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Abstract

We present a new method for open-vocabulary univer-
sal image segmentation, which is capable of performing in-
stance, semantic, and panoptic segmentation under a uni-
fied framework. Our approach, called MasQCLIP, seam-
lessly integrates with a pre-trained CLIP model by utilizing
its dense features, thereby circumventing the need for exten-
sive parameter training. MasQCLIP emphasizes two new
aspects when building an image segmentation method with
a CLIP model: 1) a student-teacher module to deal with
masks of the novel (unseen) classes by distilling informa-
tion from the base (seen) classes; 2) a fine-tuning process
to update model parameters for the queries Q within the
CLIP model. Thanks to these two simple and intuitive de-
signs, MasQCLIP is able to achieve state-of-the-art perfor-
mances with a substantial gain over the competing methods
by a large margin across all three tasks, including open-
vocabulary instance, semantic, and panoptic segmentation.
Project page is at https://masqclip.github.io/.

1. Introduction
By being universal and open-world, the traditional im-

age segmentation methods that have been mainly trained in

a supervised manner can be made less specific and more

powerful. When an image segmentation method is open-

world, it means that it can handle new concepts with novel

classes or categories that are not labeled in its supervised

training data. However, this is not something that can be

achieved by the algorithm alone, as information about the

novel classes that go beyond supervised labels cannot be

generated out of thin air. Fortunately, the CLIP models [31]

are trained on millions of image-text pairs, which provides

a rich source of combinatorial object/scene information by

mapping images and texts into the same semantic space.
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Figure 1: We present the visualization and quantitative results

of MasQCLIP on open-vocabulary segmentation with a universal

model architecture. As shown, we achieve state-of-the-art perfor-

mances across three segmentation tasks.

As CLIP models are trained contrastively at the global

image-text level, they do not directly output segmentation

maps at the pixel or region level. Recent works [9, 13, 55]

demonstrate the feasibility of adopting and locking a pre-

trained CLIP model for open-vocabulary image segmenta-

tion by adopting a two-stage approach, which first generates

class-agnostic mask proposals and subsequently classifies

each mask region based on a CLIP model.

This decoupled two-stage design, involving localiza-

tion and then classification, is considered advantageous for

open-vocabulary universal segmentation. First, it does not

depend on any task specificity. Recent works [7, 8] have at-

tempted to unify instance, semantic, and panoptic segmen-

tation through Transformer-based architectures [6], and the

CLIP-based region classification module itself is directly

applicable to different types of masks (instance/semantic).

Second, it is a natural choice to utilize CLIP models ex-

clusively for object/scene classification rather than localiza-

tion. The reason is that the dense features within a CLIP

visual encoder only carry semantic information, but can-



not discriminate between different objects belonging to the

same category.

However, recent works [9, 20] still exhibit limitations

with regard to being open-world. Specifically, the class-

agnostic mask proposal network is trained only on the su-

pervision of a limited set of base classes, which restricts

its ability to generate mask proposals beyond supervision.

Hence, the model performance is hindered when dealing

with novel or unseen categories. In addition, although pre-

vious works have attempted to introduce some additional

modules for mask classification, they fail to fully bridge

the gap between image-level and region-level representa-

tion, thus lacking in adaptation to mask classification. The

balance between maintaining generalization for more cat-

egories and adapting CLIP models for mask classification

tasks needs further exploration.

In this paper, we aim to conquer these weaknesses. We

introduce a new approach called MasQCLIP that can per-

form open-vocabulary instance, semantic, and panoptic seg-

mentation under a single framework. To accomplish this,

MasQCLIP uses a similar two-stage model design: 1) a

mask generator stage that extracts object/scene masks, and

2) an encoder-only module that performs mask classifica-

tion. We are also inspired by the Mask Class Token strategy

from MaskCLIP [9], which is tightly integrated with a given

CLIP model. MasQCLIP is different from MaskCLIP [9] in

two key areas: 1) the use of a student-teacher self-training

module that significantly enhances the generation of novel

class masks, and 2) fine-tuning the query parameters in the

CLIP visual encoder, which better adapts the CLIP mod-

els for mask region representations. The following are the

contributions of our work:

• We develop MasQCLIP for open-vocabulary univer-

sal image segmentation that demonstrates substantial
performance improvement over the current state-of-

the-art methods by a large margin across all three

tasks including open-vocabulary instance, semantic,

and panoptic segmentation.

• We design a progressive distillation process to generate

more novel mask proposals beyond supervision, thus

taking a step forward toward open-world mask gener-

ation.

• We propose a parameter-efficient fine-tuning strategy,

MasQ-Tuning, which only tunes the query parameters.

When coupled with Mask Class Tokens, MasQ-Tuning

is able to preserve the generalization of a pre-trained

image-level CLIP model while greatly enhancing its

adaptation for segmentation tasks.

2. Related Work
Being universal Traditional image segmentation methods

can be roughly divided into three groups: 1) instance seg-

mentation [14], 2) semantic segmentation [36, 39], and 3)

panoptic segmentation [22, 40]. Panoptic segmentation es-

sentially integrates instance and semantic segmentation, but

a careful algorithm design is needed [22, 45] to achieve the

goal, as instance segmentation is object-centered whereas

semantic segmentation is per-pixel based. The introduction

and adaptation of Transformers [41] to the object detection

task, Detection Transformers [6], also makes the unification

of instance and semantic segmentation feasible. In particu-

lar, the Mask2Former method [7] unifies background stuff

and foreground things under the query token representation

by designing a Transformer-based architecture for closed-

set universal image segmentation.

Being open-world Since it is a relatively new topic, there

lacks a commonly accepted definition for being “open-

world”. There exists different terms such as zero-shot [3],

open-set [19], and open-vocabulary [50]. It is gradually ac-

cepted that the open-vocabulary setting has the best align-

ment with the general open-world expectation where the tar-

get of interest to be extracted can be freely specified using

a natural language description during inference.

Open-Vocabulary Detection and Segmentation Various

open-vocabulary vision algorithms have been developed. A

rough summary for the comparison of existing methods can

be seen in [9]. Broadly speaking, there exist methods for

open-vocabulary object detection [5, 13, 24, 49, 50], in-

stance segmentation [13, 18], semantic segmentation [12,

23, 46, 58], and panoptic segmentation [9]. Previous works

[27, 30, 35, 44, 49, 55] mainly focus on knowledge distilla-

tion from an existing CLIP model, but our method integrates

CLIP models rather than performing distillation from CLIP

models. Some recent works [32, 58] have also attempted to

extract dense features from CLIP models to represent pixel-

wise features.

Knowledge Distillation Knowledge Distillation [17] has

been proposed to extract knowledge from the teacher model

to the student model. It is called self-distillation [52] when

both teacher and student models adopt the same model ar-

chitecture. For the image segmentation task, self-training

with pseudo labels has been proposed to improve the qual-

ity of predicted masks in self-supervised learning [28, 43]

and semi-supervised learning [42, 47, 48]. We use a similar

strategy but focus on self-distilling novel mask proposals

from the teacher model.

Fine-tuning Fine-tuning aims to efficiently utilize knowl-

edge from large models for downstream tasks. In terms of

ConvNet [15, 37], many fine-tuning strategies have been

proposed, including bias tuning [4], side tuning [51], and

residual adapter [33]. After Transformer [41] is introduced

into the field of computer vision, several fine-tuning meth-

ods have been proposed for ViT [10]. Recent works have
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Figure 2: Overview of MasQCLIP. MasQCLIP consists of a class-agnostic mask proposal network and a mask classification module

based on CLIP. In the mask proposal network, we apply progressive distillation to segment masks beyond base classes. Please refer to

Fig. 3 for more details. After we obtain an open-world mask proposal network, the predicted masks are then sent to the classification

module to obtain labels. To efficiently utilize the dense CLIP features, we propose MasQ-Tuning. We set new query projections f ′
Q for the

Mask Class Tokens to obtain optimal attention weights, and f ′
Q at each layer are the only learnable parameters.

explored subspace training [16] for low-dimensional repa-

rameterization and prompt tuning [21, 34] for adaptation.

In terms of CLIP models, [38, 53] insert adapters into pre-

trained CLIP models, and DenseCLIP [32] uses CLIP pa-

rameters as initialization for segmentation tasks. However,

existing works mainly make use of the pre-trained models

for a specific dataset, and they do not fully exploit the in-

trinsic generalization ability in pre-trained models.

3. Preliminary

MaskCLIP [9] adapts the CLIP model for segmentation

tasks through a two-stage pipeline. Specifically, a class-

agnostic mask proposal network first generates candidate

masks, then MaskCLIP utilizes dense CLIP features to clas-

sify each mask proposal with a corresponding Mask Class

Token. Mask Class Tokens are initialized with the class to-

ken in the CLIP visual encoder, then are appended along-

side the original CLIP tokens (image tokens and a class to-

ken). Mask Class Tokens extract features from CLIP tokens

through the masked cross-attention mechanism where mask

proposals also serve as attention masks, i.e.,

CrossAttn(·) = softmax(QmaskK
T
img +Mmask) · Vimg, (1)

Qmask,Kimg, Vimg = fQ(xmask), fK(ximg), fV (ximg). (2)

Here, xmask ∈ R
m×C , ximg ∈ R

p×C denote m Mask Class

Tokens and p CLIP tokens respectively, and fQ, fK , fV de-

note the projections for query, key, and value respectively.

In MaskCLIP, fQ, fK , fV are frozen to maintain general-

ization. The attention mask Mmask ∈ R
m×p is derived as

Mmask(i, j) =

{
0 if i-th mask falls in j-th patch

−∞ otherwise
.

(3)

The final classification scores are the dot product be-

tween Mask Class Tokens and the language descriptors

from the CLIP language encoder.

4. Methods

4.1. Problem Setting

During training, the model is only provided with a set of

images and their annotations on base classes CB . We denote

the training dataset as DB = {(Ii,Yi)}Ni=1. Each annota-

tion Yi contains ground-truth masks YM
i and their labels

YL
i on base classes in image Ii. In the inference stage, we

evaluate our model on another set of images with a new set

of novel classes CN , and the testing dataset is denoted as

DN . According to the relationship between DB and DN ,

previous works mainly use two settings:

• Cross-dataset. DB and DN are different datasets, and

class sets CB and CN may overlap.

• Base-novel. CB and CN are disjoint, i.e., CB ∩CN =
∅. Under this setting, the same dataset, such as COCO

[25], is used during training and testing.

In our paper, we evaluate our proposed algorithm on both

of the above settings.
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Figure 3: Detailed interpretation of progressive distillation.
We select high-quality mask proposals with novel concepts from

the inference results of the teacher model as extra annotations.

These extra annotations are then distilled into the student model

to encourage generalization. This process is performed iteratively.

4.2. Proposed Method

4.2.1 Progressive Distillation for Mask Generation

Object Score. In experiments, we observe that MaskCLIP

[9] does not consistently assign higher confidence to mask

proposals that align more accurately with ground-truth

masks. Therefore, we incorporate a binary classification

head to the class-agnostic mask proposal network in our

MasQCLIP. The resulting object score, denoted as pobj ∈ R,

estimates the quality of mask proposals. During inference,

the final classification score for the i-th class is determined

by p
(i)
cls = pobj · p(i)clip. Here, p

(i)
clip represents the score for

the i-th class obtained from the mask classification module,

which will be further discussed in Sec. 4.2.2.

If training is conducted with annotations from both base

classes CB and novel classes CN , the object score can serve

as a general indicator of mask quality. However, when su-

pervision is only provided on CB , the object score is more

reflective of the quality of base masks, leading to bias to-

ward CB . But we will show in Sec. 5.4.1 that incorporating

object scores still boosts performance on both CB and CN

by a clear margin. Hence, it is still reasonable and effective

to incorporate object scores for all mask proposals.

Progressive Distillation. To develop an open-world mask

proposal network capable of generating masks beyond base

classes CB , we propose a progressive distillation strategy.

By utilizing the object score as an indicator of mask qual-

ity, we can filter high-quality mask proposals that do not

overlap with mask annotations of CB , thus producing extra

annotations for training. By iteratively repeating this dis-

tillation process, the network will be able to segment more

concepts progressively and eventually be open-world.

Specifically, we initialize the teacher model Tμ with

the mask proposal network trained on the base annotations

D′
B = {(Ii,YM

i )}Ni=1 without class labels. To produce ex-

tra supervision for the student model Tθ on image Ii, we

first obtain inference result Tμ(Ii) from the teacher model.

Algorithm 1 Progressive Distillation

Require: Initial teacher model Tμ with parameter μ
Require: Dataset D′

B = {(Ii,YM
i )}Ni=1 (only masks)

Require: Score threshold α, IoU threshold β
for K iterations do

θ ← μ � Initialize the student model Tθ
for (Ii,YM

i ) in D′
B do

Y ← YM
i � Y: supervision for Tθ

Ŷ = Tμ(Ii)
for ŷ in Ŷ do

if ∀y ∈ Y, IoU(ŷ, y) < β then
if score(ŷ) > α then

Y ← Y ∪ {ŷ}
Lθ = L(Tθ(Ii),Y)
θ ← θ − γ∇θ(Lθ)

μ ← θ � Update the teacher model Tμ

Then we select mask proposals with high object scores that

are non-overlap with ground-truth masks in YM
i . These

selected masks are considered novel masks and combined

with YM
i to form the supervision Y for the student model.

To further boost generalization, we train the student model

progressively by updating the parameters of the student

model to the teacher model iteratively. A more detailed al-

gorithm is presented in Alg. 1. Experiments show that our

algorithm works surprisingly well.

4.2.2 MasQ-Tuning

Given masks produced by the class-agnostic mask proposal

network, we expect to classify each mask region using pre-

trained CLIP models. To maintain the generalization ability

of CLIP models, MaskCLIP [9] freezes all CLIP parameters

and appends auxiliary tokens for region classification. Ac-

cording to Eq. (1), for each Mask Class Token x
(i)
mask ∈ R

C ,

we have its query embedding qi = fQ(x
(i)
mask) and attention

weight over p CLIP tokens, softmax(qiK
T
img +Mi) ∈ R

p.

The attention weight indicates x
(i)
mask where to focus, and

Vimg is interpreted as the dense CLIP features that all Mask

Class Tokens can extract.

MaskCLIP preserves the original feature space of CLIP

by freezing all parameters, however, it lacks in adaption.

Although the appended Mask Class Tokens perform clas-

sification similar to the class token in CLIP, there is still a

shift between them. Specifically, each Mask Class Token is

intended to classify a mask region in an image, while the

original class token is designed to extract image-level fea-

ture. To enhance adaptation ability, we propose applying

new query projections f ′
Q to each cross-attention layer for



Mask Class Tokens, i.e.,

CrossAttn(·) = softmax(Q′
maskK

T
img +Mmask) · Vimg, (4)

Q′
mask,Kimg, Vimg = f ′Q(xmask), fK(ximg), fV (ximg). (5)

In this way, Mask Class Tokens obtain better attention

weights through learning. In addition, since the softmax op-

erator in Eq. (4) serves as a normalizer, the results of Eq. (4)

still lie in the sub-space spanned by rows of Vimg. Vimg is

projected from CLIP tokens and thus preserves the knowl-

edge of CLIP. Therefore, MasQ-Tuning is able to improve

adaptation while maintaining generalization.

To effectively inherit the knowledge and the statistics of

CLIP, other layers (layernorm, FFN, and the final projec-

tion) are frozen during fine-tuning.

Losses. Our goal is to match the appended Mask Class To-

kens with their corresponding ground-truth labels, so we use

the dot-product between Mask Class Tokens and language

descriptors as scores and compute cross-entropy loss, i.e.,

Lcls = − log

(
exp(sy)∑
i exp(si)

)
. (6)

where si denotes the score for i-th class and y is the as-

signed label for the mask. If a predicted mask is matched

to a ground-truth mask according to an IoU threshold, we

then assign the mask a label. Otherwise, we use a fixed

word, “background”, as the label for the predicted mask.

5. Experiments
We evaluate MasQCLIP on three segmentation tasks to

demonstrate its effectiveness and universality, and we fol-

low the commonly-used settings in different segmentation

tasks. For instance segmentation, we use base-novel setting

following [18]. For semantic and panoptic segmentation,

we use cross-dataset setting following [9, 13]. We show

MasQCLIP achieves state-of-the-art results on all bench-

marks with a universal architecture. We also conduct ab-

lation studies to verify our proposed method.

5.1. Datasets and Evaluation Metrics

COCO. In base-novel setting, we use instance segmenta-

tion annotations of COCO [25]. Following [18], we parti-

tion COCO annotations into 48 base classes for training and

17 novel classes for evaluation. There are 108k training im-

ages and 5k validation images. In cross-dataset setting, we

use panoptic segmentation [22] annotations of COCO for

training, which include 80 thing classes (foreground) and

53 stuff classes (background). There are 118k training im-

ages and 5k validation images.

ADE20k. ADE20k [56, 57] serves for semantic segmen-

tation and panoptic segmentation evaluation under cross-

dataset setting. There are 2k validation images in total. The

full version (A-847) includes 847 classes and the short ver-

sion (A-150) includes 150 classes.

PASCAL-Context. Pascal-Context [29] serves for se-

mantic segmentation evaluation under cross-dataset setting.

There are 5k validation images in total. The full version

(P-459) includes 459 classes and the short version (P-59)

includes 59 classes.

Evaluation Metrics. For instance segmentation, we report

mAP (mean average precision) [25] at IoU (intersection-

over-union) of 0.5 following base-novel setting [1, 18,

50]. For semantic segmentation, we report mIoU (mean

intersection-over-union) [11] for evaluation. For panoptic

segmentation, we report PQ (panoptic quality) [22].

5.2. Implementation Details

Class-Agnostic Mask Proposal Network. We train

Mask2Former [7] or Mask R-CNN [14] with ResNet-50

backbone to generate class-agnostic mask proposals. The

labels of masks are not used as supervision, and the num-

ber of mask proposals for each image is set to 100 for both

models. In Mask2Former, the number of classes is set to 1

to obtain the object score. In Mask R-CNN, we adopt the

confidence scores of the RPN head as object scores. The de-

fault experiment setting for Mask R-CNN is R50-FPN-1x.

Progressive Distillation. For Mask2Former, we first train

the initial teacher model until convergence. Then, we re-

train the student model for 2 rounds with 30k iterations each

round (under both settings). Unless stated, other experiment

settings are set to default as training Mask2Former [7]. For

Mask R-CNN, we use the checkpoint of R50-FPN-1x as the

initial teacher model. We then re-train the student model

for 2 rounds with 10k iterations each round (under both set-

tings). For all models and settings, we set the threshold of

object scores α to 0.8, and the NMS threshold β to 0.1.

MasQ-Tuning. During fine-tuning, we use the same CLIP

model ViT-L/14@336px as in [9]. The language descriptors

are simply the text embeddings of category names given by

the language encoder of CLIP without any prompt. The

number of Mask Class Tokens is set to 100 which is equiva-

lent to the number of mask proposals. The query projection

f ′
Q at each layer exhibits the same architecture of a linear

projection as the original fQ in CLIP visual encoder. In

both cross-dataset and base-novel settings, we use AdamW

[26] as our default optimizer and the initial learning rate is

set to 0.0001. We assign a predicted mask a label if it has an

IoU higher than 0.6 with a ground-truth mask. We fine-tune

for 10k iterations with a batch size of 4, and the learning

rate is decreased by a factor of 10 at 9k iterations. During

inference, the post-processing follows Mask2Former after

obtaining labels for mask proposals.

Settings. For each model architecture (Mask R-CNN or

Mask2Former), we train two MasQCLIP models for base-



Methods Backbone Instance Semantic Panoptic
Base Novel All A-150 A-847 P-59 P-459 PQ PQth PQst

XPM [18] ResNet-50 41.5 21.6 36.3 - - - - - - -

LSeg+ [23] EffNet-B7 - - - 18.0 3.8 46.5 7.8 - - -

OpenSeg [12] EffNet-B7 - - - 21.1 6.3 42.1 9.0 - - -

MaskCLIP (Mask R-CNN) [9] ResNet-50 - - - 22.4 6.8 41.3 9.1 12.9 11.2 16.1

MaskCLIP (Mask2Former) [9] ResNet-50 - - - 23.7 8.2 45.9 10.0 15.1 13.5 18.3

MasQCLIP (Mask R-CNN) ResNet-50 40.7 28.4 37.5 23.7 8.4 44.4 14.1 14.9 14.5 15.6

MasQCLIP (Mask2Former) ResNet-50 51.0 31.9 46.0 30.4 10.7 57.8 18.2 23.3 21.2 27.7
+9.5 +10.3 +9.7 +6.7 +2.5 +11.3 +8.2 +8.2 +7.7 +9.4

Table 1: Results on open-vocabulary universal image segmentation. We compare MasQCLIP with state-of-the-art models on three

segmentation tasks with a universal architecture. We use Mask R-CNN or Mask2Former as our class-agnostic mask proposal network. All

methods in the table rely only on COCO dataset for training. a) For instance segmentation, we report mask AP50 following base-novel

setting [18]. b) For semantic segmentation, we report mIoU on ADE20k and PASCAL-Context following cross-dataset setting [20]. A-150

and A-847 represent ADE20k with 150 classes and 847 classes respectively. P-59 and P-459 represent PASCAL-Context with 59 classes

and 459 classes respectively. c) For panoptic segmentation, we report PQ on ADE20k following cross-dataset setting [9]. We achieve

significant improvements on all evaluation metrics.

Methods Constrained Generalized
Base Novel Base Novel All

OVR [50] 42.0 20.9 41.6 17.1 35.2

SB [1] 41.6 20.8 41.0 16.0 34.5

BA-RPN [54] 41.8 20.1 41.3 15.4 34.5

OVR+OMP [2] 31.3 14.1 30.5 8.3 24.7

XPM [18] 42.4 24.0 41.5 21.6 36.3

MasQCLIP (Mask R-CNN) 40.9 30.1 40.7 28.4 37.5

MasQCLIP (Mask2Former) 51.2 34.3 51.0 31.9 46.0

Table 2: Results on open-vocabulary instance segmentation.
We report mask AP50 in the table. The results presented in the

table all use the ResNet-50 backbone. Constrained setting means

that the model is evaluated on either base classes or novel classes

separately. Generalized setting means that the model is tested

jointly on both base and novel classes. Notice that the results of

novel classes show the generalization ability of models.

novel and cross-dataset settings separately. The former

model is trained on base classes of COCO-instance dataset

and is tested on novel classes (for instance segmentation),

while the latter is trained on the COCO-panoptic dataset

and is used for both semantic (through post-possessing) and

panoptic segmentation evaluation.

5.3. Main Results

Instance Segmentation. We evaluate our MasQCLIP on

instance segmentation under base-novel setting. We first

train MasQCLIP on base classes of COCO-instance dataset

and then evaluate the model on novel classes. The detailed

results are presented in Tab. 2. As shown, when using Mask

R-CNN as our class-agnostic mask proposal network, we

achieve an improvement of 6.8 AP50 on novel classes over

XPM [18]. When using Mask2Former, we further achieve

an improvement of 10.3 AP50. The evaluation metrics on

novel classes mainly reflect the generalization ability of

models. Since our relative improvement on novel classes

is much higher than that on base classes across two mask

proposal networks, our proposed method enjoys better gen-

eralization ability compared to previous works.

Semantic Segmentation. We evaluate our MasQCLIP on

semantic segmentation under cross-dataset setting. We di-

rectly use the model trained on COCO-panoptic dataset for

evaluation, and report the results on ADE20k-semantic and

PASCAL-Context-semantic datasets in Tab. 1. In terms

of mIoU, MasQCLIP improves previous state-of-the-art re-

sults by 6.7, 2.5, 11.3, and 8.2 on A-150, A-847, P-59, and

P-459 datasets respectively.

Panoptic Segmentation. We evaluate our MasQCLIP on

panoptic segmentation under cross-dataset setting. We first

train MasQCLIP on COCO-panoptic dataset, and then di-

rectly evaluate the model on ADE20k-panoptic dataset. The

results are presented in Tab. 1. As shown, when using the

same mask proposal network architecture, MasQCLIP out-

performs state-of-the-art MaskCLIP [9] by 8.2 PQ. Even

adopted with a weaker mask proposal network of Mask R-

CNN, MasQCLIP still achieves on-par results on PQ com-

pared with MaskCLIP.

5.4. Ablation Studies

5.4.1 Progressive Distillation

In this section, we conduct ablation studies on progressive

distillation. We evaluate the models on instance segmenta-

tion under base-novel setting. The initial teacher model is

trained for 100k iterations on base annotations, and the stu-

dent model is then re-trained for 30k iterations each round

using the initial teacher model.

Object Scores. We first study the importance of object

scores. As shown in Tab. 3, incorporating object scores

boosts performance on base classes and novel classes sig-

nificantly. In addition, despite object scores being trained

only on base classes, they still serve as reliable indicators

of mask quality for novel classes, which demonstrates the

generalization of object scores. The results show that it is
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Figure 4: Comparison on open-vocabulary instance segmentation. We evaluate on the same set of images as in MaskCLIP [9]. The

above two images are from ADE20k dataset. Visualization results show that our mask proposals are more robust and high-quality.

Models Scores Base Novel All
Mask2Former - 16.9 11.3 15.4

Mask2Former � 53.8 22.6 45.6

Table 3: Ablations on Object Scores. We report mask AP50 in

the table. Models denote the architecture of class-agnostic mask

proposal networks. Scores denote whether we incorporate object

scores.

Teacher Student Base Novel All
100k - 53.8 22.6 45.6

100k 30k×1 50.6 26.1 44.2

100k 30k×2 51.0 31.9 46.0
100k 30k×3 51.2 31.2 46.0
200k - 54.7 18.2 45.1

Table 4: Ablations on Iterative Re-training. We report mask
AP50 in the table. We adopt the Mask2Former architecture and

incorporate object scores by default. Teacher denotes the training

iterations of the initial teacher model, and Student denotes how we

train the student model progressively.

reasonable to consider object scores as a general indicator

of mask quality.

Iterative Re-training. Tab. 4 shows the effectiveness of

progressive distillation. After we train the student model for

2 rounds progressively, the model performance improves

on novel classes by 9.3 AP50. Although the results man-

ifest a slight performance drop on base classes, it can be

explained that the model is balancing between the base and

extra (novel) annotations, thus leading the model to be less

overfitted on base classes.

If we continue to train the student model for more rounds

(e.g. 3 rounds), the model does not gain further improve-

ment in generalization ability, indicating that there might

exist an upper bound for the progressive distillation process.

In addition, we also show that the improvement on novel

classes cannot simply gain from a longer training schedule.

When training the network for another 100k iterations with-

out progressive distillation, there is a notable performance

Methods Q K V All Param ADE20k COCO
PQ mIoU PQ mIoU

Freeze - - - - - 10.7 15.7 19.4 22.1

Tune-V - - � - 25M 14.4 18.0 50.0 63.2

Tune-QKV � � � - 75M 14.9 18.6 50.5 63.5

Tune-CLIP � � � � 304M 14.7 18.3 49.0 63.6
Tune-K - � - - 25M 22.5 29.8 48.3 61.6

Tune-QK � � - - 50M 22.9 30.1 49.0 62.3

Tune-Q (ours) � - - - 25M 23.3 30.4 48.5 62.0

Table 5: Ablations on MasQ-Tuning. We try different fine-

tuning strategies. Q, K, V means the newly added query, key,

and value projections for Mask Class Tokens respectively, and All
means all the newly added parameters (also including layernorm,

FFN, and the final projection). Param denotes the total number of

trainable parameters. The models are first trained on COCO and

then evaluated on ADE20k. We note that the metrics on ADE20k

mainly show the generalization ability.

drop of 4.4 AP50 (from 22.6 to 18.2) on novel classes.

Our observation supports that improvement of model per-

formance indeed comes from progressive distillation.

5.4.2 MasQ-Tuning

To validate our fine-tuning method, MasQ-Tuning, we build

several baselines to prove its effectiveness.

• Freeze: Same as the MaskCLIP w/o RMA baseline in

[9]. We incorporate object scores during inference.

• Tune-Q: Only query projections f ′
Q for Mask Class

Tokens are learnable during fine-tuning. Notice that

MasQCLIP adopts this fine-tuning strategy.

• Tune-K: Only key projections f ′
K for Mask Class To-

kens are learnable during fine-tuning.

• Tune-V: Only value projections f ′
V for Mask Class To-

kens are learnable during fine-tuning.

• Tune-QK: Query and key projections for Mask Class

Tokens (f ′
Q and f ′

K), are learnable during fine-tuning.

• Tune-QKV: Query, key, and value projections for Mask



Image GT OpenSeg MaskCLIP MasQCLIP

house sky road grass land tree brick rock river wall building plant roof window

Figure 5: Comparison on open-vocabulary semantic segmentation. We evaluate on the same image as in OpenSeg [12]. Notice that

MasQCLIP successfully recognizes the windows on the house, demonstrating that MasQCLIP is able to classify small objects.
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Figure 6: Comparison on open-vocabulary panoptic segmentation. We evaluate on the same set of images as in MaskCLIP [9].

The images are from ADE20k dataset. Visualization shows that MasQCLIP produces higher-quality masks and has higher classification

accuracy.

Class Tokens (f ′
Q, f ′

K , and f ′
V ), are learnable during

fine-tuning.

• Tune-CLIP: A new set of CLIP parameters is learned

during fine-tuning, and masked-cross attention is per-

formed between Mask Class Tokens and CLIP tokens.

We use CLIP parameters as initialization.

In this ablation study, we test the models on semantic

and panoptic segmentation under cross-dataset setting. We

use the same class-agnostic mask proposal network for all

models, and then fine-tune the mask classification module

based on the predicted masks. Training settings are all kept

the same. Our results are shown in Tab. 5.

Adaptation. We compare the evaluation metrics of the

above methods on COCO dataset to show the strong adapta-

tion ability of MasQ-Tuning. Compared to Freeze with 19.4

PQ and 22.1 mIoU on COCO, Tune-Q has a significant im-

provement of 29.1 PQ (from 19.4 to 48.5) and 39.9 mIoU
(from 22.1 to 62.0) respectively. This shows that the im-

provement on adaptation ability should be credited to those

learnable query projections f ′
Q for Mask Class Tokens. In

addition, compared to Tune-CLIP with 49.0 PQ and 63.6

mIoU on COCO, Tune-Q has much fewer learnable param-

eters, but only has little performance drop (-0.5 PQ and -1.6

mIoU). This indicates that simply adding more parameters

is not helpful, and our proposed MasQ-Tuning has achieved

impressive adaptation ability.

Generalization. We now focus on the performance of the

above methods on ADE20k dataset to show the strong gen-

eralization ability of MasQ-Tuning. When adding learnable

value projections f ′
V for Mask Class Tokens, the model

cannot generalize well to ADE20k dataset. Compared to



(a) “a black cat”, “an orange cat” (b) “beer”, “wine” (c) “an adult”, “a child”

Figure 7: User-specified segmentation. We use the model trained on COCO-panoptic for evaluation. Visualization results show that our

model can distinguish subtle differences among objects.

Tune-Q with 23.3 PQ, Tune-V, Tune-QKV and Tune-CLIP
have a performance drop of 8.9, 8.4, and 8.6 on PQ respec-

tively. This proves the importance of freezing Vimg which

is interpreted as dense CLIP features. By inheriting Vimg

from the CLIP model, MasQCLIP is able to preserve the

original feature space within CLIP. Compared to Tune-QK,

Tune-Q reaches better performance on ADE20k and is more

parameter-efficient, where only 8.2% of original parameters

in CLIP visual encoder are added for training. Therefore,

we choose Tune-Q as the fine-tuning strategy of MasQCLIP.

5.5. Qualitative Results

In this section, we compare the visualization results of

MasQCLIP with previous models [9, 12]. The results of in-

stance, semantic, and panoptic segmentation are presented

in Fig. 4, Fig. 5, and Fig. 6 respectively. For a fair com-

parison, We all use the same set of images as previous

works [9, 12]. We observe from the visualization results

that MasQCLIP produces more robust mask proposals and

enjoys a higher mask classification accuracy, which corre-

sponds to our two key components proposed in MasQCLIP.

As shown in Fig. 7, MasQCLIP exhibits the ability to seg-

ment objects of arbitrary classes as per user specifications

and to discriminate between subtle distinctions within them

(e.g. “beer” vs. “wine”, “child” vs. “adult”).

5.6. Efficiency

MasQCLIP exhibits great capability in open-vocabulary

universal segmentation while being computationally effi-

cient at the same time. We report the results of GFLOPs in

Tab. 6. As shown, the GFLOPs of MasQCLIP is only 14.5%

higher than the combined GFLOPs of Mask2Former and

CLIP visual encoder, and is 34.1% lower than the GFLOPs

of MaskCLIP.

Models GFLOPs
Mask2Former [7] 78.9

CLIP Visual Encoder [31] 233.0

MaskCLIP† [9] 542.0

MasQCLIP (ours) 357.2

Table 6: Model efficiency. The resolution of input images is

set to 640×640 for Mask2Former and 336×336 for CLIP Visual

Encoder. We use the CLIP model ViT-L/14@336px. † means our

re-implement according to the paper (no public codes available).

6. Conclusions

We propose a two-stage model, MasQCLIP, for open-

vocabulary universal segmentation. We first design a pro-

gressive distillation process for the class-agnostic mask pro-

posal network to segment open-world masks. Addition-

ally, we adapt CLIP models for mask (region) classifica-

tion while maintaining the generalization ability of CLIP

through our proposed MasQ-Tuning method. We achieve

state-of-the-art results with substantial improvement over

the existing approaches across three open-vocabulary tasks

including instance, semantic, and panoptic segmentation.

Limitations. Since MasQCLIP is built on top of a pre-

trained CLIP model, though fine-tuning is introduced, the

performance of our model is nevertheless largely decided

by the generalization ability of the CLIP model. Another

limitation of our method is that mask proposals are gen-

erated by a fixed network (once pre-trained), which might

limit its capability for object types of arbitrary specification.
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