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Abstract

Performing holistic 3D scene understanding from a
single-view observation, involving generating instance
shapes and 3D scene segmentation, is a long-standing chal-
lenge. Prevailing works either focus only on geometry or
segmentation, or model the task in two folds by separate
modules, whose results are merged later to form the final
prediction. Inspired by recent advances in 2D vision that
unify image segmentation and detection by Transformer-
based models, we present Uni-3D, a holistic 3D scene pars-
ing/reconstruction system for a single RGB image. Uni-
3D features a universal model with query-based represen-
tations for predicting segments of both object instances and
scene layout. In Uni-3D, we also introduce a single Trans-
former for 2D depth-aware panoptic segmentation, which
offers queries that serve as strong shape priors in 3D. Uni-
3D seamlessly integrates 2D and 3D in its architecture and
it outperforms previous methods significantly.

1. Introduction
Humans have a remarkable ability to infer 3D shapes and

scene layouts accurately from limited or single-view obser-

vations, which is attributed to the efficient representations

that encode the 3D world for 2D projection. In computer

vision and graphics, understanding the 3D world from a

single-view 2D observation is a longstanding task, which

plays an essential role in multiple downstream applications

such as autonomous driving, augmented reality, and robotic

systems.

Notable breakthroughs have been made recently in ad-

dressing this challenge, thanks to the advancements in neu-

ral networks and the rapid growth of data quantity. 3D shape

reconstruction methods [45, 48, 24, 17] aim to predict 3D

models of instances in images and have exhibited impres-

sive reconstruction quality. Another category of methods,

including [41, 10], performs scene reconstruction by di-

rectly recovering the geometric structure of the 3D scene

* indicates equal contribution.

Code: https://github.com/mlpc-ucsd/Uni-3D.

Figure 1. Pipeline comparison between (a) previous work (e.g. [8])

and (b) our proposed universal 3D reconstruction framework (Uni-

3D). Uni-3D integrates panoptic segmentation and depth estima-

tion in 2D for shared knowledge and unifies thing and stuff in-

stances in 3D, which is a universal pipeline for panoptic 3D scene

reconstruction.

captured by 2D images. The aforementioned approaches

demonstrate the capability of deep neural networks to learn

shape priors from training data and recover the 3D world

from 2D observations during inference. However, they fo-

cus solely on 3D shapes and silhouettes of instances or en-

tire scenes and do not extract 3D semantic information nec-

essary for scene understanding.

Factored3D [42] is a pioneering work that not only re-

covers 3D shapes but also performs scene understanding

by predicting the layout of instances in scenes. Huang et
al. [21] propose a holistic scene understanding system that

unifies the estimation of 3D object poses, camera pose, and

scene layout, providing a comprehensive understanding of

the input scene. Total3D [37] further incorporates mesh re-

construction into the 3D scene understanding system. In

summary, these models have approached 3D scene under-



standing from three aspects: 1) instance reconstruction; 2)

scene geometric structure prediction; and 3) 3D layout. We

are interested in an all-in-one system that integrates all three

aspects and provides all estimations in a single run. Liu

et al. [31] developed a two-stage system that can perform

3D scene parsing and reconstruction for a single in-the-wild

image, as well as an end-to-end system for 3D scene recon-

struction. The work most relevant to our target is Pano-

Re [8]. It tackles the tasks of single-image geometric re-

construction, 3D semantic segmentation, and 3D instance

segmentation simultaneously, which is named by them as

panoptic 3D scene reconstruction. However, it lifts 2D in-

stance features back to 3D and embeds 2D instance seg-

mentation maps as priors to link the two dimensions, which

only handles instances in 2D without stuff information so

that the 3D part of its network is only informed by instance

priors.

Taking inspiration from the trend of unifying 2D se-

mantic and instance segmentation via Transformers such as

Mask2Former [4], we introduce a universal system called

Uni-3D that addresses the task of 3D scene understanding

in a holistic manner. Specifically, we first introduce a depth-

aware panoptic segmentation architecture based on Trans-

formers, which integrates all 2D predictions in a unified

paradigm. Benefiting from this, the query embeddings of

our 2D Transformers are informative, effectively learning

multiple properties of the input scene, such as layout, in-

stance silhouettes, category labels, and depth. We then build

a query-based architecture for the 3D part, where 3D seg-

ments of both object instances and stuff layout are predicted

individually with the guidance of corresponding 2D queries.

This query-based design seamlessly integrates learned 2D

features and priors into 3D, offering more flexibility and ro-

bustness.

Our contribution is summarized as follows:

• We introduce Uni-3D, a universal model that integrates

3D instance and semantic segmentation as a panoptic

one by learning segment representations for both in-

stances and stuff layout. Each 3D segment is learned

with the guidance from its corresponding 2D query

which serves as a strong 2D prior.

• In Uni-3D, we develop a 2D Transformer for unifying

2D panoptic segmentation and depth estimation. This

approach facilitates interactions between the two tasks,

offering shared knowledge from both tasks to features

and learnable queries that serve as shape priors for pro-

ducing 3D segments.

Uni-3D outperforms previous methods by a large margin

both in quantitative and qualitative evaluations.

2. Related Work

2D panoptic segmentation. The panoptic segmentation

task is first proposed in [25]. The task is to assign each

image pixel a semantic label and instance id, where the

instance id is ignored for stuff classes, which unifies in-

stance (“thing” classes) segmentation and semantic (“stuff”

classes) segmentation, allowing a holistic understanding of

the image. Earlier literature [9, 27, 28, 47, 25, 29] typically

addresses instance and semantic segmentation in separate

branches, and merge the results via either heuristics-guided

or learnable approaches. Recently, DEtection TRansform-

ers (DETR) [2] further pushes the boundary for detec-

tion and segmentation tasks by formulating such tasks as

set-prediction problems. Subsequent DETR family mod-

els [5, 4, 30] benefit from this formulation and treat thing

and stuff classes as image segments to achieve unified and

end-to-end learning for both instance and semantic segmen-

tation, enabling universal image segmentation that performs

well on both types of classes.

Other work explores depth-aware panoptic segmenta-

tion, which accomplishes monocular depth estimation be-

sides panoptic segmentation. While a straightforward solu-

tion is to add a depth regression head sharing the backbone

feature with panoptic segmentation, as in [38, 40], Panop-

ticDepth [15] mutually enhances the two tasks through a

unified model. As both segmentation and depth provide

strong 2D priors necessary for adequate 3D understanding,

we propose a depth-aware panoptic segmentation model in

the 2D part, where the two tasks have knowledge of and

benefit from each other.

Single-view 3D reconstruction. 3D shape reconstruction

from a single-view observation input is a long-standing

problem in computer vision. Traditional methods extract

multi-modal information from 2D image observations for

reconstructing shapes, including shading [20, 1, 39], tex-

ture [44], and silhouettes [6]. Recent learning-based ap-

proaches have demonstrated impressive performance boosts

in reconstruction quality. To reconstruct a single object

from monocular observation, methods have been investi-

gated employing different representations including voxel

grids [7, 46], point clouds [12], mesh [43], and implicit

functions [35]. Other methods have advanced to predicting

multiple shapes [17] and even with layout [23, 26]. More

recently, Gkioxari et al. [18] proposes a method that uses

only 2D supervision during training for single-view 3D re-

construction during inference.

3D scene understanding and panoptic reconstruction.
The primary goal of 3D Scene Understanding is to predict

3D shape instances, as well as estimate instance properties

including their layouts and category labels. IM2CAD [23]

is one of the pioneering works in this field. It leverages in-

formation from 2D object detection information to generate



Figure 2. Overview of the proposed framework. In the 2D/2.5D parts, a Transformer encoder generates multi-scale features from the back-

bone, which are fed into the panoptic segment decoder and depth decoder for panoptic segmentation and depth estimation simultaneously.

The features utilized to generate segmentation masks and depth maps, along with estimated depth, semantic masks, and multi-scale features

from the Transformer encoder are back-projected into 3D volumes. A 3D U-Net processes multi-scale feature volumes, with a geometry

head predicting the truncated distance field for the entire scene. Query embeddings from the panoptic segment decoder are projected as

convolution kernels that associate features from the U-Net, yielding unified 3D segments for object instances (things) and layouts (stuff).

3D layouts and optimize 3D CAD models. Holistic3D [22]

introduced the Holistic Scene Grammar module, which rep-

resents the 3D scene structure by capturing image contexts

and geometric constraints. Mask2CAD [26] achieved a

CAD-based 3D representation by learning a joint embed-

ding space between 2D detection results and CAD mod-

els. These methods have produced impressive reconstruc-

tion quality. However, their retrieval-based pipelines can

sometimes generate 3D models that are not consistent with

2D inputs. Total3D is an end-to-end learning approach that

simultaneously detects object categories, poses, 3D models,

and room layouts.

The panoptic 3D scene reconstruction task, introduced

by Dahnert et al. [8] and Liu et al. [31], aims to predict 3D

scene models along with the semantic labels of all instances

and stuff in the scene. Liu et al. [31] proposed a stage-wise

panoptic 3D parsing system that can perform reconstruction

on images in the wild. Dahnert et al. [8] presented a voxel-

based sparse neural network that predicts scene geometry,

semantic, and instance segmentation using parallel network

heads.

3. Method
We present a novel system that performs 2D panoptic

segmentation, 2.5D depth estimation, and 3D scene under-

standing and reconstruction concurrently. The overall ar-

chitecture is shown in Figure 2. Our approach comprises

two components responsible for 2D and 3D respectively.

We first propose a Transformer-based architecture that si-

multaneously addresses panoptic segmentation and depth

estimation, and elaborate on our 3D network for panoptic

reconstruction, which takes in back-projected multi-scale

features and transforms them into 3D segments with query

embeddings for the reconstruction output.

3.1. Depth-aware Panoptic Segmentation

Our 2D panoptic segmentation is primarily based on

Mask2Former [4], where panoptic segmentation is formu-

lated as a mask classification task. Given an image, we need

to partition it into N regions represented by binary masks

(segments) {mi|mi ∈ [0, 1]H×W }. Each mask is associ-

ated with a distribution pi over (K + 1) categories, where

the extra category is for no-object class ∅. Such formula-

tion is appropriate for both instance and semantic segmen-

tation due to its unified representation for thing and stuff

classes.

To enable monocular depth estimation with the panoptic

segmentation framework, instead of adding another sepa-

rate network after the backbone, we argue that the two tasks

can benefit from the shared knowledge of each other, lead-

ing to a unified solution to 2D and providing better features

for 3D reconstruction. Inspired by architectures such as

PanopticDepth [15], we introduce a depth decoder, parallel

to the original panoptic segment decoder in Mask2Former.

The details are illustrated in Figure 3. Both the decoders

have their own N learnable query embeddings, denoted as

qSi , q
D
i respectively, where i is the index for each segment.

The four-level feature maps produced by the Transformer

encoder, with scale 1/32, 1/16, 1/8, 1/4 of the input im-

age, are denoted as F1, F2, F3, F4, respectively. The output

segmentation mask m̂i and the depth map within the mask

d̂i are simply



m̂i = Sigmoid
(
PS(F4) · qSi

)
d̂i = Dmax Sigmoid

(
PD(F4) · qDi

) (1)

where Dmax is the depth scale. PS and PD are learnable

projection functions that maps the largest encoder feature

F4 into different spaces. In decoder layer l, masks from

layer l − 1 are resized and binarized with threshold 0.5,

where cross-attention is restricted within features where

masks are valid. F1, F2, F3 from the encoder are fed into

the 9 decoder layers in a round-robin fashion to leverage

multi-level features.

To further enhance the interaction between the two

decoders and facilitate knowledge sharing, we introduce

cross-decoder query association. In this module, both the

segment query and depth query belonging to the same seg-

ment i are updated as (with skip connection omitted)

qji = Self-Attention
(
q = qji , k = [qSi , q

D
i ], v = [qSi , q

D
i ]

)
(2)

where j = S or D.

During training, bipartite matching is performed be-

tween G ground truth labels and N predicted segments

(G ≤ N ), such that an injective function σ : [G] → [N ]
can be found. The matching cost between j-th ground truth

and i-th prediction is

C(j, i) = −p̂i(cj) + Lmask(m̂i,mj) (3)

where Lmask is the mask loss, and cj is the class label for j-

th ground truth. Note for the simplicity of the notation, we

ignore the weights before each loss term unless otherwise

mentioned. The loss for the panoptic segment decoder is

Lsegment = Lcls + 1{i∈Im(σ)}Lmask

(
m̂i,mσ−1(i)

)
(4)

where classification loss Lcls = − log p̂i(cσ−1(i)).
For the depth decoder, we use the same matching σ

obtained from the panoptic segment decoder. Following

[38], the loss between j-th ground truth depth map and i-
th (i = σ(j)) matched prediction comprises scale-invariant

logarithm error [11] and relative square error [16], specifi-

cally

Ldepth = 1{i∈Im(σ)}

[
1

n

∑
k

(
log d

(k)
j − log d̂

(k)
i

)2

− 1

n2

(∑
k

log d
(k)
j − log d̂

(k)
i

)2

+

√√√√ 1

n

∑
k

(
1− d̂

(k)
i

d
(k)
j

)2
] (5)

where k is the index for each pixel. We only calculate the

depth loss within the region for each segment, as demar-

cated by the ground truth mask mj .

Panoptic segmentation and depth estimation are trained

jointly with the loss defined in Equations (4) and (5). The

same inference strategy in MaskFormer [5] is utilized for

panoptic segmentation, where each pixel [h,w] is assigned

one of the N segments via argmaxi,ci �=∅ pi(ci) ·mi[h,w].
ci is the most likely class label ci = argmaxc pi(c). The

segments are filtered out if most of the mask confidence is

lower than 0.5. Multiple segments belonging to the same

stuff class are merged. The depth for each pixel is extracted

from the depth map d̂i accordingly, if it belongs to the i-th
segment m̂i in panoptic segmentation.

Figure 3. Illustration of the dual decoders for panoptic segmenta-

tion and depth estimation. Each decoder takes in its own query

embeddings and performs masked cross-attention with image fea-

tures (F1, F2, or F3) from the Transformer encoder, where masks

are generated from the previous decoder output. A subsequent

cross-decoder query association layer enables the communication

between segment and depth queries belonging to the same seg-

ment, followed by a typical self-attention layer. Multiple decoder

layers are stacked for gradual refinement of the outputs.

3.2. Panoptic 3D Scene Reconstruction

3.2.1 Multi-scale Feature Lifting

Following [8], we back-project 2D feature maps PS(F4),
PD(F4), along with 2D depth and semantic segmentation

map into a 2563 3D volumetric grid containing the camera

frustum using the estimated depth. The features are encoded

as a truncated distance field (TDF) along the view direction

with truncation τ = 3. A 3D generative U-Net, as in [8],

takes in the 2563 volumetric feature and generates repre-

sentations of smaller scales. In order to leverage the rich

semantics from multi-scale features, we also back-project

features F3, F2, F1 taken from the Transformer encoder into

the same camera frustum, but with voxel sizes doubled be-

tween levels, thus yielding 1283, 643, 323 feature volumes.

These features are then fused into encoded features from the

U-Net encoders of the respective scale.



† †

Figure 4. Qualitative comparison of panoptic 3D reconstruction on 3D-Front [14]. Different colors represent separate instances. † denotes

that the models adopt official weights without fine-tuning on 3D-Front.

3.2.2 2D Queries as Strong Priors

Analogous to the 2D case, we formulate the panoptic 3D

segmentation as dividing the camera frustum into N re-

gions represented by 3D binary masks (segments) {si|si ∈
[0, 1]H×W×D}, as opposed to the per-voxel classification

paradigm in [8]. This bridges the gap between 2D and

3D, where 2D and 3D segments have one-to-one corre-

spondence. And therefore the 3D network can leverage the

strong 2D priors via segment query embeddings qSi , which

are learned in the 2D panoptic segment decoder and con-

tain abundant information about stuff and thing segments.

Each segment si can be obtained from query embeddings

and decoded feature F ′ from U-Net, as follows

si = Sigmoid
(
K(qSi ) ∗ F ′) (6)

where K is a learnable projection function. The projected

queries K(qSi ) serve as 1 × 1 kernels that convolve feature

F ′, which is geometry-aware, as a separate geometry head

is attached to F ′ and its output is supervised by the trun-

cated distance field for the entire scene. Here query embed-

dings from the last Transformer decoder layer are utilized.

3.2.3 3D Reconstruction Outputs

We utilize the coarse-to-fine prediction strategy, which con-

tains three levels of volumes, namely 643, 1283, 2563. Each

level outputs N 3D segments, with a separate head predict-

ing the occupancy for the entire scene. The occupancy grid

is thresholded at 0.5 and used to prune the current-level fea-

tures before passing them onto the next level. A geometry

head operates on the last feature level to predict the trun-

cated distance field. The training loss for the 3D network is

L = Lgeometry +
∑
l

Ll
seg(ŝi, sσ−1(i)) + Ll

occupancy (7)

where Lgeometry denotes the L-1 loss between predicted

TDF and ground truth, Ll
seg and Ll

occupancy are binary cross-

entropy loss for 3D segments and occupancy respectively.



The latter two are summed over scale l. The matching func-

tion σ remains the same as 2D, which is obtained from the

2D predictions of the last decoder layer.

In the inference phase, we adopt a similar approach to

the 2D case. Specifically, we assign each voxel [x, y, z] a

segment via argmaxi,ci �=∅ pi(ci) ·si[x, y, z], with low con-

fidence segments filtered. Afterward, for each voxel within

the distance threshold τs in the TDF prediction but not be-

longing to any segment, we assign it the most likely seg-

ment regardless of the mask confidence for that segment.

4. Experiments
4.1. Datasets

For main results, we use the 3D-Front dataset built

in Pano-Re [8], which is a synthetic dataset containing

18,797 indoor scenes with randomized 3D shapes from

the 3D-Future [14] dataset. 3D-Front includes wall and

floor as two stuff classes and 9 different instance (thing)

classes. 2D ground-truth information, i.e. RGB image,

depth, instance segmentation, and semantic segmenta-

tion, is also provided. We adopt the same train/val/test

split, with 4,389/489/1,206 images respectively. Follow-

ing Pano-Re [8], we also evaluate the single-scale Uni-

3D on the real-world dataset Matterport3D [3], which con-

tains 34,737/4,898/8,631 train/val/test images for 61/11/18

scenes respectively.

4.2. Implementation Details

Depth-aware panoptic segmentation Transformer. For

the panoptic segment decoder and Transformer encoder,

we adopt the same settings as [4], with ResNet-50 [19]

backbone, 9 decoder layers, and 100 queries. The mask

loss Lmask comprises binary cross-entropy loss Lce and dice

loss [36] Ldice. We set loss weights as λce = 5.0, λdice =
5.0, λcls = 2.0. For efficiency, K = 12, 544 points are ran-

domly sampled during bipartite matching to calculate the

matching cost, while the identical number of points are im-

portance sampled for the mask loss following the practice

in [4].

In terms of the depth decoder, we set λdepth = 2.0, and no

extra weight is used to balance the scale-invariant logarithm

error and relative square error. As the 2D depth estimation

is a regression problem, the sampling strategy used in the

panoptic segment decoder is not applicable. To maintain

pixel-wise accuracy while capping the computational cost,

We down-sample the ground truth via nearest neighbor in-

terpolation to the size of predicted depth maps, which is 1/4

of the original image size.

The 2D network is optimized with AdamW [34] opti-

mizer, with initial learning rate 10−4. A polynomial-based

learning rate scheduler multiplies the base learning rate with

(1 − i/N)0.9, where i and N denote the current iteration

and the total number of iterations respectively. On Front-

3D [13] dataset, the model is trained for 160k iterations,

with batch size 16. In terms of data augmentation, the in-

put image is randomly scaled from the range 0.5 to 2.0 of

the original size 320 × 240 followed by a fixed-size crop

to size 240 × 240. Color augmentations introduced in [32]

are also employed. For the evaluation of real-world per-

formance, the model is then fine-tuned on Matterport3D [3]

for another 120k iterations, with the same polynomial-based

learning rate scheduling.

3D panoptic reconstruction network. We load and freeze

the weights of the 2D network obtained in the previous step.

The input size is fixed as 320× 240, without any cropping.

Adopting the empirical loss weights in [8], we set them as

λgeometry = 5.0, λseg = 25.0 for three-levels of 3D segment

losses, and λoccupancy = 50.0, 25.0, 10.0 for occupancy at

level 643, 1283, 2563, respectively. The network is trained

for another 110k iterations with a step learning rate sched-

ule and batch size 8. The initial learning rate remains 10−4

and decreases by a factor of 10 at the 80k iteration. On

Matterport3D [3], we combine 3D weights trained on 3D-

Front [13] with 2D weights already fine-tuned on Matter-

port3D, and train the network for another 100k iterations

with learning rate 10−4, which is decayed at the 80k itera-

tion.

The inference procedure to evaluate PRQ is described in

Section 3.2, where outputs are voxel-based representations

as required by the PRQ metric. For visualization, we apply

the marching cubes algorithm [33] to extract the isosurface

from the predicted TDF as meshes and assign each vertex a

color based on its semantic class and instance id, which is

determined by the label of its nearest neighbor in the pre-

dicted panoptic segments.

4.3. Metrics

Depth-aware panoptic segmentation. Besides the stan-

dard Panoptic Quality (PQ) metric introduced in [25] to

evaluate panoptic segmentation, we also adopt Depth-aware

Panoptic Quality (DPQ) [38], which evaluates segmentation

and depth estimation jointly. Specifically, given prediction

p and ground truth g, and depth threshold λ, DPQλ is com-

puted as

DPQλ(p, g) = PQ(pλ, g) (8)

where pλ is obtained by filtering out pixels in p with relative

depth errors higher than λ. The overall DPQ is computed

by averaging over λ = {0.1, 0.25, 0.5}. We also report the

root mean square error (RMSE) of the estimated depth for

reference.

3D panoptic reconstruction. We use 3D panoptic recon-

struction quality (3D PRQ) defined in [8] to evaluate the

model performance on 3D scene understanding. 3D PRQ is



Table 1. 2D quantitative results on 3D-Front [13]. Each cell contains values averaged over all / thing / stuff classes. Note that Pano-Re [8]

has only instance segmentation, and thus metrics including stuff classes are unavailable.

Method PQ ↑ DPQ0.1 ↑ DPQ ↑ RMSE ↓
Pano-Re [8] − / 68.39 / − − / 60.18 / − − / 64.99 / − 0.10 / 0.14 / 0.08
Uni-3D 73.80 / 80.19 / 54.63 66.85 / 71.02 / 54.32 71.62 / 77.26 / 54.71 0.12 / 0.15 / 0.09

Table 2. 3D quantitative results on 3D-Front [13]. Values for Mesh R-CNN and Total3D are taken from [13], which are finetuned by the

authors on 3D-Front.

Method
PRQ RSQ RRQ PRQ RSQ RRQ PRQ RSQ RRQ

Things Stuff

Mesh R-CNN [17] − − − 20.90 38.00 53.20 − − −
Total3D [37] 15.08 36.63 40.15 13.77 34.88 38.89 20.94 44.49 45.85

Pano-Re [8] 42.60 53.71 70.85 36.79 49.57 65.67 68.73 72.36 94.19

Uni-3D (Single-scale) 52.48 60.91 83.90 47.22 56.60 81.56 76.17 80.28 94.39

Uni-3D (Multi-scale) 53.54 61.67 84.71 48.33 57.44 82.43 77.00 80.72 94.97

a simple extension of PQ in 3D space. For a specific cate-

gory c, the corresponding PRQ value is defined as

PRQc =

∑
(i,j)∈TPc IoU(i, j)

|TPc|+ 0.5|FPc|+ 0.5|FNc| (9)

where TP, FP, and FN is true positives, false positives, and

false negatives for the category c, respectively. PRQc can

also be divided into two terms: RSQc representing segmen-

tation and RRQc representing recognition accuracy. RSQc

and RRQc can be computed as

RSQc =

∑
(i,j)∈TP IoU(i, j)

|TPc| (10)

RRQc =
|TPc|

|TPc|+ 0.5|FPc|+ 0.5|FNc| (11)

4.4. Baselines

We compare the proposed method with state-of-the-art

approaches that can perform the 3D panoptic scene recon-

struction task, including Mesh R-CNN [17], Total3D [37],

and Pano-Re [8]. Mesh R-CNN reconstructs instances in

input images by instance segmentation features, so it could

not predict 3D stuff shapes and we only evaluate its perfor-

mance on thing reconstruction. For Total3D, we follow [8]

and set its layout prediction target as wall and floor for eval-

uating stuff reconstruction quality.

4.5. Results

2D quantitative results. We provide the results of quanti-

tative evaluation on 3D-Front [13] with Pano-Re [8] in Ta-

ble 1. Here only DPQ with the strictest λ = 0.1 and the

average over all the thresholds are shown. Our framework

outperforms Pano-Re in terms of 2D segmentation, while

the depth estimation is on par, with RMSE lower than 5%

of the mean depth (2.34) in the dataset. For both frame-

works, the depth estimation errors in thing classes tend to

be higher than in stuff classes. We will discuss the impact

of depth accuracy on the final 3D reconstruction results in

Section 4.6.5.

3D quantitative results. We show quantitative compar-

isons in Table 2, evaluated with the PRQ metric proposed in

[8]. Our method, Uni-3D, either with single- or multi-scale

feature lifting, is able to surpass Pano-Re by ∼10 PRQ. The

improvement is consistent through thing and stuff classes.

3D qualitative results. We present qualitative results in

Figure 4. As shown in the figure, Mesh R-CNN (column

2) tends to generate noisy reconstructed shapes. Total3D

predicts shape-based instance category priors, which leads

to inconsistency between shapes and 2D observations (col-

umn 3). These two methods predict 3D instance shapes

and layouts separately, resulting in poor global structure

and arrangement. Pano-Re and the proposed Uni-3D sys-

tem are able to accurately generate instance geometry and

scene layouts. Compared to Pano-Re (column 4), Uni-

3D performs better in 3D segmentation (column 5) due to

its universal 3D scene reconstruction pipeline, which cor-

rectly distinguishes separate instances and provides precise

semantic label predictions. Furthermore, Uni-3D demon-

strates better reconstruction quality and alignment with the

ground truth in all five samples.

Evaluation on real-world data. We show 3D quantita-

tive evaluations on Matterport3D [3] in Table 3 and some

qualitative examples in Figure 5. Compared with synthetic

dataset 3D-Front, real-world images are significantly more

challenging due to the complexity of scene arrangement,

noises in input data, and quality of labels. Thanks to the

unified paradigm, Uni-3D is able to effectively reconstruct

the shape and provide semantics for many 3D instances.



Figure 5. Qualitative results of panoptic 3D reconstruction on Mat-

terport3D [3]. Different colors represent separate instances.

Table 3. 3D quantitative results on Matterport3D [3].

Method
PRQ RSQ RRQ PRQ RSQ RRQ PRQ RSQ RRQ

Things Stuff

Mesh R-CNN [17] − − − 6.29 31.12 15.60 − − −
Pano-Re [8] 7.01 28.57 17.65 6.34 26.06 16.06 10.78 40.03 26.77

Uni-3D 8.21 37.18 21.53 7.28 36.83 19.39 11.00 38.23 27.96

4.6. Ablation Studies

We provide various ablation studies to demonstrate the

efficacy of our system designs. Except for comparisons re-

garding multi-scale features, we only utilize the single-scale

version of our framework in this section.

Table 4. Ablation studies on 3D-Front [13] with the 3D reconstruc-

tion network in Pano-Re [8].

Method PRQ RSQ RRQ

Pano-Re [8] 42.60 53.71 70.85

Pano-Re w/ our seg 43.10 54.34 71.06

Pano-Re w/ our depth 32.64 45.58 63.56

Pano-Re w/ our seg + depth 33.34 45.57 65.19

Pano-Re w/ our 2D network 46.00 53.81 83.04

Uni-3D 52.48 60.91 83.90

4.6.1 Importance of Unified Architecture

In Table 4, we demonstrate the effectiveness of our uni-

fied design for 3D reconstruction, where 3D stuff and things

are unified as 3D segments, guided by 2D queries. As our

2D segmentation outperforms that of Pano-Re [8], we first

replace their 2D segmentation and/or depth estimation re-

sults with ours while retaining features from their ResNet-

18 backbone (row 2 – 4 in the table). Our 2D segmentation

results improve the 3D reconstruction quality of Pano-Re,

while our depth decreases PRQ regardless of segmentation,

which is in line with 2D qualitative results in Table 1.

We then substitute the 2D network of Pano-Re with our

depth-aware panoptic segmentation framework. Thanks to

the stronger feature backbone, further boost to PRQ (+2.9)

is achieved on top of replacing 2D segmentation results.

However, even with the same 2D network, Uni-3D still sur-

passes Pano-Re by a large margin (+6.48 in PRQ). This

illustrates the importance of our unified design of 3D seg-

ments and 2D queries as priors in reconstruction quality.

4.6.2 Multi-scale Feature Lifting

In Section 3.2, we introduce back-projection of multi-scale

2D features and fuse them into the U-Net encoders to lever-

age the richer semantics in these features. Table 2 provide

comparisons between Uni-3D with single- and multi-scale

feature lifting. Multi-scale features bring a prominent PRQ

boost 1.06, with the increase in thing classes (+1.11) larger

than in stuff classes (+0.83). Figure 6 visualizes two sam-

ples where multi-scale features help the 3D network recon-

struct better fine details, i.e. seatbacks in the top row, and

table-top vases in the bottom row. The wall in the bottom

row also looks more complete for the multi-scale variant

due to a more accurate prediction of the TDF.

Figure 6. Side-by-side comparison of reconstruction results be-

tween single- (column 2) and multi-scale (column 3) feature lift-

ing. Multi-scale features enhance the reconstruction quality of

finer details.

4.6.3 Features Used in Back-projection

Following [8], multiple types of inputs, i.e. 2D features,

depth, and 2D semantic segmentation maps are back-

projected and encoded in the 3D network. We ablate the

use of these features by removing one at a time and the re-

sults are provided in Table 5.

Efficacy of 2D segmentation masks as priors. The use

of semantic segmentation maps is equivalent to the instance

propagation in [8]. The inclusion of 2D segmentation maps

does improve 3D results, especially in thing classes. How-

ever, the performance gain is minor (0.33 PRQ) on Uni-

3D compared with Pano-Re [8]. The latter suffers a large

PRQ drop (22.84) without instance propagation, mostly in

thing classes. As we generate 3D convolution kernels from

2D query embeddings, along with the 3D features lifted

from 2D Transformer encoders, the strong affinity between

queries and features after multiple layers of depth or seg-

ment decoders are maintained, which provides significantly

more robust 2D priors for both thing and stuff segments in

3D panoptic reconstruction.



Table 5. Ablation studies on 3D-Front [13] dataset with single-

scale features in back-projection. Our model remains relatively

robust with different feature inputs.

Method
PRQ

all Things Stuff

Pano-Re [8] 42.60 36.79 68.73

− Instance propagation 19.76 (−22.84) 9.60 (−27.19) 65.47 (−3.26)

+ GT depth 44.58 (+1.98) 38.17 (+1.38) 73.43 (+4.70)

Uni-3D 52.48 47.22 76.17

− Semantic segm. map 52.15 (−0.33) 46.81 (−0.41) 76.20 (+0.03)

− Depth DF embedding 52.44 (−0.04) 47.22 75.90 (−0.27)

− Mask feature 52.03 (−0.45) 46.78 (−0.44) 75.65 (−0.52)

− Depth feature 52.32 (−0.16) 47.14 (−0.08) 75.66 (−0.51)

+ GT depth 56.13 (+3.65) 51.55 (+4.33) 76.71 (+0.54)

Mask vs depth feature. For mask feature PS(F4) and

depth feature PD(F4), they are derived from the same fea-

ture F4 in the Transformer encoder but projected into dif-

ferent spaces that are optimized for segmentation and depth

estimation respectively. Removing mask features PS(F4)
results in a 0.45 PRQ drop, which is much larger than the

drop (0.16) when removing depth features PD(F4), signi-

fying the closer affinity between query embeddings K(qSi )
and mask features. Also, despite the dip in performance

when only the depth feature is used, it alone can still yield

a relatively high PRQ of 52.03, demonstrating the benefits

of interactions between depth estimation and panoptic seg-

mentation in the 2D Transformer, where the knowledge is

shared across tasks. Hence, even though the two features

are just different “views” of the feature F4, we incorporate

both into our 3D network.

Use of depth information. Regarding the depth as a dis-

tance field embedding, we only find it yields a minor im-

provement (0.27) in stuff PRQ. In terms of features, the

depth feature has a greater influence on stuff PRQ (0.51)

than things (0.08), consistent with the functionality exhib-

ited by depth DF embedding.

4.6.4 Effect of 2D Queries and Features in 3D Network

In Table 6, we further ablate the model by either remov-

ing 2D features (both mask feature PS(F4) and depth fea-

ture PD(F4)), or replacing learned 2D queries qSi with

randomly initialized learnable query embeddings, or do-

ing both. When 2D features are used, without learned 2D

queries, PRQ only has a minor dip (0.15) on stuff classes,

while it suffers a larger drop (0.96) on thing classes. Simi-

lar trends can be observed when 2D features are not present,

where stuff PRQ remains the same while thing PRQ drops

1.66. These results demonstrate that the learned 2D queries

mainly affect object instances instead of stuff layouts in 3D,

where the latter can be straightforwardly solved by semantic

segmentation.

In terms of the 2D features, removing them brings about

a consistent decrease in PRQ for both thing and stuff

classes. Without 2D features, the PRQ drop on thing classes

is smaller when 2D queries are used (1.68 vs 2.38), while

for stuff classes the difference is minor (2.45 vs 2.30). It

suggests that the 2D queries serve as strong priors for 3D

that majorly encode instance information, and the 2D fea-

tures provide rich semantics crucial for both instance and

stuff layouts.

4.6.5 Effect of Depth Estimation

The efficacy of back-projection relies on the depth accuracy,

and therefore we investigate its effects by providing ground

truth depth to the model. The results in Table 5 demonstrate

that for Uni-3D, the depth impacts more significantly the

reconstruction quality for thing classes, which often contain

finer structures compared with stuff classes such as wall or

floor. For stuff classes, the performance is close to satura-

tion as only 0.54 PRQ gain is observed with ground truth

depth. This is in contrast to [8], where depth inaccuracies

penalize more stuff instances.

Table 6. Ablation studies of Uni-3D (single-scale) on 3D-

Front [13] dataset regarding the effects of 2D queries and features.

2D features pertain to both mask feature PS(F4) and depth fea-

ture PD(F4), while 2D queries are qSi from the last decoder layer

in the 2D network.

2D Queries 2D Features
PRQ

all Things Stuff

� � 52.48 47.22 76.17

� 51.67 (−0.81) 46.26 (−0.96) 76.02 (−0.15)

� 50.67 (−1.81) 45.54 (−1.68) 73.72 (−2.45)

49.30 (−3.18) 43.88 (−3.34) 73.72 (−2.45)

5. Conclusion

In this paper, we present Uni-3D, a universal approach

that unifies instance and layout representation by leveraging

a query-based network design. It also incorporates depth-

aware panoptic segmentation to improve 2D depth estima-

tion and segmentation qualities, thereby enhancing the ro-

bustness of 3D predictions. The proposed method signif-

icantly outperforms related approaches both qualitatively

and quantitatively, demonstrating the superiority of our uni-

versal model design.

Limitations. Uni-3D is capable of hallucinating occluded

parts in the 2D input image. Yet we still observe that its

performance may degrade in certain cases where large ar-

eas are occluded or only a limited portion of an instance is

observable for reconstruction.
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