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Abstract. In this paper, we propose an object detection/recognition al-
gorithm based on a new set of shape-driven features and morphological
operators. Each object class is modeled by the corner points (junctions)
on its contour. We design two types of shape-context like features be-
tween the corner points, which are efficient to compute and effective in
capturing the underlying shape deformation. In the testing stage, we
use a recently proposed junction detection algorithm [1] to detect corner
points/junctions on natural images. The detection and recognition of an
object are then done by matching learned shape features to those in the
input image with an efficient search strategy. The proposed system is
robust to a certain degree of scale change and we obtained encourag-
ing results on the ETHZ dataset. Our algorithm also has advantages of
recognizing object parts and dealing with occlusions.

1 Introduction

Recent progress for object detection/recognition has been mostly driven by using
advanced learning methods [2–6] and designing smart feature/object descriptors
[7–9]. A detector is often trained on either a large number of features [2] or SIFT
like features in a bounding box[4]. Most of the resulting algorithms, however, only
tell whether an object is present or not in a bounding box by sweeping an input
image at all locations and different scales. Besides the successes the field has
witnessed for detecting rigid objects, such as frontal faces, detecting non-rigid
objects remains a big challenge in computer vision and most of the systems are
still not practical to use in general scenes [10].

Another interesting direction is using deformable templates [11] through
matching-based approaches. Typical methods include generalized Hough trans-
form [12], shape contexts [13], pyramid matching [14], pictorial structures [15],
codebook-based approaches [16, 17], and hierarchical shape representations [18–
20]. These algorithms not only locate where an object appears in an image, they
also recognize where the parts are, either through direct template correspon-
dences or part representations. However, the performances of these algorithms
are still not fully satisfactory, in terms of both efficiency and accuracy.

Marr [21] laid out a path to object recognition with a series of procedures
including: (1) generic edge detection, (2) morphological operators such as edge
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Fig. 1. (a) is the original image, (b) is an edge map by [1], (c) shows automatically
detected junctions of (b), and (d) is our model with 8 junctions.

linking and thinning, (3) shape matching on edges and object boundaries. This
direction recently becomes unpopular because it largely relies on obtaining high
quality edges; in addition, its object descriptors are too simplistic to handle the
level of complexity in natural images. It is now accepted that perfect edge/feature
detection does not exist [22] and it is hard to strictly separate the high-level
recognition process from the low-level feature extraction stage. Nevertheless,
these type of traditional methods still offer many appealing perspectives com-
pared to modern approaches for being simple, generic, and without heavy learn-
ing.

In this paper, we take a rather traditional route by performing junction ex-
traction first, followed by shape matching using a new set of feature descriptors.
Note that from the remainder of this paper, we refer to junctions as corner points
with more than one-degree connection. Given an object template described by
its boundary contour, we annotate several corner points of high curvature with
their order information; we then design two types of shape-context like features
for describing the junction points. Note that these features are different from the
standard shape context [13] since we only take into account the relevant junctions
on the boundary. This means that, in the detection stage, we need to perform
explicit search to exclude the background clutter. Fig. (1) shows an example of
an object template with its corresponding junction points. To detect/recognize
an object, we first apply a recently developed algorithm [1] to extract junc-
tion points from cluttered images; we then apply a pre-processing procedure
to clean the edges and junctions; shape matching is then performed between
the templates and the extracted junctions with an efficient search strategy. The
proposed system spends about 1 or 2 minutes on an image to recognize an ob-
ject (excluding another 1 or 2 minutes for extracting junctions). Our algorithm
also has advantages of recognizing object parts and dealing with occlusions. The
strength of this paper lies in: (1) the design of a new set of shape descriptors,
(2) the development of a promising matching-based object detection/recognition
system, (3) the achievement of significantly improved results on non-rigid objects
like those in the ETHZ dataset.
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There are several other related methods worth mentioning. Shotton et al. [23]
describes the shape of the entire object using deformable contour fragments and
their relative positions. Since their distance measure using improved Chamfer
Matching is sensitive to the noise, many training samples are required for boost-
ing the discriminative shape features. G. Heitz et al. [24] uses probabilistic shape
to localize the object outlines. Our method is different from [25]. (1) We design
two types of SC-like features of junctions and edges on actively searched contours
whereas [25] uses geometric features of connected contours; (2) we emphasize a
sparse representation on junctions whereas [25] uses dense points for object de-
tection. Other works [26, 27, 18, 28] decompose a given contour of a model shape
into a group of contour parts, and match the resulting contour parts to edge
segments in a given edge image.

2 Junction features

We use junction points as the basic elements to describe the object contour, and
thus, our shape model could be considered as a simplified polygon with junction
points being the vertices. In general, a majority of the junctions are the high
curvature corner points of degree 2. There are also some junction points with
degree 3 or 4, depending upon the image complexity. However, there are rarely
junctions with degree higher than 4. We adopt a recently developed algorithm
[1] to detect the junction points. and Fig. (1.c) shows an example. In Fig. (1.d),
an object template with 8 junction points is displayed. As we can see, due to the
presence of image clutter, it is not an easy task to match the template to the
object even with reliable low-level features.

Given a contour C of n junction points, we denote C = (J1, J2, ..., Jn), where
Ji is the ith junction on C. Note that we preserve the clockwise order of each
junction as the ordering is important in our model. In our current implementa-
tion, we assume multiple templates for each object type have the same number
of junctions. However, clustering can be used to obtain different clusters of the
same object type.

2.1 Junction descriptors

We design two types of features, which are called F1 and F2 respectively. For
each junction point Ji, we compute the feature F1(Ji) based on its connected
contour segments using a shape context like approach. Unlike the traditional
shape context approaches [13] where all the points within the context radius are
taken into account, we only use those points on the contour segments.

The two contour segments ei−1,i and ei,i+1 between (Ji−1 and Ji) and (Ji

and Ji+1) respectively are called path to Ji, denoted as P (Ji). We then use
path P (Ji) to characterize Ji and compute the corresponding feature F1(Ji).
Fig. (2.a) gives an example. We sample 10 points at equal space on P (Ji) and

call them path points as (p
(i)
1 ...p

(i)
10 ) (see green points in Fig. (2.b)). Here t is the

index along the path from Ji−1 to Ji+1. Note that these 10 points are on the
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Fig. 2. The illustration for the feature (F1) for characterizing the junction points. The
red ones in (a) are the junction points. The green dots in (b) are sampled path points on
which shape-context like features are computed. (c) shows the densely sampled points
for the green dots in (b) to compute shape context information.

path altogether and ei−1,i and ei,i+1 may not have 5 points each since they do
necessarily have the same length. For each path point pt, we compute its feature
h(pt) based on 50 densely sampled points on path P (Ji) at equal space. Fig.
(2.c) gives an illustration. The parameter setting for computing the histogram
of shape context is the same as that in [13]: 5 distance scales and 12 angle scales.
Thus, each h(pt) can be viewed as a feature vector of length 60. Finally, we are
ready to describe F1(Ji) as:

F1(Ji) =
(

h(p
(i)
1 ), ..., h(p

(i)
10 )

)T
, (1)

which is of length 60 × 10 = 600.

Fig. 3. The illustration for the feature (F2) for characterizing the contour segments
between junction points. The red ones in (a) are the junction points. The green dots in
(b) are those on which shape-context like features are computed. (c) shows the densely
sampled points for the green dots in (b) to compute shape context information.

Next, we show how to compute feature F2 to characterize the shape infor-
mation about a contour segment ei,i+1. The approach is similar to the way F1



Object Recognition Using Junctions 5

is computed. We sample 10 segment points at equal space on ei,i+1 and denote

them as (p
(i,i+1)
1 ...p

(i,i+1)
10 ); for each p

(i,i+1)
t , we compute its shape context fea-

ture based on 50 equally sampled points on ei−1,i, ei,i+1, and ei+1,i+2 altogether;
the parameter setting for computing the shape context is the same as that in
computing F1. This means that the features for ei,i+1 also takes into account its
immediate neighboring segments. Thus,

F2(ei,i+1) =
(

h(p
(i,i+1)
1 ), ..., h(p

(i,i+1)
10 )

)T
, (2)

which is also of length 60 × 10 = 600. Fig. (3) shows an illustration.

2.2 Junction descriptors for edge maps

Due to the background clutter in natural images, the low-level edge/junction de-
tection algorithms are always not perfect. We briefly describe some pre-processing
steps in our algorithm. First, standard edge linking methods [29] are applied on
extracted edge maps [1] using morphological operators. Fig. (4) gives an illustra-
tion. Fig. (4.a) shows the original edge segments by [29], which removes many
background clutters. The remaining edges are used to connect the junction points
also by [1].

Fig. 4. The linking process for the segments around a junction

Given an input image I in the detection stage, we use method in [1] to extract
the edges and junction points, and apply a software package [29] to perform edge
linking. We call a junction point detected in a test image, J ′. Next, we discuss
how to compute its corresponding feature, F1(J

′). The idea is to search for the
other two most plausible junctions J ′

− and J ′
+ for J ′ to be adjacent on the object

contour. The junctions on the template are selected based on the guideline to
have high curvature; the search strategy echoes this but without using any shape
matching strategy at this stage.

We first discuss the case where the degree of J ′ is 2. The problem is that the
nearest junctions to J ′, J ′

−(0) and J ′
+(0) from the low-level edge/junction extrac-

tion process, might not be the desirable ones. We propose a simple deterministic
procedure to perform the search:

1) Given a junction J ′, we find its nearest junctions J ′
−(0), J ′

+(0) along the
edges.
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2) Let S = {s1, s2, ..., s|S|} denote the adjacent junctions of J ′
−(t) on the

edge map (the junctions on the path between J ′ and J ′
−(t) are not included in

S).
Let x and x−(t) be the coordinates of J ′ and J ′

−(t) respectively. Let xl denote
the coordinates of sl. We compute the angle as:

θl = arccos(
(x − x−(t)).(x−(t) − xl)

|x − x−(t)||x−(t) − xl|
). (3)

3) Then we find a l∗ that satisfy:

l∗ = arg min
l=1,2,...,|S|

θl. (4)

If θl∗ is smaller than a given threshold ξ = 0.175, let t = t + 1, set sl∗ as J ′
−(t)

and go back to step 2). Else, output the J ′
−(t) as the final J ′

−.
The above procedures determine the junction J ′

−, and the procedures to de-
termine J ′

+ are the same. Fig. (5) shows an example when the degree of junction
is 2. In Fig. 5(a), point J ′

1 is a junction and the proposed procedure searches for
the most plausible J ′

−/J ′
+, then the path between point 6 (J−) and point 1 is

chosen for computing feature F1. Fig. (5.b) shows the path between 1 and 6.

Fig. 5. An illustration for finding the path from junction J
′

1 (point 1) to its J
′

− (point
6).

Once J ′
− and J ′

+ are determined, we then obtain a path P (J ′) from J ′
− to J ′

+

(passing J ′) that is used for computing the feature F1(J
′). Fig. 5(c) gives two

examples on a real image: the two points in yellow are two junctions, and the
red segments denotes the paths used for computing F1 of them separately. We
can also view our algorithm as designed for finding the salient contour segments,
which might be useful in other vision applications.

When the degree of J ′ is higher than 2, we then compute multiple features
F1 for J ′ corresponding different possible paths passing through J ′. Let d(J ′)
denote the degree of J ′. There are d(J ′) junctions that are adjacent to J ′, which
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means there are D = C2
d(J′) paths Pq (q = 1, ..., D) that will pass J ′ ( D pairs

of J−/J+ can be estimated). In order to keep the same with the 2-degree case,
we consider J ′ as D different 2-degree junctions J ′

(q)(q = 1, ..., D) with the same

position and different paths (different F1 feature):

F1(J
′
(q)) = F1(Pq). (5)

Fig. 6 shows an example when the degree of a junction is 3. Point 1 in Fig.
(6.a) can have three possible paths as separately shown in Fig. (6.b,c,d).

Fig. 6. An illustration for junctions with degree higher than 2.

3 Detection

Once the junctions are determined, we then proceed to the detection/recognition
stage by matching the features on the junctions and segments to those in the
templates. A two-layer detection framework is proposed: In the first layer, we
classify all the junctions in a edge map M using a kNN classifier; based on the
junction classification results, we use the shortest path to find the order of these
junctions along the contour on M in the second layer; then we localize the object
position. Our goal is to to find a sequence of junctions most similar to the training
sequence, which is similar to shape matching with Dynamic Programming.

3.1 Junction classification

Recall that for each object type, all templates have the same number of junction
points. For example, for the bottle templates, there are 8 junctions. Given a set
of training templates, we compute the corresponding F1(J) for each junction.
The problem of computing how likely a junction J ′ in a test image belongs to
a specific junction on the bottle becomes a classification problem. Each F1(J)
is a 600 dimension feature and we simply learn a kNN classifier to classify J ′

int {1, 2, ..., 8} classes of junction points. In training a kNN classifier, the most
important thing is to define the distance measure:
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Let f denote a vector value of F1, then we define the distance function dis
in the same manner of SC [13]:

dis(F1(J), F1(J
′)) =

1

2

600
∑

i=1

(fi − f ′
i)

2

fi + f ′
i

. (6)

The class label L∗ corresponding to the maximum is output by the algorithm:

L∗ = arg max
i=1,...,n

p(Li|F1(J
′)) (7)

3.2 Graph model

On the edge/junction map M(I) of image I, we classify all the junctions into n
groups G′

i, based on the trained kNN classifier. Our next goal is to localize the
object boundary using a polygon with junctions as the vertices, which can be
solved by finding the shortest path on a graph. As shown in Fig. (8), we construct
a connected graph model (V, E) in which the vertices V represent junctions in
a test image. Let e(j,k) denote the edge between two junction nodes J ′

j , J
′
k from

adjacent groups G′
i and G′

i+1 respectively. Let wj,k denote the weight of the
edge e(j,k). We set two dummy node Ns and Ne (in red) as the source node
and the target node respectively. The weights of the edges connecting with the
two dummy points are set as zero. The intuition is that all the critical junctions
on the object should lie on the shortest path between Ns and Ne. We use the
shortest path algorithm to solve this problem.

The edge weight wj,k is computed with dissimilarity between the edge e(j,k)

and the edges et
i,i+1(t = 1, ..., M) from the training templates. We use F2 feature

to measure this dissimilarity:

wj,k =
1

M

M
∑

t=1

dis(F2(e(j,k)), F2(e
t
i,i+1)) (8)

Notice that the way for computing F2 feature on a edge map is different from
the case for training template, since we do not know the adjacent junctions on a
edge map. For junctions J ′

j and J ′
k, we can obtain their related paths P (J ′

j) and
P (J ′

k) (as shown Fig. 7 (a)) respectively using the search algorithm proposed in
Section 2.2 firstly. Then we sample the straight segment between J ′

j and J ′
k into

ten points p
(j,k)
t (t = 1, .., 10) at equal space (see Fig. 7 (b)); For each p

(j,k)
t , we

compute its shape contexts feature on 50 equally sample points (see Fig. 7 (c))
on P (J ′

j) and P (J ′
k) together. Finally, the F2(e(j,k)) is described as:

F2(e(j,k)) =
(

h(p
(j,k)
1 ), ..., h(p

(i,k)
10 )

)T
, (9)

For the shortest path on our graph model, the linear programming has the
special property that is integral. A * search algorithm [19] which uses heuristics
to try to speed up the search can be applied to solve the optimization problem.
The confidence for a detection is the sum of all the edge weights on the shortest
path, which is used for the categories classification.
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Fig. 7. The illustration for computing F2 feature on a edge map

Fig. 8. The illustration for the graph model

4 Experiments

Fig. 9. Two training templates for each class from the ETHZ dataset [16]

We tested the proposed method on ETHZ shape dataset [16], which contains
5 different shape-based classes (apple logos, bottles, giraffes, mugs, and swans)
with 255 images in total. Each category has significant variations in scale, intra-
class pose, and color which make the object detection task challenging. To have
a fair comparison with [28], we use 1/3 positive images of each class as training
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samples, same to [28]. Fig. 9 shows a few training contour templates (the red
points denote the junctions of each contour), which are extracted from the binary
masks of the ETHZ dataset.

Initially, we extracted the gPb-based edge maps and junctions [1]. In an
image of average complexity, there are on average 100 junctions. We take the
binary mask annotation as the training templates. The results under PASCAL
criterion of our method are reported in Fig. (10) with precision vs. recall curve.
We also compare it to the latest results in [28, 26] . Fig. (10) shows P/R curves for
the Kimia’s method based on skeletal shape model [28] in red and for contour
selection [26] in blue. Our method significantly outperforms [28] on the four
categories of apple logos, bottles, mugs and swans, and a little better than [28]
in the category of giraffe. This demonstrates that our junction model can well
capture the intra-class variations of objects. Our result is also better than [26]
on all the categories. We also compare the precision at the same recall to [28,
26, 30].

Fig. 10. Precision/Recall curves of our method compared to [28] and [26] for 5 classes
of ETHZ dataset

As Table 1 shows, our method works better than [28] and [30], particularly
in the category of apple logos. This is because our junction features take into
consideration of both local and global structures. Even though our method is
just slightly better than [28] in the category of giraffe, our method does not need
multi-scale shape skeletons as our method is based on junctions that are more-
or-less scale-invariant. Fig. (11) shows some detection results by the proposed
method. The points and segments in red are the junction points and the poly-
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Apple logos Bottles Giraffes Mugs Swans

Our method 52.9/86.4 69.8/92.7 82.4/70.3 28.2/83.4 40.0/93.9
Zhu et al. [26] 49.3/86.4 65.4/92.7 69.3/70.3 25.7/83.4 31.3/93.9

Trinh&Kimia [28] 18.0/86.4 65.1/92.7 80.0/70.3 26.3/83.4 26.3/93.9
Ferrari et al. [30] 20.4/86.4 30.2/92.7 39.2/70.3 22.7/83.4 27.1/93.9

Table 1. Comparison of the precision at the same recall.

Fig. 11. The detection results of ETHZ dataset
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Fig. 12. The curves about detection rate (DR) at 0.3 FPPI vs. the percentage of miss
contours for 5 classes of ETHZ dataset

gons that use the detection junctions as the vertices. We also show the contour
segments (in green) related to each junction in these images; we observe that
our method not only can detect the object position robustly but also have good
localization of the object contour, benefiting from the junctions.

The last row in Fig. (11) shows a few false detections. It’s very interesting
that we detected a girl when detecting a bottle in the first image (last row); in
the second image, we detected a photo frame when detecting a mug; in the third
image, we detected a mug when detecting a swan; the fourth and fifth images
(last row) show two examples about false positives. Notice that even we could
not detect a swan in the fourth image, the segments detected out are very similar
to a swan, which is a graceful failure.

Our method is not limited to detect the whole contour of objects. It can also
be used to detect object parts. For detecting a contour part, we only use a group
of consecutive junctions from J t

i to J t
i+m(m < n) on the training templates.

We randomly choose the start junction and end junction with a fixed length
percentage for training, and to make a clear evaluation of performance, we use
detection rate vs false positive per image(DR/FPPI). Fig.12 reports the average
detection rate at 0.3 FPPI for five classes of ETHZ dataset. In Fig. 12, we observe
that our detection rates can still reach above 0.4 at 0.3 FPPI when 50% of the
training contours are missing. This demonstrates that the proposed junction
features are stable and effective for recognizing shapes in clutter images. Fig. 13
shows a few detection results with only parts detected.

5 Conclusions and future work

In this paper, we have introduced a shape-based object detection/recognition
system and showed its advantage on detecting rigid and non-rigid objects, like
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Fig. 13. The detection results for partial contour detection with the proposed method

those in the ETHZ dataset. Our method follows the line of template matching
by defining contour templates with a set of junction points. We found the de-
signed shape descriptors to be informative and our system outperforms many
contemporary approaches using heavy learning and design. We anticipate junc-
tion features to be useful for other vision tasks. In the future, we plan to combine
the shape features with appearance information to provide more robust results.
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