(c1r) by some region R(c1r) which depends on

c1r. Therefore
p(I|W )
p(I|WA)

=
p(ID(c1r)|c1r)

p(ID(c1r)|R(c1r))
.

We can rewrite the posterior probability ratios in a factorized form,

p(W |I)
p(WA|I) =

p(I|W )p(W )
p(I|WA)p(WA)

=
p(ID(c1r)|c1r)

p(ID(c1r)|R(c1r))
· p(c1r|W−) · p(Kc(c1r)|c1r)

p(Kc
A)

· p(PR(c1r)|c1r)
p(PRA)

. (31)

We are only interested in atomic curves which have non-trivial probability ratios. Two types

of atomic curves have non-trivial probability ratios: (1) elements detected in the bottom-up step,

and (2) elements suggested by context based on continuity of existing curves. For example, Fig. (8)

has 8 candidates in ∆̂1r(WA), five of which are proposed by the context. They extend the existing

curves.

For each candidate atomic curve c
(i)
1r , its weight ω̂1r

(i) approximates the factorized ratio in

eqn.(31). Intuitively, the weight of a candidate c1r is a product of three factors. (1). How well the

data is fitted by the current model, p(ID(c1r)|R(c1r)). This is available for the current WA since we

have computed each term in eqn. (15) for every existing regions and curves. (2). Its fitness to data

ID(c1r) which is either computed for the data-driven candidates or from the context, p(ID(c1r)|c1r).

This is approximated based on how good a local Gabor function fits the image, same as in the

matching pursuit algorithm. (3). The possible change of curve number and partial order relation,
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p(PR(c1r)|c1r)
p(PRA) . This is approximated by a uniform distribution. Thus, we have a set of weighted

candidates for birth at WA.

S1r(WA) = { (c(i)
1r , ω

(i)
1r ) : i = 1, 2, ..., N1r .},

where (c(B)
1r , ω

(B)
1r ) is one instance in the above set that leads to the state WB. Then the proposal

probability is

Q1r(WB|WA) =
ω

(B)
1r∑N1r

i=1 ω
(i)
1r

.

Similarly, we can design the death jump J1l from WB to WA. Let Ω1l(WB) be the jump scope.

We are interested in computing the probability for proposing WA from Ω1l(WB). According to the

MGS design, it is

Q∗
1l(WA|WB) =

p(WA|I)∑
W∈Ω1l(WB) p(W |I) =

p(WA|I)
p(WB|I)∑

c1l∈S1l

p(W |I)
p(WB|I)

(32)

The likelihoods p(I|W ) and p(I|WB) differ only in the way they explain pixels covered by c1l in

a domain D(c1l). Therefore we have

p(I|W )
p(I|WB)

=
p(ID(c1l)|R(c1l)
p(ID(c1l)|R(c1l))

,

where R(c1l) is the region explaining ID(c1l) in W . Thus the posterior probability ratios can be

rewritten in a factorized form,

p(W |I)
p(WB|I) =

p(I|W )p(W )
p(I|WB)p(WB)

=
p(ID(c1l)|R(c1l))

p(ID(c1l)|c1l)
· 1
p(c1l|W−)

· p(Kc(c1l)|c1l)
p(Kc

B)
· p(PR(c1l)|c1l)

p(PRB)
. (33)

Unlike the birth jump, the candidate set S1l contains only short atomic curves at the ends of the

existing curves. For example, |S1l| = N1r = 5 in Fig. (8). Thus we maintain a set of weighted

candidates,

S1l(WB) = { (c(i)
1l , ω

(i)
1l ) : i = 1, 2, ..., N1l .}

The weight ω
(i)
1l is computed according to eqn.(33) where the factors have very intuitive meanings.

p(ID(c1l)|R(c1l)) is computed using the image model of underlying region which c1l occludes. Intu-

itively, it is to say an atomic curve whose image part can not be fitted very well by its occluded

region model should have a low chance to be removed. p(ID(c1l)|c1l) is available since it is computed

in eqn. (15). p(c1l|W−) is the prior of the atomic curve which is computed in eqn. (14).
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(c(A)
1l , ω

(A)
1l ) is one instance in the above set. When it is removed, the state WB becomes WA.

The proposal probability is

Q1l(WA|WB) =
ω

(A)
1l∑N1l

i=1 ω
(i)
1l

.

Finally the birth and death proposal probabilities are corrected in a Metropolis-Hastings step.

K1r(WA,WB) = Q1r(WB|WA)min(1,
Q1l(WA|WB)
Q1r(WB|WA)

· p(WB |I)
p(WA|I) ),

K1l(WB ,WA) = Q1l(WA|WB)min(1,
Q1r(WB |WA)
Q1l(WA|WB)

· p(WA|I)
p(WB|I) ).

4.3 Jump II: split and merge of curves
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Figure 9: An example of the split-merge jumps for free curves. At state WA, a set of 18 candidate
sites are shown in the upper-middle figure. In this example, curve C3 is split into two curves, C5

and C6. At WB , there 2 candidate pairs which can be merged. They are shown in the lower-middle
figure.

The second pair of reversible jumps J2 = (J2r,J2l) realize split-merge processes of free curves.

Fig. (9) shows an example. Similar to the birth-death jumps, we maintain two candidates lists at

the current state.

S2r(WA) = { (z(i)
2r , ω

(i)
2r ) : i = 1, 2, ..., N2r}, and S2l(WB) = { (z(i)

2l , ω
(i)
2l ) : i = 1, 2, ..., N2l}.

We adopt a discrete notion with z
(i)
2r and z

(i)
2l being the site between adjacent atomic curves for split

and merge respectively. Fig. (9) shows 18 candidate sites for split at WA and 2 sites for merge at

WB .
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The MGS proposal for split is,

Q∗
2r(WB|WA) =

p(WB |I)∑
W∈Ω2r(WA) p(W |I) =

p(WB|I)
p(WA|I)∑

xs∈S2r(WA)
p(W |I)
p(WA|I)

.

Each site zmr ∈ S2r(WA) corresponds to a state W ∈ Ω2r(WA). W differs from WA by splitting

a curve Ck into two curves Ci and Cj .

WA = (Kc, Ck,PR,W−) −→ W = (Kc + 1, Ci, Cj, PR′,W−).

Again, we write the posterior ratio in a factorized form as

p(W |I)
p(WA|I) =

p(ID(Ci)∪D(Cj))|Ci, Cj)
p(ID(Ck)|Ck)

· p(Ci)p(Cj)
p(Ck)

· p(Kc + 1)
p(Kc)

· p(PR′|Ci, Cj)
p(PR|CK)

.

The four factors, again, have very intuitive meanings. (1).
p(ID(Ci)∪D(Cj))|Ci,Cj)

p(ID(Ck)|Ck) measures the fitness

for the curves before and after splitting. It probabilistically decides which curve to split and

where to make the split. Intuitively, if the intensity model of a curve Ck does not fit the image

very well, then Ck should have more chance to be split. This is directly available in p(ID(Ck)|Ck)

for the current state WA. For curve Ck, there are many places to make the split, depending

upon on how many atomic curves it has. If its two possible segments ID(Ci) and ID(Cj) are very

different in appearances, their connection site should have more chance to be proposed. This is

represented by p(ID(Ci)∪D(Cj))|Ci, Cj) which is approximated by a similarity measure between their

mean intensities. (2). p(Ci)p(Cj)
p(Ck) reflects the priors only. If a curve is not so smooth, it should have

high probability to be split. Intuitively, a site which splits a curve into two smooth segments should

have more chance to be proposed. (3). Priors on the curve number can be directly computed. (4).

Priors on the partial order p(PR′|Ci, Cj) is approximated by a uniform distribution. The weight

ω
(i)
2r will approximate the ratio p(W |I)

p(WA|I) . The proposal probability is the weight normalized in the

candidate set,

Q2r(WB|WA) =
ω

(B)
2r∑N2r

i=1 ω
(i)
2r

.

ω
(B)
2r is the weight for a site z

(B)
2r ∈ S2r(WA) that leads to state WB .

Similarly, we update the weights in the candidate set S2l(WB) and compute the proposal prob-

ability Q2r(WA|WB).
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Figure 10: An example of partial order change.

4.4 Jump III: switching the partial order relation

The third jump J3 = (J3r,J3l) is a pair of symmetric jumps that switch partial order relation

between curves. The candidate sets S3r and S3l are the same for the left and right moves.

S3 = {(z(k)
3 , ω

(k)
3 ) : z

(i)
3 =< Ci, Cj >∈ PR, k = 1, 2, ..., N3.}

Each candidate z
(i)
3 is an occlusion between two existing curves Ci � Cj and a jump is to reverse

the order

WA = (< Ci, Cj >, W−) ⇀↽ (< Cj, Ci >, W−) = WB.

Fig. (10) shows an example of such a partial order change. The weight of each candidate z
(i)
3 is

only decided by the probability ratio on the overlapping image domain

ω
(k)
3 =

p(W |I)
p(WA|I) =

p(ID(Ci)∩D(Cj)|Cj)
p(ID(Ci)∩D(Cj)|Cj)

, ∀k.

All the junctions between free curves are collected in a candidate set Ξ, and they have equal

probability. We compute the proposal probabilities for J3r and J3l the same way as for J1 and J2.

4.5 Jump IV: switching between degenerated region and curve

The fourth pair of jumps J4 = (J4r,J4l) is needed for resolving region-curve ambiguity. At a certain

stage a region may become elongated and thin, thus it should switch to a curve. Conversely a short

curve may become thick and switch to a region. This is realized by reversible jumps between two

states,

WA = (Kc − 1, Kr + 1, Rk,W−) ⇀↽ (Kc, Ck,K
r,W−) = WB .

To do so, we maintain two weighted lists for degraded regions and curves respectively in the current

state,

S4r(WA) = { (R(i)
4r , ω

(i)
4r ) : i = 1, 2, ..., N4r }, S4l(WA) = { (C(i)

4l , ω
(i)
4l ) : i = 1, 2, ..., N4l }.
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The weights are decided by the priors for the curves and regions.

ω
(i)
4r =

p(Ck)
p(Rk)

· p(Kc)
p(Kc − 1)

· p(Kr)p(Kr + 1), ω
(i)
4l =

p(Rk)
p(Ck)

· p(Kc − 1)
p(Kc)

· p(Kr + 1)p(Kr).

The proposal probabilities are computed as normalized weights within the two candidate sets.

Since only priors about the curves and regions are involved, both p(Ck) and p(Rk) can be quickly

computed at each step. Some simple tests such as the measurement of aspect ratio and area are

adopted to make fast computation. Intuitively, an elongated region will have high probability to

be switched into a curve, and a “fat” curve will have a big chance to be turned into a region.

4.6 Jump V: switching intensity models

For each region or simple curve, we need to select a suitable generative model. For example, a region

could be fitted to a texture, a color, a smooth shading model, or a clutter model in DDMCMC

segmentation[40]. Each type of model has a parameter space which has multiple modes. So the

fifth pair of jumps J5 = (J5r,J5l) realize the switching of models for each region or curve at a time.

J5 is a symmetric jump with its scope being the parameter space of the models.

We compute a set of candidates by clustering methods, such as mean shift[8] in the parameter

space. Each candidate (	(i), θ(i)) is a mode in parameter space of type 	(i).

Ŝ5 = {(	(i), θ(i), ω
(i)
5 ) : i = 1, 2, ..., N5 .}.

When we switch intensity models for a region R or a curve C, the weight ω(i) for the candidate

model (	(i), θ(i)) is the accumulative votes from the pixels inside the domain D(R) or D(C). Each

pixel contributes a vote in [0, 1] depending on its fitness to the candidate model. Details about this

part can be found in [40].

4.7 Jump VI: split and merge of trees

The sixth pair of jumps are the split-merge of tree structures. They jump between two states,

WA = (W−, TA) ⇀↽ (W−, TB , TC) = WB.

Fig. (11) illustrates an example where a tree Tk is split into trees Ti and Tj . Cutting the

parent-child relation between any two curves in a tree will naturally split this tree into two. Thus,

the process of splitting a tree has an analogy to that of splitting a curve. Similarly, we maintain
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        for splitting a tree
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Figure 11: An example of splitting and merging trees.

two candidate lists at the current state to approximate the jump scopes Ω6r(WA) and Ω6l(WB)

respectively.

S6r(WA) = { (z(i)
6r , ω

(i)
6r ) : i = 1, 2, ..., N8r .}, S6l(WB) = { (z(i)

6l , ω
(i)
6l ) : i = 1, 2, ..., N8l .},

where z
(i)
6r and z

(i)
6l are sites between adjacent curves for split and merge respectively.

The MGS proposal for splitting a tree is,

Q∗
6r(WB|WA) =

p(WB |I)∑
W∈Ω6r(WA) p(W |I) ≈

p(WB|I)
p(WA|I)∑

xs∈S6r(WA)
p(W |I)
p(WA|I)

.

Each site xs ∈ S6r(WA) corresponds to a state W ∈ Ω6r(WA). We write the posterior ratio in a

factorized form.

p(W |I)
p(WA|I) =

p(Ti)p(Tj)
p(Tk)

· p(KT + 1)
p(KT )

=
1

exp{−ET (CTk
(i), CTk

(j))} · p(KT + 1)
p(KT )

,

where CTk
(i) and CTk

(j) are the two curves whose parent-child relation is cut in three Tk leading

to two new trees Ti and Tj. Curve CTk
(i) becomes the root curve in tree Ti and curve CTk

(j))

becomes a leaf curve in tree Tj . Thus, the proposal probability is computed by

Q6r(WB|WA) =
ω6r(B)

∑N6r
i=1 ω

(i)
6r

.

ω
(B)
6r is the weight for a site z

(B)
6r ∈ Ŝ6r(WA) that leads to state WB and it is computed according

to the probability by parent-child relation exp{−ET (Cparent(zB), Cchild(zB))} at the site z
(B)
6r . The

orders {α1, α2, ..., αn} are decided by the tree structure in the parent-child relation directly.
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4.8 Summary on the six simple jumps

The five simple jumps presented so far have a total of 10 sets of “particles” as Fig.12 displays. Each

particle is a candidate with its weight approximating the posterior probability ratio in a factorized

form. These particles encode the proposal probability in each jump scope and will be re-weighted

on-line.

S1r: birth roll S1l: death roll

S2r: split roll S2l: merge roll

S3: switch of partial order

S5: switch of models

S4r: degraded regions S4l: degraded curves

Figure 12: The 6 simple jumps maintain 10 sets of “particles” whose sizes illustrate their weights.
The sets are updated and re-weighted in each jump steps, and they encode the proposal probabilities
in a non-parametric representation.

4.9 Jump VII: Grouping/ungrouping of parallel curve groups

The seventh pair of jumps is to group a number of free curves into a parallel curve group pgi or

split a group of free curves from one group pgi to a group pgj .

Fig. (13) shows a reversible jump between two states

WA = (pgA
1 , pgA

2 ,W−) ⇀↽ (pgB
1 , pgB

2 ,W−) = WB .

WA has two curve groups – pgA
1 includes 7 curves (C1, C2, C3, C4, C5, C6, C8) and pgA

2 has three

curves (C7, C9, C10). Three curves C1, C3, C4 (Fig.13.(a)) are split from pgA
1 and merged with pgA

2

to form two new parallel groups– pgB
1 and pgB

2 (Fig. (13.c)). Each curve group is illustrated by a

dotted ellipse.

Suppose we have a set of free curves {C1, C2, ..., CN} and we treat each curve as a single

vertex and build an adjacency graph G which connects two nearby curves cs and ct with a link

est =< Cs, Ct >. Fig. (13.b) shows an example of the adjacency group. Therefore the curve
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grouping problem becomes a graph coloring or partition problem – all curves (vertices) with the

label (or color) belong to a curve group. Thus we adopt a Swendsen-Wang Cut algorithm [2, 3] for

partitioning this graph G. The SW-cut algorithm is a generalization to the Gibbs sampler. The

SW-cut algorithm can flip a set of vertices that have the the same color at once, and it is shown to

converge (mix) much faster than the Gibbs sampler. We call such jumps the “composite jumps”.

We briefly introduce the SW-cut idea below and refer to [2] for details. We associate a binary

variable bst to each link est in the adjacency graph G. bst = 0 means the link is “off” and thus Cs

and Ct are disconnected. bst = 1 means the link remains connected. Each link est is also associated

with a probability qst which measures how likely the two curves Cs and Ct belong to the same curve

group.

qst ∝ exp{−Epg(Cs, Ct)}.

The energy Epg measures the distance, parallelism of the two curves and was discussed in eqn. (6).

A jump in the SW-cut algorithm includes two steps.

Step I: Clustering. For each link est in G, bst is turned off (set to 0) deterministically if 	s 
= 	t

in the current state WA. Otherwise bst is turned off with a probability 1 − qst.

bst ∼ Bernoulli(qst1(	s = 	t)).

This procedure generates a number of connected components (CP) for the adjacency graph G. Each

CP has a connected subgraph after turning off a number of links in G. This is called “clustering”

of the graph. Each cluster will be a candidate for flipping color. For example, Fig.13.(e) shows 3

CPs (or clusters) which can be generated from both state WA and state WB .

Step II: flipping. One connected component is picked at random. For example, suppose the

current state is W (W = WA or W = WB) and we pick CP1 at Fig. (13.e), and suppose the current

label of CP1 is 	(CP1) ∈ {1, 2, 3, ...,Kpg}. We assign a new color 	′(CP1) ∈ {1, 2, ...,Kpg + 1} to

all curves in CP1 at a proposal probability q(	′(CP1)|W ).

According the the SW-cut algorithm[2, 3], the proposal probability ratio is given by,

Q(WB |WA)
Q(WA|WB)

=
∏

est∈CutA
(1 − qst)∏

est∈CutB
(1 − qst)

· q(	′(CP1) = 2|WA)
q(	′(CP1) = 1|WB)

. (34)

In the above equation, CutA is the set of links in G at state WA that connect CP1 with the rest

of pgA
1 . They must be cut (turned off) in order for CP1 being a connected component. So the
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Figure 13: An example of split-merge of parallel curve groups by a composite jump designed with
the SW-cut method.

probability of turning off them in the clustering step is
∏

est∈CutA
((1 − qst). Similarly, CutB is the

set of links in G at state WB that connect CP1 with the rest of pgB
2 . CutA and CutB are illustrated

in Fig. (13.d) and Fig. (13.f) respectively by the dashed lines.

By a Metropolis-Hastings step, the proposed jump is accepted with probability,

α(WA,WB) = min(1,
Q(WB|WA)
Q(WA|WB)

· p(pgA
1 )p(pgA

2 )
p(pgB

1 )p(pgB
2 )

). (35)

In the above equation, the posterior probability ratio p(WB|I)
p(WA|I is reduced to the ratio p(pgA

1 )p(pgA
2 )

p(pgB
1 )p(pgB

2 )
on

the prior for the new parallel groups.

5 Experiments

In Fig. (2) we have showed some examples where an image segmentation algorithm produces unsat-

isfactory results. This is because these input images have curve patterns that do not fit the region

assumptions. Much improved results are obtained on these images when the curve processes are

modeled explicitly, as we shall see in this section.

Our experiments proceed in two stages. We first compute only regions and free curves, and

then we run jumps VI and VII to obtain the parallel curve groups and trees.

The proposed algorithm searches for the optimal solution W ∗ by sampling p(W |I). It starts

from a segmentation with regions obtained at a coarse level by the Canny edge detector. Our
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method does not rely much on initial solution due to the use of various MCMC dynamics guided

by bottom-up proposals, which help the algorithm to jump out of local minimums. However, we

do use an annealing strategy to allow large change of W at high temperatures, and to focus more

on local modes with the temperature gradually cooling down. The optimal solution W ∗ is found

when the algorithm converges since p(W ∗|I) is in general highly peaked for many vision problems,

especially at a low temperature. It is always desirable to avoid the use of annealing. As we discussed

in Sect. (3.3), this requires to design more efficient algorithms capable of making bigger scope of

moves. Some of our recent attempts have made this possible for segmentation. In the case of

maintaining multiple promising modes for the solution, we introduce a k-adventurers algorithm

and the details can be found in [40] .

Experiment A: computing regions and free curves.

Six examples are shown in Fig. (14) and (19). For each example, the first row displays the input

image Iobs, the computed free curves W c, and the region segmentations W r in the background.

The second row shows the synthesized image according to the generative models for the regions

Ir
syn ∼ p(I|W r), the curves Ic

syn ∼ p(I|W c), and the overall synthesis Isyn by occluding Ic
syn on Ir

syn.

We construct synthesis image to verify how an input image is represented in W ∗. For example,

Fig. (14) shows that the faces of the three Japanese ladies are treated as generic regions rather

than high-level objects.

In these experiments, two parameters in the prior models are adjustable: (1) γr in equation (11),

and (2) γc in equation (4). The two parameters control the extent of the segmentation, i.e. the

number of regions and curves. Therefore they decide how detailed we like the parsing to be. Usually

we set γr = 5.0 and γc = 3.5 and other parameters are fixed.

Experiment B: assuming regions, curves and parallel groups, and trees.

In the second experiment, we further compute the parallel groups and trees by turning on the

two composite jumps J7,J8. Figures (20) to (23) show four examples. In each example, the top

row shows the parallel groups or trees grouped from the simple curves. The second and third rows

are displayed as before. From the results, we can see that the algorithm successfully segments,

detects, and groups regions, curves, and curve groups respectively.

We observe some problems with the zebra image in Fig. (21). There are simple curves computed

for both black and white stripes. The prior model for parallel groups emphasizes parallelism not
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input curves W c regions W r

synthesis synthesis Ic
syn ∼ by W c synthesis Ir

syn ∼ by W r

Figure 14: Experiment A1: parsing images into regions and free curves.

input curves W c regions W r

synthesis synthesis Ic
syn ∼ by W c synthesis Ir

syn ∼ by W r

Figure 15: Experiment A2: parsing images into regions and free curves.

intensity similarity, thus the stripes are divided into three parallel groups.

Computational time. It usually takes 20 minutes for the algorithm to produce a result on an image

of size 300 × 200 pixels, because of the integration of region and curve models. The code is not

well structured at the moment as it is incrementally added over time. We expect to speed up the
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input curves W c regions W r

synthesis synthesis Ic
syn ∼ by W c synthesis Ir

syn ∼ by W r

Figure 16: Experiment A3: parsing images into regions and free curves.

input curves W c regions W r

synthesis synthesis Ic
syn ∼ by W c synthesis Ir

syn ∼ by W r

Figure 17: Experiment A4: parsing images into regions and free curves.

program in the future.

Validation of the results. A benchmark dataset has been designed in the Berkeley vision lab [30].

But this dataset is not emphasized on the segmentation of regions together with curves. We are

putting some major efforts to build up a much larger dataset in which detailed structures are
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input curves W c regions W r

synthesis synthesis Ic
syn ∼ by W c synthesis Ir

syn ∼ by W r

Figure 18: Experiment A5: parsing images into regions and free curves.

input curves W c regions W r

synthesis synthesis Ic
syn ∼ by W c synthesis Ir

syn ∼ by W r

Figure 19: Experiment A6: parsing images into regions and free curves.
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manually annotated for a variety of images. This will help us to validate our algorithms in the

future.

Figure 20: Experiment B1: parsing an image into regions, curves, and parallel curve groups.

Figure 21: Experiment B2: parsing an image into regions, curves, and parallel curve groups.
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Figure 22: Experiment B3: parsing a tree image into regions, curves, and trees

6 Discussion and future work

In this paper, we introduce an MCMC method for solving two middle level vision tasks together:

image segmentation and curve detection. Three aspects are crucial to the integrated solution. The

first aspect is the use of generative models and priors to encode a variety of regularities in a Bayesian

formulation. The generative representation enables the curve structures and regions to compete

to explain the image. The second aspect is the design of a Markov chain transition kernel. It is

composed of seven pairs of reversible jumps plus other jumps for the region segmentation. These

jumps can traverse the state space. The third aspect is to use discriminative models for composing

the proposal probabilities which approximate the posterior probabilities ratio in factorized forms.

The proposed algorithm improves segmentation results by explicitly modeling 1D curves, and

degenerated regions. As a middle-level task, curve detection is useful in many vision problems

such as tracking, object recognition, medical imaging, and structure from motion. Without any

pre-assumption about the background, the method is able to automatically detect curves based on
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Figure 23: Experiment B4: parsing an image into regions, curves, and trees.

the integration of regions and curves. The representation computed in this work has been used in

reconstructing 3D scene from a single image [19]. This paper is part of a series of work integrating

discriminative and generative models from low-level image segmentation [40], middle-level curve

structures detection [41], to high-level object recognition [42].

However, there are many dynamics involved in the current framework. This poses difficulty in

the implementation of the algorithm. It is due to two major issues we need to further investigate

in the future: (1) The jump dynamics are not general enough. Also, their scopes are still not

big enough to encompass large structural changes. Therefore, our algorithm is yet not capable of

quickly jumping among very distinct and promising modes. The SW-cut algorithm improves this

aspect. But more research work still needs to be done along this vein. (2) The use of discriminative

and generative models is quite separated. Our hope is to bring the bottom-up and top-down

processes as close as possible in our future research. We are making progress along this line. There

are some other modeling problems in the current framework. Though rich enough to represent

many low-level and middle-level patterns, our generative models are still quite limited and it is a

big challenge to study more complex high-level patterns. We need to bring more learning aspects
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into our framework to improve this part.
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