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Abstract

In this paper, we present an efficient and robust algorithm for shape matching, registration, and detection. The task is to geometrically
transform a source shape to fit a target shape. The measure of similarity is defined in terms of the amount of transformation required.
The shapes are represented by sparse-point or continuous-contour representations depending on the form of the data. We formulate the
problem as probabilistic inference using a generative model and the EM algorithm. But this algorithm has problems with initialization
and computing the E-step. To address these problems, we define a data-driven technique (discriminative model) which makes use of
shape features. This gives a hybrid algorithm which combines the generative and discriminative models. The resulting algorithm is very
fast, due to the effectiveness of shape-features for solving correspondence requiring only a few iterations. We demonstrate the effective-
ness of the algorithm by testing it on standard datasets, such as MPEG7, for shape matching and by applying it to a range of matching,
registration, and foreground/background segmentation problems.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Shape matching is a very important problem in com-
puter vision. The work in this paper treats shape matching
as finding the best geometrical transformation between two
shapes in the spirit of Grenander’s pattern theory [12].

There is a big literature on the different varieties of
shape representations, matching criteria, and algorithms
that have been applied to this problem. This includes rep-
resentations such as Fourier analysis [43], moments [14],
scale space [24], and level sets [27]. Some representations,
such as FORMS [44] or shock-edit [33], explicitly represent
the shape in terms of parts. Other approaches using
chamfer matching [35] formulate the problem to enable
rapid search through different appearances of the shape.
1077-3142/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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Alternative approaches include manifold learning and met-
ric embedding [15] and hierarchical structures with associa-
tive graphs [28]. For more details of shape representations
and matching algorithms see recent survey papers [19,39].
Our approach is mostly closely related to the probabilistic
formulation using free energies developed by [8,30,21] and
the work on shape context [4].

We formulate the problem in terms of probabilistic
inference using a generative model. This formulation
involves hidden variables which indicate the correspon-
dence between points on the two shapes. This leads natu-
rally to an EM algorithm [9] based on the free energy
formulation [26]. Unfortunately computational issues
make performing the E-step impractical and also give
problems for initialization. We solve these problems by
introducing a discriminative model which uses shape fea-
tures. These shape features are less ambiguous for match-
ing than points, and hence we call them informative

features. This leads to a hybrid algorithm which combines
the generative and discriminative models. See Tu et al. [36]

mailto:zhuowen.tu@loni.ucla.edu
mailto:sfzheng@stat.  ucla.edu
mailto:sfzheng@stat.  ucla.edu
mailto:yuille@stat.ucla.edu


Z. Tu et al. / Computer Vision and Image Understanding 109 (2008) 290–304 291
for more discussion of the trade-off between generative and
discriminative methods.

Our approach helps unify existing work by Chui and
Rangarajan [8] and Belongie et al. [4]. We use a probabilis-
tic formulation similar to Chui and Rangarajan but com-
bine this with the shape features described by Belongie
et al. This leads to an algorithm that has fewer iterations
and better initialization than Chui and Rangarajan, while
being better at dealing with uncertainty than Belongie et al.

Our approach represents the shapes in terms of points,
which are supplemented by shape feature for the
discriminative models. We use two types of representations—
sparse-point and continuous-contour. The continuous-
contour representation leads to better shape features, since
the arc-length is known, but this representation is not
always practical to compute. These representations are
adequate for this paper, but their lack of ability to repre-
sent shape parts makes them unsuitable for matching
shapes when parts can be missing (unlike methods such
as [44,33]).

The structure of this paper is as follows. Section 2 gives
the generative formulation of the problem. In Section 3, we
motivate the discriminative approach. Section 4 describes
how the algorithm combines the two methods. In Section
5 we give examples on a range of datasets and problems.
2. The generative formulation

The task of shape matching is to match two shapes, X
and Y, and to measure the similarity between them. We
refer to X as the target shape and Y as the source shape.
We define the similarity measure in terms of the transfor-
mation that takes the source shape into the target, see
Fig. 1. In this paper we use two types of transformation:
(i) a global affine transformation A and (ii) a smooth
non-rigid transformation f.
2.1. Shape representation

We use two types of shape representation in this
paper: (I) sparse-point, and (II) continuous-contour. The
choice will depend on the form of the data. Shape
matching will be easier if we have a continuous-contour
representation because we are able to exploit knowledge
of the arc-length to obtain shape features which are less
ambiguous for matching, and hence more informative,
Fig. 1. An example of shape matching where a source shape Y is matched
with a target shape X by a geometric transformation (A, f).
see Section 3.1. But it may only be possible to compute
a sparse-point representation for the target shape (e.g.,
the target shape may be embedded in an image and an
edge detector will usually not output all the points on
its boundary).

(I) For the sparse-point representation, we denote the
target and source shape respectively by:

X¼fxi : i¼1; ... ;Mg; and Y ¼fya :a¼1; ... ;Ng: ð1Þ

(II) For the continuous-contour representation, we
denote the target and source shape respectively by:

X ¼ fxðsÞ : s 2 ½0; 1�g; and Y ¼ fyðtÞ : t 2 ½0; 1�g; ð2Þ

where s and t are the normalized arc-length. In this case,
each shape is represented by a 2D continuous-contour.
By sampling points along the contour we can obtain a
sparse-point representation X = {xi:i = 1, . . . ,M}, and
Y = {ya: a = 1, . . . ,N}. But we can exploit the continu-
ous-contour representation to compute additional features
that depend on differentiable properties of the contour such
as tangent angles.

2.2. The generative model

Our generative model for shape matching defines a
probability distribution for generating the target X from
the source Y by means of a geometric transformation
(A,f). There will be priors P(A),P(f) on the transformation
which will be specified in Section 2.3.

We also define binary-valued correspondence variables
{Vai} such that Vai = 1 if point a on the source Y matches
point i on the target X. These are treated as hidden vari-
ables. There is a prior P(V) which specifies correspondence
constraints on the matching (e.g., to constrain that all
points on the source Y must be matched).

The choice of the correspondence constraints, as speci-
fied in P(V) is very important. They must satisfy a trade-
off between the modeling and computational requirements.
Constraints that are ideal for modeling purposes can be
computationally intractable. The prior P(V) will be given
in Section 2.5 and the trade-off discussed.

The full generative model is P(X,V,A,fjY) = P(XjY,
V,A,f)P(A)P(f)P(V), where the priors are given in Sections
2.3 and 2.5. The distribution P(XjY,V,A,f) is given by:

P ðX jY ; V ;A; fÞ ¼ 1

Z
expf�EGðX ; Y ; V ;A; fÞg; where;

EGðX ; Y ; V ;A; fÞ ¼
XM

i¼1

XN

a¼1

V aikxi � Aya � fðyaÞk
2
:

ð3Þ

By using the priors P(A),P(f),P(V) and summing out the
V’s, we obtain (this equation defines ET[A,f;X,Y]):

P ðX ;A; fjY Þ ¼
X

V

P ðX jY ; V ;A; fÞP ðV ÞP ðAÞPðf Þ, 1

Ẑ

� expf�ET ½A; f; X ; Y �g ð4Þ
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We define the optimal geometric transformation to be:

ðA�; f�Þ ¼ arg max
A;f

P ðX ;A; fjY Þ ¼ arg min
A;f

ET ½A; f; X ; Y �:

ð5Þ
We define the similarity measure between shapes to be

SðX : Y Þ ¼ ET ½A�; f�; X ; T � ¼ � log P ðX ;A�; f�jY Þ � log Ẑ:

ð6Þ
This is the negative logarithm of probability of generating
the target X from the source Y by the optimal transforma-
tion, with the normalization constant Ẑ removed. This sim-
ilarity measure will also correspond to the minimum of the
free energy, see Eq. (12) (again with the normalization con-
stant removed).

2.3. The geometric prior

The geometric transformation consists of a global
(affine) transformation A and a smooth non-rigid transfor-
mation f (which includes a translation term). The prior on
the non-rigid transformation f will enforce it to be smooth,
and will be given at the end of this section. The prior on the
affine transformation A is defined based on its decomposi-
tion into rotation angle h, scaling Sx,Sy, and shear k. It
encourages equal scaling both directions and favors limited
shear.

More precisely, we decompose the affine transformation
as follows [1]:

A ¼
Sx 0

0 Sy

� �
cos h � sin h

sin h cos h

� �
1 k

0 1

� �
: ð7Þ

The prior on A is given by

pðAÞ / expf�EAðAÞg; and

EAðAÞ ¼ EscaleðSx; SyÞ þ EshearðkÞ þ ErotðhÞ; ð8Þ

where EscaleðSx; SyÞ ¼ b1ðSx�Sy

SxþSy
Þ2, Eshear(s) = b2k2, and

Erot(h) is constant (i.e., the prior on h is the uniform distri-
bution). In our experiments, we set b1 = 1.0 and b2 = 10.0.
The prior on the non-rigid transformation f is of form:

pðfÞ / expf�Ef ðfÞg: ð9Þ

In this paper, we use the thin-plate-spline (TPS) kernel
[5] where we impose that f is of form:

fðx; yÞ ¼
X

a

waUðxa � x; ya � yÞ þ t; ð10Þ

where wa ¼ ðwa
x ;w

a
yÞ are vector valued weights, x,y are the

components of the vector y, U(x,y) = (x2 + y2) log (x2 + y2),
t is translation,

P
awa = 0, and

P
awa

xxa ¼
P

awa
y ya ¼ 0. Then

we define Ef by:

Ef ðfÞ ¼ k
Z Z

o2f

ox2

� �2

þ 2
o2f

oxoy

� �2

þ o2f

oy2

� �2

dxdy

¼ k
XN

a;b¼1

wT
a Uðya � ybÞwb: ð11Þ
We also considered an alternative energy function which
encourages f to be small and smooth (Yuille and Grzywacz
[41]). The small-and-smooth energy function usually gave
similar results to the thin-plate-spline, but it required us
to model the translation t separately. We will not discuss
it further in this paper. Note that in our ECCV paper
[37] our reported results were obtained using the TPS,
but we erroneously stated that they were obtained using
small-and-smooth.

2.4. The EM algorithm

We use the EM algorithm to estimate (A*,f*) = arg
maxA,fP(X,A,fjY), where the correspondence variables V

are treated as hidden variables which are summed out.
It can be shown [26] that estimating (A*,f*) from

P(X,A,fjY) is equivalent to minimizing the EM free energy
function:

F ðQ;A;fÞ¼� log P ðX ;A; fjY Þþ
X

V

QðV Þ log
QðV Þ

P ðV jX ;Y ;A;fÞ

¼�
X

V

QðV Þ logfPðX jY ;V ;A;fÞPðAÞPðfÞPðV Þg

þ
X

V

QðV Þ log QðV Þ; ð12Þ

where Q(V) is a distribution over the correspondence vari-
ables. The minimum of the free energy F(Q,A,f) is equal to
minA,f{�logP(X,A,fjY)}.

The EM algorithm consists of two steps: (I) The M-step
minimizes F(Q,A,f) with respect to (A,f) with Q(V) fixed
and will be given in detail in Section 4.(II) The E-step min-
imizes F(Q,A,f) with respect to Q(V) keeping (A,f) fixed.
The E-step at iteration t can be expressed analytically as:

QtðV Þ ¼ PðV jX ; Y ;At�1; f t�1Þ: ð13Þ

Unfortunately there are two difficulties with using the EM
algorithm in the current form. Firstly, it requires good ini-
tialization or it will get stuck in a local maximum of
P(X,A,fjY). Secondly, the E-step is very difficult to com-
pute unless we put restrictions on the prior P(V) which
are so strong that they may degrade the quality of the re-
sult, see Section 2.5. These problems motivate us to intro-
duce a discriminative model which is discussed in Section 3.

2.5. The correspondence constraints and P(V)

The prior P(V) enforces constraints on the correspon-
dences between points on the target and the source. This
leads to a trade-off between modeling and computational
requirements.

From the modeling perspective, we would prefer con-
straints which are two-sided between the target and source.
These constraints would enforce that most target and
source points are matched, and would be flexible enough
to allow for missing points. But imposing two-sided con-
straints makes the E-step of the EM algorithm impractical,
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because it is impossible to compute the right-hand side of
Eq. (13).

One strategy to deal with this problem is by using a
mean field theory approximation together with two-sided
constraints. This strategy was used by Chui and Rangara-
jan [8] and was very successful. We will describe it at the
end of this section.

Another strategy is to impose one-sided constraints which
ensure that all points on the sources are either matched to
points on the target, or are unmatched (and pay a penalty).
In theory, this would allow situations where a single point
of the target is matched to many points on the source, while
many other target points are unmatched. In practice, the nat-
ure of the geometric transformations can prevent these situ-
ations from happening (since they correspond to highly
improbable, or impossible, geometric transformations).

In this paper, we choose to impose the one-sided con-
straint that each point a is either matched to a single point
v(a), or it is unmatched and we set v(a) = 0. (equivalently
v(a) =

P
iVaii, where

P
iVai = 1 or 0 for all a). Then we

put a prior probability on V, P ðV Þ / e�k
PN

a¼1
ð1�vðaÞÞ, which

penalizes missing points. This choice of prior has the major
advantage that it is factorizable P(V) = �aPa(v(a)). It
means that we can minimize the free energy (12) to solve
for:

QðV Þ ¼
YN
a¼1

QaðvðaÞÞ

¼
YN
a¼1

1

Za
expf�k�

XM

i¼1

V aikxi � Aya � fðyaÞkg; ð14Þ

with Za ¼ e�k þ
PM

i¼1e�kxi�Aya�fðyaÞk.
This gives an analytic expression for the E-step of the

EM algorithm – by replacing Q by Qt on the left hand side,
and A, f by At�1, ft�1 on the right hand side of Eq. (14).

We can also use Eq. (14) to obtain a simple expression
for the free energy which depends only on A, f. To do this,
we first express:

P ðX jY ;V ;A; fÞP ðAÞP ðfÞPðV Þ¼ 1

Z
expf�ET ½A; f;V ;X ;Y �g; where

ET ½A;f;V ;X ;Y � ¼EGðX ;Y ;V ;A; fÞþEAðAÞþEf ðfÞþk
XN

a¼1

ð1� vðaÞÞg:

ð15Þ

Secondly, we substitute Q(V) from Eq. (14) into the free en-
ergy (12) to obtain:

F ðQ;A; fÞ ¼
X

V

QðV ÞET ½A; f; V ; X ; Y � þ log Ẑ

þ
XM

b¼1

X
V b

QðV bÞ log QðV bÞ
( )

¼ EAðAÞ þ Ef ðfÞ

�
XN

a¼1

log e�k þ
XM

i¼1

e�kxi�Aya�fðyaÞk

( )
þ log Z:

ð16Þ
Note that a simplification occurs because log QbðvðbÞÞ ¼
�fkV b0 þ

PM
i¼1V bikxi� Ayb � fðybÞk

2 � log Zb, hence parts
of the term

P
bQbðV bÞ log QbðV bÞ cancels with some terms

from
P

V QðV ÞET ½A; f; V ; X ; Y �. This enables us to rapidly
compute the free energy (except for the normalization term
log Z which we do not use in our shape similarity criterion).

This E-step in Eq. (14) is computationally simple, but it
gives poor performance when applied to the generative
model. The number of iterations required for convergence
is large (e.g greater than 20) and the algorithm can get
stuck in local minima of F(Q,A,f) and produce distorted
matching. These errors can be traced to the use of point
features for matching and their inherent ambiguity com-
pounded by the use of one-sided constraints.

Our solution is to augment the generative model with a
discriminative (data-driven) model, see Section 3. The dis-
criminative model uses shape features which are far less
ambiguous for matching, and hence more informative,
than point features. The use of shape features was devel-
oped by Belongie et al. [4] who used them in conjunction
with two-sided constraints requiring one to one correspon-
dence (with some ability to tolerate unmatched points).
Note that Belongie et al. did not formulate their approach
probabilistically.

An alternative by Chui and Rangarajan [8] makes use of
the mean field approximation to the free energy [42,11].
They impose matching constraints

PM
a¼0V ai ¼ 1; 8i andPN

i¼0V ai ¼ 1; 8a, where the indices a = 0 and i = 0 denote
dummy points which can be used to allow for unmatched
points (e.g. Va0 = 1 implies that point a is unmatched).
The prior will add a penalty term to encourage most points
to be matched.

A simplified version of Rangarajan and Chui’s mean
field free energy is expressed in the form:

F ðfmaig;A; fÞ ¼
XM

i¼1

XN

a¼1

maikxi � Aya � fðyaÞk
2

þ EAðAÞ þ Ef ðfÞ þ T
XM

i¼1

XN

a¼1

mai

� log mai � f
XM

i¼1

XN

a¼1

mai; ð17Þ

where Ef(f) is given by Eq. (11), f(ya) is given by Eq. (10),
and the variable mai denotes Q(Vai = 1). By comparison
to Eq. (12), we see that the mean field formulation approx-
imates the entropy term

P
V Q(V) logQ(V) by

PM
i¼1PN

a¼1mai log mai. The last term �f
PM

i¼1

PN
a¼1mai is used to

penalize unmatched points. The minimization of
F({mai},A,f) is done by imposing the two-sided correspon-
dence constraints which transform into constraints onPN

a¼0mai ¼ 1; 8i and
PN

i¼0mai ¼ 1; 8a.
While this approach can give very successful results [8],

it does need good initialize conditions, and can require
many iterations to converge (see Section 5). Rangarajan
et al. [30] have considered the alternative Bethe/Kikuchi



294 Z. Tu et al. / Computer Vision and Image Understanding 109 (2008) 290–304
free energy approximation. This appears to yield good
results, but the convergence rate is slow.
3. The discriminative model

The generative model described above is an attractive
way to formulate the problem. But it has three computa-
tional disadvantages: (i) the initialization, (ii) the one-sided
correspondence constraints required to perform the E-step,
(iii) the convergence rate. These problems arise because the
ambiguity of point features for matching.

To address these concerns, we develop a complementary
discriminative model. This model makes use of shape fea-
tures which exploit the local and global context of the
shape. These shape features are motivated by shape con-
texts [4] and are far less ambiguous for matching than
the points used in the generative model. We therefore call
them informative features. The shape features for the con-
tinuous-contour representation exploit knowledge of the
arc-length, and so will be more informative than those
for the sparse-point representation. As will be described
in Section 4, the shape features enable us to get good ini-
tialization and to obtain a practical E-step which gives
rapid convergence (in combination with the M-step based
on the generative model).

To formally specify the discriminative model, we define
shape features on the target by /(xi), and on the source by
/(Aya + f(ya)). This implies that the features on the source
shape depend on the current estimates of the geometric
transformation (A,f), which is initialized to be the identity.
Intuitively, we are warping the source onto the target. We
define a similarity measure between the shape features to be
q(.,.). The forms of / and q(.,.) will be defined in Sections
3.1 and 3.2 and will differ for the continuous-contour and
sparse-point representations.

The discriminative model is given by PD(V,A,fjX,Y)=
PD(VjX,Y,A,f)P(A)P(f), where the priors P(A),P(f) are
defined as in Section 2.3, and:

� log P DðV ; jX ; Y ;A; fÞ ¼
XM

a¼1

qð/ðxvðaÞÞ;/ðAya

þ f ðyaÞÞÞ þ log ZD: ð18Þ
This equation expresses the correspondence variables in
terms of the one-sided variables v(a). This has disadvan-
tages, as described in Section 2.5. But these disadvantages
are far less severe for the discriminative model because
the shape features are far less ambiguous for matching than
the point features. Note that this does not include a term
allowing for unmatched points (analogous to the k term
in Eq. (14)). We experimented with such a term, but it
did not make any significant difference.

The free energy for the discriminative model is defined
to be:
F DðQ;A; fÞ ¼ �
X

V

QðV Þ log P DðV jX ; Y ;A; fÞ � log P ðAÞ

� log P ðfÞ þ
X

V

QðV Þ log QðV Þ: ð19Þ

As before, the use of one-sided constraints means that we
can factorize Q(V) and compute it as:

QðV ai ¼ 1Þ ¼ qð/ðxiÞ;/ðAya þ fðyaÞÞÞPM
j¼1

qð/ðxiÞ;/ðAyþ fðyaÞÞÞ
: ð20Þ

This gives the discriminative free energy:

F DðQ;A; fÞ ¼ EAðAÞ þ Ef ðfÞ þ log ẐD

�
XN

a¼1

log
XM

i¼1

e�qð/ðxiÞ;/ðAyaþfðyaÞ: ð21Þ

We can also use Eq. (20) to calculate the E-step by setting
the left-hand-side to be the distribution at time t with the
right-hand-side evaluated at time t � 1.

The M-step is more difficult since it requires differentiating
the features / and the matching term q(.,.) with respect to
(A,f). The M-step will not be used in our complete algorithm.

This discriminative model has similarities to the shape
features model [4]. The main difference is that the shape
context model is not formulated in a probabilistic frame-
work. Instead it requires that the source and target shapes
have the same number of points and requires that each
point has a unique match. This can be problematic when
there are unequal numbers of points and can cause false
matching. Our method is like softmax [8,42] and allows
for uncertainty.
3.1. Shape features for the continuous-contour representation

The local and global features for the continuous-con-
tour representation are illustrated in Fig. 2.

The local features at a point x(si) with tangent angle wi

are defined as follows. Choose six points on the curve by

ðxðsi � 3dsÞ; xðsi � 2dsÞ; xðsi � dsÞ; xðsi þ dsÞ;
xðsi þ 2dsÞ; xðsi þ 3dsÞÞ;

ð22Þ

where ds is a small constant (ds = 0.01 in our experiments).
The angles of these positions with respect to the point xi

are (wi + xj,j = 1, . . . ,6). The local features are hl(xi) =
(xj,j = 1, . . . ,6).

The global features are selected in a similar way. We
choose six points near x(si), with tangent angle wi, to be

ðxðsi � 3DsÞ; xðsi � 2DsÞ; xðsi � DsÞ; xðsi þ DsÞ;
xðsi þ 2DsÞ; xðsi þ 3DsÞÞ;

ð23Þ

where Ds is a large constant (Ds = 0.1 in our experiments),
with angles wi + uj:j = 1, . . . ,6. The global features are
hg(xi) = (uj,j = 1, . . . ,6). Observe that the features / =
(hl,hg) are invariant to rotations in the image plane.



Fig. 2. The features and the similarity measure. (a) Illustrates how the local and global features are measured for the complete-contour representation. The
left window shows the angles computed at the local neighboring points which are used to compute the local shape features. The right window shows the
angles computed in larger neightborhoods to compute the global features. (b) Displays the featuers of two points in shape X and Y. As angles have
periodic property, we show the a angle vectors by their sinusoid values. As we can see, the corresponding points i on X and a on Y, andkon X and b on Y

have similar features. The left and right figure in (c) plot the similarities between point a on Y with respect to all points in X using the shape context (on
sparse point) feature and angle features (on complete-contour) respectively. As we can see similarities by features defined in this paper for connected points
have lower entropy than these given by shape contexts. They are less ambiguous and more informative.
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These shape features are informative for matching.
Fig. 2b plots sinusoids (sin(hl),sin(hg)) for two points on
X and two points on Y. Observe the similarity between
these features on the corresponding points.

The similarity measure between the two points is defined
to be:

qcð/ðxiÞ;/ðyaÞÞ ¼ 1� c1

X6

j¼1

DangleðxjðxiÞ � xjðyaÞÞ
(

þ
X6

j¼1

DangleðujðxiÞ � ujðyaÞÞ
)
; ð24Þ

where Dangle(xj(xi) � xj(ya)) is the minimal angle from
xj(xi) to xj(ya) (i.e. modulo 2p), and c1 is a normalization
constant. The right panel in Fig. 2c plots the vector
qc(y) = [qc(/(xi),/(y)),i = 1..M] as a function of i for points
ya and yb on Y, respectively.
3.2. Shape features for the sparse-point representation

In this case, we also use local and global features. To
obtain the local feature for point xi, we draw a circle with
radius r (in our experiments r ¼ 9:0� �r, where �r is the aver-
age distance between points) and collect all the points that
fall within the circle. The angles of these points relative to
xi are computed. The histogram of these angles is then used
as the local feature, Hl. Observe that this representation is
not invariant to rotation.

The global feature for the sparse points is computed by
shape contexts [4] to give a histogram Hg (60 histogram
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bins are used in the experiments). The local and global fea-
tures are represented together as / = (Hl,Hg).

The feature similarity between two points xi and ya is
measured by the v2 distance on the histograms:

qsð/ðxiÞ;/ðyaÞÞ ¼ 1� c2fv2ðH lðxiÞ;H lðyaÞÞ
þ v2ðH gðxiÞ;HgðyaÞÞg: ð25Þ

To show the effectiveness of these features, the left panel of
Fig. 2c plots the vector

qsðyaÞ ¼ ½qsð/ðxiÞ;/ðyaÞÞ; i ¼ 1 . . . M � ð26Þ

as a function of i for a point ya on Y.
The features for the sparse-point representation are gen-

erally less informative than those for the continuous-con-
tour representation. For example, the shape context
features [4] and histogram similarity measures tend to have
high entropy, see Fig. 2c.
4. The full algorithm

Our complete algorithm combines aspects of the genera-
tive and the discriminative (data-driven) models. We first
use the discriminative model to help initialize the algorithm,
see Section 4.1. Then we use the M-step from the generative
model and the E-step from the discriminative model.

Both steps are guaranteed to decrease the free energy of
the corresponding model, but there is no guarantee that the
M-step will decrease the free energy for the discriminative
model—or that the E-step will decrease the free energy
for the generative model. Nevertheless out computer simu-
lations show that they always do.
4.1. Initialization

We use the discriminative model for initialization. In
this paper, we only initialize with respect to h since the rest
of the algorithm was fairly insensitive to other global
parameters such as scaling.

In theory, the initialization should be done by marginal-
izing over the irrelevant variables. To estimate the full
affine transformation A we should compute P(AjX,Y),
and to estimate the angle h we should compute P(hjX,Y).
But these computations are impractical for either the gen-
erative or discriminative models.

Instead we use an approximation PIn(hjX,Y) motivated
by the discriminative model,
Fig. 3. The distribution it p(hjX,Y), shown in (f), has three modes for a targ
possible values for h are shown in (c), (d), and (e).
P InðhjX ; Y Þ ¼
XM

i¼1

XN

a¼1

qð/ðxiÞ;/ðyaÞÞdðh� hða; i;X ; Y ÞÞ;

ð27Þ

where q(.,.) = qc(.,.) or qs(.,.) depending on whether we use
the continuous-contour or sparse-point representation.
Here, h(a,i,X,Y) is the estimated angle if we match point i

on X to point a on Y.
We evaluate the distribution PIn(hjX,Y) using mean-

shift clustering to obtain several modes. The peaks of this
distribution gives estimates for the initial values of hinitial.
In rare cases, the distribution will have several peaks. For
example, suppose we are matching the equilateral trian-
gles shown in Fig. 3. In this case PIn(hjX,Y) will have
three peaks, and we will have to consider initializations
based on each peak.

To initialize the continuous-contour representation, we
can exploit the rotational invariance of the features. This
means that we only need to evaluate them for a small set
of angles. But for the sparse-point representation, the fea-
tures are not invariant to rotation.

In rare cases, we will require to sum over several modes.
For example, three modes ðh�; h�1; h

�
2Þ are required when

matching two equal lateral triangles, see Fig. 3.
4.2. The E step: approximating Q(V)

The features for the continuous-contour representation
are altered after the initialization by incorporating the local
tangent angle wi at each point. This makes these features
rotation dependent.

We also augment the similarity measure by including the
scaled relative position of the point to the center of the
shape. For a point xi on the target shape, this gives
xi � �x where �x ¼ 1

M

P
ixi. We compute a similar measure

ya � �y, with �y ¼ 1
N

P
aya. The full similarity measure is

defined to be:

q0cð/ðxiÞ;/ðyaÞÞ ¼ 1� c1

X6

j¼1

½DangleðxjðxiÞ � xjðyaÞÞ

þ DangleðujðxiÞ � ujðyaÞÞÞ� � c2kðxi � �xÞ
� ðya � �yÞk2

: ð28Þ

where c1 = 0.7 and c2 = 0.8 in our implementation.
This gives a factorized probability model:
et shape X, shown in (a), and a source shape Y, shown in (b). The three
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P DðV jX ; Y ;A; fÞ ¼
Y

a

P Dðvajya;X ;A; fÞ: ð29Þ

where

P Dðva ¼ ijya;X ;A; fÞ ¼
q0cð/ðxiÞ;/ðAya þ fðyaÞÞÞPM

j¼1

q0cð/ðxjÞ;/ðAya þ fðyaÞÞÞ
: ð30Þ
Fig. 5. Illustration of the decrease of generative free energy and
discriminative free energy by our algorithm. We see that both the free
energies consistently decrease w.r.t time.
4.3. The M step: estimating A and f

The M-step corresponds to minimizing the following
energy function with respect to (A,f):

EMðA;fÞ¼
X

i

X
a

P Dði;aÞkxi�Aya� fðyaÞk
2þEAðAÞþEf ðfÞ;

ð31Þ

where PD(i,a) = PD(va = ijya,X,A,f).
Recall that we write fðyaÞ ¼ tþ

PM
b¼1wbUðya � ybÞ. We

re-express the energy as:

EMðA; fwbg; tÞ ¼
X

i

X
a

P Dði; aÞkxi � Aya � t

�
XM

b¼1

wbUðya � ybÞk
2 þ EAðAÞ

þ k
XN

a;b¼1

wT
b Uðyb � yaÞwa: ð32Þ

We take the derivatives of EM with respect to A,{wb},t and
set them to zero:

XM

i¼1

XN

a¼1

P Dði;aÞfAyaþ tþ
XN

b¼1

wbUðya�ybÞg¼
XM

i¼1

XN

a¼1

P Dði;aÞxi;

k
XM

c¼1

Uðyc�ybÞwcþ
XN

a¼1

XM

i¼1

P Dði;aÞUðya�ybÞfAyaþ t

þ
XM

c¼1

Uðya�ycÞwcg¼
X

i

X
a

P Dði;aÞUðya�ybÞfxi�Ayag;

ð33Þ
Fig. 4. The dynamics of the algo
XM

i¼1

XN

a¼1

X2

q¼1

Alqya;qya;m þ ð1=2Þ oEA

oAlm
þ
XN

i¼1

XM

a¼1

XM

b¼1

P Dði; aÞ

� wb;lUðya � ybÞ ¼
XM

i¼1

XN

a¼1

P Dði; aÞxi;l: ð34Þ
Here l,m,q are the spatial indices, the partial derivative of
EA is evaluated at the previous state.

Eq. (34) gives a set of linear equations in A,{wb},t, which
can be solved by complicated variant of the techniques
described in [4].
4.4. Summary of the algorithm

The algorithm proceeds as follows:
(1) Given a target shape X and a source shape Y, it com-
putes their shape features and estimates the rotation
angle(s) h0.
rithm for the horse example.
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(2) For each rotation angle h0, rotate the shape Y by h0

to Y h0
. Initialize the remaining transformations to

be the identity.
(3) Estimate the features for the rotated shape Y h0

. Use
these to initialize Q(V) using the E-step of the dis-
criminative model.

(4) Calculate (A,f) by performing the M-step for the gen-
erative model (using a quadratic approximation).

(5) Transform Y by (A,f), then repeat the last two stages
for M iterations.

(6) Compute the similarity measure P(X,A*,f*jY) accord-
ing to Eq. (6) and keep the best (A*,f*).

In practice, we found that M = 4 iterations was typi-
cally a sufficient number of iterations because of the
effectiveness of the features (the shape context algorithm
[4] uses M = 3). We needed M = 10 iterations for the
Fig. 6. The MPEG
experiments in Section 5.3. The algorithm runs at 0.2 s
for matching X and Y of around 100 points on PC with
2.0 Ghz.

Fig. 4 gives an example of the algorithm where the
source shape Y in (d) is matched with the target shape
X. Fig. 4e and f show the estimated transformation A*

and f*.
Fig. 5 shows the generative and discriminative free ener-

gies plotted for the example. Observe that both decrease
monotonically.
5. Experiments

We tested our algorithm on standard shape matching data-
sets and for grey level image tasks such as registration, recog-
nition, and foreground/background segmentation. We use
7 CE-Shape-1.



Table 1
The retrieval rates of different algorithms for the MPEG7 CE-Shape-1

Algorithm CSS Visual parts Shape contexts Curve edit distance Our method

Recognition rate 75.44% 76.45% 76.51% [4] 78.17% [32] 80.03%

The results by the other algorighms are taken from Sebastian et al. [32].
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the continuous-contour representation for examples 5.1, 5.2,
and 5.4 and the sparse-point representation for the remainder.
5.1. MPEG7 shape database

We first tested our algorithm on the MPEG7 CE-Shape-1
[18] database. This database contains 70 types of objects each
Fig. 7. The Kimin data set fo 99 sha
of which has 20 different silhouette images, giving a total of
1400 silhouettes. Since the input images are binarized, we can
extract the contours and use the continuous-contour repre-
sentation. Fig. 6a displays two images for each object type.
The task is to do retrieval and the recognition rate is mea-
sured by the Bull’s eye criterion [18]. A single shape is pre-
sented as a query and the top 40 matches are obtained.
pes and some matching results.
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This is repeated for every shape and the number of correct
matches (out of a maximum total of 20) are obtained.

The recognition rates for different algorithms are given
in Table 1. On this dataset our algorithm outperforms
the alternatives. The speed is in the same range as those
of shape contexts [4] and curve edit distance [32].

5.2. The Kimia data set

We then tested the identical algorithm (i.e. continuous-
contour representation and with the same algorithm
parameters) on the Kimia data set of 99 shapes [33]. These
are shown in Fig. 7a. For each shape, the 10 best matches
are picked (since there are 10 other images in the same cat-
egory). Table 2 shows the numbers of correct matches. Our
method performs similarly to Shock Edit [33] for the top 7
matches, but is worse for the remainder. Shape context per-
forms worse than either algorithm on this task. Fig. 7b
shows the 15 top matches for some shapes.

The reason that our algorithm does worse than Shock
Edit on the last three examples is because the geometric
Fig. 8. Some results on the Chu

Table 2
The number of matched shapes by the different algorithms

Algorithm Top 1 Top 2 Top 3 Top 4 T

Shock edit 99 99 99 98 9
Our method 99 97 99 98 9
Shape contexts 97 91 88 85 8

The results by the other algorithms are due to Sebastian et al. [33].
deformations involve the presence or absence of parts,
see Fig. 7. Our model does not take these types of geomet-
ric transformation into account. Dealing with them
requires a more sophisticated shape representation.
5.3. Chui and Rangarajan data set

We tested our algorithm on data supplied by Chui and
Rangarajan [8]. This data includes noise points in the target
shape. We use the sparse-point representation since we do
not have a closed contour for each shape.

The algorithm runs for 10 steps for this dataset and
results are given in Fig. 8. The quality of our results are
similar to those reported in [8]. But our algorithm runs
an estimated 20 times fewer iteration steps.
5.4. Text image matching

The algorithm was also tested on real images of text in
which binarization was performed by the method described
i and Rangarajan data set.

op 5 Top 6 Top 7 Top 8 Top 9 Top 10

8 97 96 95 93 82
6 96 94 83 75 48
4 77 75 66 56 37



Fig. 9. Results on some text images, (c) and (i) display the matching. We purposely superimpose two shapes extracted from different images together and
make a new input. Our algorithm is robust in this case.

Fig. 10. Foreground/background segmentation: (a) input image; (b) the probability map BEL; (c) the product of BEL map and the canny edge map; (d)
sampled points according to the probability (c); (e) the template; (f) (i) the result after the first. The third. The 7th and 10th iteration; (j) the segmented
foreground according to the matching result.

Fig. 11. Medical image registration: (a) the unregistered image: (b) the telplate image: (c) (d) the SIFT key points for the unregistered and template images;
(c) the matching result; (f) the registered image.

Z. Tu et al. / Computer Vision and Image Understanding 109 (2008) 290–304 301
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in [7], followed by boundary extraction. This enabled us to
perform shape matching using the continuous-contour rep-
resentation. Several examples are shown in Fig. 9. Similar
results can be obtained by matching the model to edges
in the image.

5.5. Foreground/background segmentation

Our next example is a foreground/background segmen-
tation task. The input is a grey level image with a horse in
the foreground. In this case, binarization and edge detec-
tion techniques are unable to estimate the boundary of
the horse. Instead we use a novel boundary detector
named Boosted Edge Learning (BEL) [10] which is learnt
from training data and makes use of local image context.
Fig. 12. Examples of registration results; (a) MRI registration; (b) registration
image to an MR image; (d) registration and unregistered PD image to T2 ima
BEL is applied to all points on the Canny edge map of
the image. The output of BEL is a probability map which
gives the probability that each pixel is on the edge of the
horse. We sample from this probability map to obtain 300
points which we use as the sparse-point representation of
the target shape.

The source shape is represented by 300 points randomly
sampled from the silhouette of a horse. Fig. 10 shows an
example on horse data [6].
5.6. Application to medical image registration

Finally we applied our algorithm to the task of register-
ing medical images. This is an important practical task
and unregistered T2 image to T1 image; (c) registration an unregistered CT
ge.
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which has been addressed by a variety of methods [23]
including mutual information [22,29,40].

In this example, we used SIFT [20] to detect interest-
points which we use as sparse-point representations for
the target and source shapes. Then we applied our shape
matching algorithm. The SIFT features are invariant to
rotation and scaling, so we do not need to recalculate them
as the algorithm proceeds.

Fig. 11 shows the registration process using our shape
matching method. Fig. 12 shows more results of registra-
tion between different modalities of images, such as Com-
puted Tomography (CT) versus Magnetic Resonance
Imaging (MRI), Proton Density (PD) versus MRI, and
we see that the registered results are very good.

Previous authors have applied SIFT to medical image
registration [25,38]. But these papers used SIFT features
and the shape context model [4] and so did not take uncer-
tainty into account.

6. Conclusion

In this paper, we presented an efficient algorithm for
shape matching, recognition, and registration. We defined
a generative and discriminative models and discussed their
relationships to softassign [8] and shape contexts [4]. We
used an EM algorithm for inference by exploiting proper-
ties of both models. A key element is the use of informative
shape features to guide the algorithm to rapid and correct
solutions. We illustrated our approach on datasets of bin-
ary and real images, and gave comparison to other meth-
ods. Our algorithm runs at speeds which are either
comparable to other algorithms or considerably faster.

Our work is currently limited by the types of representa-
tions we used and the transformations we allow. For exam-
ple, it would give poor results for shape composed of parts
that can deform independently (e.g., human figures). For
such objects, we would need representations based on sym-
metry axes such as skeletons [32] and parts [44].
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