
A Learning Based Approach for 3D

Segmentation and Colon Detagging

Zhuowen Tu1, Xiang (Sean) Zhou2, Dorin Comaniciu1, and Luca Bogoni2

1 Integrated Data Systems Department, Siemens Corporate Research,
750 College Road East, Princeton, NJ, USA
2 CAD Solutions, Siemens Medical Solutions
51 Calley Stream Parkway, Malvern, PA, USA

Abstract. Foreground and background segmentation is a typical prob-
lem in computer vision and medical imaging. In this paper, we propose
a new learning based approach for 3D segmentation, and we show its
application on colon detagging. In many problems in vision, both the
foreground and the background observe large intra-class variation and
inter-class similarity. This makes the task of modeling and segregation of
the foreground and the background very hard. The framework presented
in this paper has the following key components: (1) We adopt probabilis-
tic boosting tree [9] for learning discriminative models for the appearance
of complex foreground and background. The discriminative model ra-
tio is proved to be a pseudo-likelihood ratio modeling the appearances.
(2) Integral volume and a set of 3D Haar filters are used to achieve effi-
cient computation. (3) We devise a 3D topology representation, grid-line,
to perform fast boundary evolution. The proposed algorithm has been
tested on over 100 volumes of size 500 × 512× 512 at the speed of 2 ∼ 3
minutes per volume. The results obtained are encouraging.

1 Introduction

There have been many 3D segmentation methods proposed recently [4, 11, 14]. In
these methods, Gaussian/mixture/non-parametric i.i.d. forms, or Markov ran-
dom fields are often adopted to model the appearances/textures of patterns of
interest. Often, they have problems in dealing with situations in which the fore-
ground and the background are complex and confusing.

Virtual colonoscopy is a new technology being developed to find polyps in
3D CT data. However, patients currently are required to physically cleanse their
colons before the examination, which is very inconvenient. By tagging the resid-
ual materials (stool) to make them bright in CT volumes, we can remove stool
electronically [3, 15]. This process is also called colon detagging, which can be
done if we can successfully perform colon segmentation since residual materials
are always inside the colon. However, residual materials observe large variations
in appearance depending upon where they are, what the patients eat, and how
they are tagged. Fig. (1) shows a view of a typical 3D CT volume. There are two
types of objects inside a colon, air and stool. Though most of them appear to be



2 Zhuowen Tu et al.

either very dark (air) or very bright (if successfully tagged), there are still a large
portion of residual materials which have similar intensity values as tissues due
to poor tagging. Also, some colon walls are bright due to the interference of the
surrounding tagged stool. In addition, there are two types of tagging methods,
liquid or solid, in which residual materials have very different textures. Fig. 9
shows some examples. For an input volume, we don’t know what type of tagging
it is and it can even a mixture of both. All these factors make the task of colon
detagging very challenging.

(a) (b)
Fig. 1. Examples of clean and tagged CT volumes. (a) gives a view of a physically
cleansed volume. The bright parts are bones in this volume. (b) is a view of an un-
cleansed volume. The bright parts on the upper part of the volume are tagged materials
and the lower parts are bones same as in (a).

In this paper, we propose a learning based algorithm for 3D segmentation
and show its application on colon detagging. The algorithm learns the appear-
ance models for the foreground and the background based on a large set anno-
tated data by experts. The system therefore is highly adaptive and nearly has
no parameter to tune. To account for the large intra-class variation, we adopt
probabilistic boosting-tree [9] to learn the discriminative models. One common
solution in 3D segmentation is to define/learn high-level shape models and use
them as priors in defining a posterior distribution. High-level knowledge or more
specifically, contextual information, plays a key role in telling whether some part
belongs to colon or background. However, not only is high-level knowledge very
hard to capture, but also it introduces additional computational burden in the
inference phase. Instead, we put the support of contextual information implicitly
in discriminative models, which are nicely turned into pseudo-likelihood appear-
ance model ratio. This is done by learning/computing the discriminative models
of each voxel based on its surrounding voxels. The use of PBT approach has
several advantages over many existing discriminative methods [2, 1]. First, it in-
herits the merit in the boosting methods which select and fuse a set of weak
classifiers from a very large pool of candidates. Second, it outputs a unified dis-
criminative probability through a hierarchical structure. Third, combined with
integral volume and 3D Haar filters, it achieves rapid computation.

Here, we design a 3D representation, grid-line, for boundary evolution. In
spirit, it is similar to the discrete surface model proposed by Malandain et al. [7].
Instead of representing the topology implicitly [12], we code the region topology
explicitly on the grid node of each slice of a volume. Thus, the neighborhood
structure of the boundaries can be traced explicitly.
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Training of the discriminative models is performed on 10 typical volumes.
The overall system is capable of robustly segmenting uncleansed colon for a
volume of 500× 512× 512 in 2 ∼ 3 minutes on a modern PC. It has been tested
on around 100 volumes with fixed setting and we report some results in Sect. (6).

2 Problem formulation

In this section, we give the problem formulation for 3D segmentation and show
that the pseudo-likelihood ratio is essentially a discriminative model ratio, which
can be learned and computed by a discriminative learning framework. We start
our discussion with an ideal model and show that the pseudo-likelihood model
is an approximation to it.

2.1 An Ideal Model

For an input volume, V, the task of foreground and background segmentation
in 3D is to infer what voxels belong to the foreground and what voxels belong
to the background. The solution W can be denoted as

W = ((R−1, θ−1), (R+1, θ+1)),

where R−1, R+1, θ−1, and θ+1 are the domains (voxel set) and model parameters
for the background and the foreground respectively. We have R−1

⋃
R+1 = Λ

where Λ defines the 3D lattice of the input V, which is the set of all the voxels.
R−1 ∩ R+1 = ∅. The optimal solution W ∗ can be inferred by the Bayesian
framework

W ∗ = arg maxW p(W |V)
= arg maxW p(V|(R−1, θ−1), (R+1, θ+1)) · p((R−1, θ−1), (R+1, θ+1)). (1)

This requires the knowledge about the complex appearance models of the
foreground and the background, their shapes, relations, and configurations. This
“ideal” model is often out of reach in reality.

2.2 Pseudo-likelihood Models

A popular model for segmentation is the Mumford-Shah model [8]
∫

ω

(u− u0)2dxdy + µ

∫
Ω/C

|∇u|2dxdy + ν|C|.

The first term is the fidelity term encouraging the estimation u to be similar
to the observation u0, the second term penalizes big change in u, and the third
term favors compact regions. Many similar models assume i.i.d. likelihood in
modeling the texture. They are usually hard to resolve the confusion between
the foreground and the background. The first column in Fig. (4) shows two slices
along different planes in a volume. The second column in Fig. (4) displays the
results by doing thresholding at an optimal value. We observe the “ring” effect



4 Zhuowen Tu et al.

due to the influence of tagged materials to the air. These interface voxels have
similar intensity patterns as the background. Intuitively, the decision of where
to place the colon boundary should be made jointly according to the overall
shape and appearance of a colon. This information can be accounted in the
“ideal” models discussed before. However, we don’t know what ideal models are
and it is very difficult to learn and compute them in reality. Therefore, we seek
approximations to the “ideal” models.

Let a segmentation result now be W = (R−1, R+1), where R−1 and R+1 are
the domains for the background and foreground respectively. Instead, we can
put the contextual information into a model as

p̂(W |V) ∝
∏

s∈R−1

p(V(s), y = −1|V(N(s)/s)) ·
∏

s∈R+1

p(V(s), y = +1|V(N(s)/s))

· p(R−1, R+1), (2)

where N(s) is the sub-volume centered at voxel s, N(s)/s include all the
voxels sub-volume except for s, and y ∈ {−1, +1} is the label for each voxel, and
p(R−1, R+1) defines the shape prior of the colon border. Our goal is to find the
optimal W ∗ that maximizes the posterior p̂(W |V). Next, we show how to learn
these models. Let

− log p̂(W |V) = E1 + E2 + Ec

where Ec is a constant and does not depend on R−1 and R+1,

E2 = − log p(R−1, R+1),

and

E1 = −
∑

s∈R−1

log p(V(s), y = −1|V(N(s)/s))−
∑

s∈R+1

log p(V(s), y = +1|V(N(s)/s))

= −
∑
s∈Λ

log p(V(s), y = −1|V(N(s)/s))−
∑

s∈R+1

log
p(y = +1|V(N(s)))p(y = −1)
p(y = −1|V(N(s)))p(y = +1)

.

(3)

This is done by taking a common part for p(V(s), y = −1|V(N(s)/s) in R+1. The
first term in the above equation does not depend on R−1 and R+1. Therefore,
maximizing the probability p̂(W |V) is equivalent to minimizing the energy

E = −
∑

s∈R+1

log
p(l = +1|V(N(s)))
p(l = −1|V(N(s)))

− |R+1| · log
p(y = −1)
p(y = +1)

− log p(R−1, R+1),

(4)
where |R+1| is the size of volume of R+1. Here, the models capturing the ap-
pearances of foreground and background are nicely turned into the discrimina-
tive probability model (classification) ratio. Note that p(y = +1|V(N(s))) is
the posterior probability of a voxel s belonging to the foreground (colon) given
the sub-volume centered at s. The optimal segmentation W ∗ is the one that
minimizes the above energy E.



Colon Segmentation 5

3 Learning Discriminative Models

(a) Slice view of background sub-volume. (b) Slice view of colon sub-volume.

Fig. 2. Slice view of 3D sub-volumes of background and colon. We consider the center
voxel here. They observe large intra-class variability and inter-class similarity.

Now the task is to learn and compute the discriminative model p(y|V(N(s)))
for each voxel s given a sub-volume centered at s. As shown in Fig. (2), both the
foreground and the background show complex patterns. Therefore, in order to
make a firm decision, we need to combine various types of information together,
e.g., intensities, gradients, and the surrounding voxels in the sub-volume.

AdaBoost algorithm [5] proposed by Freund and Schapire combines a number
of weak classifiers into a strong classifier H(x) = sign(f(x)) = sign(

∑T
t=1 αtht(x)).

Moreover, it is proved that AdaBoost and its variations are asymptotically ap-
proaching the posterior distribution [6].

p(y|x)← q(y|x) =
exp{2yf(x)}

1 + exp{2yf(x)} . (5)

However, AdaBoost algorithm is still shown to be rigid and hard to deal with
large intra-class variation. We adopt a new learning framework, probabilistic
boosting tree [9], to learn complex discriminative models.

3.1 Probabilistic Boosting-Tree

The details of the discussion of PBT can be found in [9]. It has also been ap-
plied to learn affinity maps in perceptual grouping in [10]. We use it to learn
appearance models here. The algorithm is intuitive. It recursively learns a tree.
At each node, a strong classifier is learned using a standard boosting algorithm.
The training samples are then divided into two new sets using the learned clas-
sifier, the left one and the right one, which are then used to train a left sub-tree
and right sub-tree respectively. Under this model, positive and negative samples
are naturally divided into sub-groups. Fig. (3b) illustrates an abstract version
of a tree learned. Samples which are hard to classify are passed further down
leading to the expansion of the tree. Since each tree node is a strong classifier, it
can deal with samples of complex distributions. Compared with other existing
hierarchical discriminative models, PBT learns a strong classifier at each tree
node and outputs a unified posterior distribution.

During the testing stage, the overall discriminative model is computed as

p(y|x) =
∑
l1

p̃(y|l1, x)q(l1|x) =
∑
l1,l2

p̃(y|l2, l1, x)q(l2|l1, x)q(l1|x)

=
∑

l1,..,ln

p̃(y|ln, ..., l1, x), ..., q(l2|l1, x)q(l1|x).
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The procedure is consistent with the training stage. For each sample, it com-
putes a probability at each node. Then the sample is sent to either the left,
the right, or both sides of the tree based on this probability. At the top of the
tree, information is accumulated from its descendants and an overall posterior
distribution is reported. It is worth to mention that the Vapnik-Chervonenkis
dimension theory shows that the test error is bounded by

TESTERR(α) ≤ TRAINERR(α) +

√
h(log(2N/h + 1− log(η)

N
,

where N is the number of training samples and h is the VC dimension of
a classifier. In PBT, h is decided by the complexity of weak classifiers d, the
number of classifiers on each tree node T , and the maximum depth of the tree
L. By extending a derivation from [5]

h(PBT ) ≤ 2(d + 1)(T + 1) log2[e(T + 1)](2L − 1).

In this application, to keep the test error under check, we set the maximum
depth of the tree to be 9 and train a classifier with half a million samples through
bootstrapping.

3.2 Weak Classifiers and Features

(a) 1D, 2D, and 3D Haar filters (b) Illustration of a PBT learned

Fig. 3. (a) shows various Haar filters in 1D, 2D, and 3D used. (b) illustrates an abstract
version of a tree learned.

Each training sample is of size 31×31×31 and we want to learn a classification
model p(y|V(N(s))) for the center voxel s. PBT selects and combines a set of
weak classifiers into a strong classifier out of a large number of candidates. For
a training sample, the features are the intensity and gradient values, curvatures
at the center voxel and its surrounding voxels. Also, we design 1D, 2D, and 3D
Haar filters at various locations with different aspect ratios, which are shown
in Fig. (3). Therefore, local and context information are combined to give an
overall decision on how likely a voxel is on the colon or not. There are around
25,000 candidate features each of which corresponds to a weak classifier.

For an input volume, we compute integral volume first, similar to the integral
image used in [13]. At each location (x1, y1, z1), an integral volume is computed∫

x1

∫
y1

∫
z1

V (x, y, z)dxdydz. The computational cost of computing Haar filters is
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(a) (b) (c) (d)

Fig. 4. a) shows two slice views of part of a volume. b) illustrates the results by
thresholding at an optimal value. We can clearly see some “ring” effects and a big part
of colon in the second row is not removed. c) displays the saliency (probability) maps
p(y = +1|V(N(s))). The higher the intensity values, the more likely it belongs to the
foreground colon. d) illustrates the results by thresholding on p(y = +1|V(N(s))) at
0.5. The results are much better than direct thresholding in (b) though it is bit jagged.
This is ameliorated by using the p(y = |V(N(s))) as a soft value with a local shape
prior in the energy minimization formulation. Fig. (8) shows improved results by the
overall algorithm.

therefore largely reduced since every time we only need to sum up the values
of corners of the Haar in the integral volume. Also, due to the tree structure as
shown in Fig. (3).b, majority of the sub-volumes are only passed onto the top
levels. Fig. (4) shows some results. We see the improvement on the place where
context information is needed. Training of discriminative models is performed
on 10 typical volumes (by liquid and solid tagging) with a couple of rounds of
bootstrapping. We also implemented two other approaches, one node AdaBoost
and a cascade of AdaBoost. The training errors for both the methods are sig-
nificantly worse than that by PBT. For the cascade approach, the training error
can not decrease too much after 4 levels due to the confusing patterns of the
foreground and the background.

4 3D Representation for Boundary Evolution

Once we compute the discriminative model p(y|V(N(s))) for each voxel s, we
then need to search the optimal segmentation that minimizes the energy E in
eqn. (4). If we only do thresholding at 0.5 based on p(y = +1|V(N(s))), as
shown in Fig. (4).d, the colon borders are not so smooth.

A popular implementation for boundary evolution in variational method is by
level-set approaches [12]. Here, we design another 3D representation, grid-line,
for fast boundary evolution, which is in spirit similar to [7]. Instead of repre-
senting the topology implicitly by different level sets, we code the topologies
explicitly on the grid node of each slice of a volume. Thus, the neighborhood
structure of the boundaries can be traced explicitly. Fig. (5) illustrates an ex-
ample. For each voxel in the volume V, we explicitly code its label by +1 if
it is on the foreground (colon part), and −1 if is on the background. With the
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label map only, it does not easily facilitate the process of boundary evolution.
We also code the segmentation topology at each slice along XY , XZ, and Y Z
planes. On each slice, boundary nodes have 4 corners with two types of labels.
We code each possible situation for a boundary node on the grid. This is illus-
trated in Fig. (5c). Given any grid node on the boundary, we can obtain its most
immediate nodes (clockwise or counter clockwise) ) based on the configuration
of the current node and its 4 connected neighboring nodes ( special care needs
to be taken on the nodes along the edge of the volume). Therefore, at each grid
node on the boundary, we can explicitly compute its normal direction, curvature
etc. Also, the explicit 3D representation allows us to have the property that the
foreground is connected. This is often a desirable property in object specific 3D
segmentation in which occlusion usually does not exist.

X-Y planes

X-Z planes
Y-Z planes

(a) 3D grid-line representation (b) Topology representation 
in one X-Y plane

Boundary evolution Different topologies on a node

(c)  Topology representation 
on the nodes

Fig. 5. A 3D topology representation for boundary evolution. In the volume shown in
(a), we explicitly code the label of each voxel being either on the foreground, +1, or
on the background, −1. In addition, we code the topology of each grid node of slices
at the XY , XZ, and Y Z planes. This is illustrated in (b). (c) lists various possible
topologies of a grid node on the boundary. We also show an example of a boundary
move in (b) and (c).

The term p(R−1, R+1) for shape prior is left undefined in eqn. (4). Indeed,
part of the shape information is implicitly modeled in the discriminative model
p(y|V(N(s))). Intuitively, the possibility of a voxel label is decided by its own
intensity and the appearances of its surrounding voxels based on various features
including gradients and curvatures. This implicitly reinforces certain degree of
spatial coherence. In addition, we put an explicit shape prior term to encourage
the boundaries to be smooth. Let A be the surface between R−1 and R+1

− log p(R−1, R+1) = α

∫
A

ds

By Euler-Lagrange equation on E in eqn. , we obtain eqn. (4), we have

dE

ds
= −(log

p(y = +1|V(N(s)))
p(y = −1|V(N(s)))

+ log
p(y = −1)
p(y = +1)

+ αH)n
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where H and n are the mean curvature and normal direction at s respectively.
The boundary evolution is performed using the above evolution equation based
on the grid-line representation discussed above.

5 Outline of the Algorithm

The outline of the overall algorithm is illustrated below.

• Given an input volume, compute p(y|V(N(s))) for each voxel s.
• Perform thresholding on p(y|V(N(s))).
• Find seed regions in 2D slices and perform morphological region growing to obtain

an initial 3D segmentation.
• Perform boundary evolution.
• Remove the segmented colon part in the original volume to perform detagging.
• Report the final segmentation results.

Fig. 6. Outline of the overall algorithm.

Fig. 7. Initial segmentation. The image in the left column shows the volumes by thresh-
olding at 0.5 for p(y = +1|V(N(s))). We then obtain a number of slice images on the
thresholded volumes along the XY planes. The colon part in these slices appear to be
more or less round. Some seed regions are the selected based on its size and shape.
These are shown in the middle of the figure. An initial segmentation, shown in the
right, is then obtained using morphological region growing.

After computing the discriminative models, the algorithm further proceeds
for two more steps: (1) Based on thresholding on p(y = |V(N(s))), sample slices
are taken along the XY plane to select some regions which show round shapes.
We then use morphological region growing to obtain an initial 3D segmentation.
(2) We perform boundary evolution method discussed in the previous section to
obtain refined segmentation.
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Original Slices Mumford-Shah Proposed Method

Fig. 8. The first column shows two original slices. The second column some results by
Mumford-Shah model. The results by the proposed algorithm is shown in the third
column.

6 Experiments

We use 10 typical volumes for training. Fig. (8) shows the results by our method
on a testing volume and those by Mumford-Shah model. We see some improve-
ments on the place where context information is needed. The boundaries ob-
tained are smoother than using just classification in the last row of Fig. (4).
We have tested the reported algorithm on 100 volumes with the same setting
and the results are very promising. Four of which are shown in Fig. (9). The
first 3 volumes are by solid tagging and the last one is by liquid tagging. Since
it is very hard to obtain the ground truth for even a single 3D volume, we
measure the error by comparing the results with manual annotation at some
typical slices by experts. We use randomly selected 20 volumes with 15 slices
in each volume. The measurement is taken by the difference of the overlaps
error = (miss(R+1)+miss(R−1))/|V|, where miss(R+1) is the number of miss
segmented voxels in the foreground and miss(R−1) is the number of miss seg-
mented voxels in the background. The error rate is lower than 0.1% by the
algorithm. If we only consier those voxels that are within certain distance of the
true boundary, the error rate is 5.2% while it is 20.3% for direct thresholding.
Bones in these volumes appear to be very bright and their local sub-volumes
look very like tagged materials. An example can be seen in Fig. (1). In our al-
gorithm, the seed selection stage avoids picking up bones since they don’t have
round structures in 2D slices. Also, by enforcing the foreground regions to be
connected in the boundary evolution, bones will not be touched in the boundary
evolution stage. This is an important feature in our method. Existing methods [3,
15] only deal with liquid tagging, like the one in the fifth column in Fig. (9),
which is relatively easy. Also, they usually do not distinguish between bones and
colons, leading bones being mistakenly removed.
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Fig. 9. Some results on colon segmentation. The first rows shows some input volumes.
The first three uses solid tagging and the last one uses liquid tagging. The second row
shows the volume by segmenting out the colon volume. The third row demonstrates the
colon part only. The fourth row illustrates some 2D slice views of the original volume.
The last row shows the corresponding views after detagging.

7 Discussion

In the paper, we have introduced a new learning based framework for 3D seg-
mentation and shown its application on colon detagging. We use a probabilistic
boosting tree (PBT) method to learn pseudo-likelihood models for the complex
patterns. Integral volume and 1D, 2D, and 3D Haar wavelets are designed for
fast computation. A 3D representation is used to efficiently evolve the boundary.
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This gives rise to a system capable of automatically segmenting colon volume
of 512 × 512 × 400 in 2 ∼ 3 minutes. There is no need to specify liquid or slid
tagging, and the system is fully automatic. Also, the system learns the model
based on a large database of annotation, which makes it very general and highly
adaptive. It can be used in many problems in medical imaging and computer
vision.

Our algorithm still has some problems to deal with situations where stool
is very poorly tagged. The sub-volume used in computing the discriminative
models is yet not big enough to capture big scope of context. Increasing it size
will largely increase the complexity of the learner. It still remains to see how to
combine high-level shape prior to further improve the results.
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