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Abstract

In this paper, we propose a new skeleton detection method that is geometry-aware and
can be learned in an end-to-end fashion. Recent approaches in this area are based pri-
marily on the holistically-nested edge detector (HED) that is learned in a fundamentally
bottom-up fashion by minimizing a pixel-wise cross-entropy loss. Here, we introduce
a new objective function inspired by the Hausdorff distance that carries both global and
local shape information and is made differentiable through an end-to-end neural network
framework. When compared with the existing approaches on several widely adopted
skeleton benchmarks, our method achieves state-of-the-art results under the standard
F-measure. This sheds some light towards directly incorporating shape and geometric
constraints in an end-to-end fashion for image segmentation and detection problems —
a viewpoint that has been mostly neglected in the past.

1 Introduction

An object skeleton is a compact visual representation that captures the centerline and the
symmetric axis of an object [1]. A wide range of computer vision applications have adopted
the skeleton representation in their systems, including pose estimation [28, 33, 36], object
segmentation [11, 20], scene text detection [3], and character recognition [34]. It is generally
observed that an object skeleton exhibits both global (e.g. medial axis [29, 30, 41]) and local
(e.g. continuity, local symmetry, and junctions [7, 18]) geometric properties.

Object skeleton extraction is a long standing problem in computer vision. Early ap-
proaches [10, 16, 17, 38] are based on classic image processing techniques using morpholog-
ical operators. Learning-based approaches, particularly the ones based on deep convolutional
neural networks (CNNs), have become increasingly popular. A number of recent methods
[14, 19, 26, 27, 35, 40] build their skeleton extraction systems on top of the holistically-
nested edge detector (HED) [37], making use of a balanced cross-entropy loss within a
deeply-supervised [15] fully convolutional neural networks (FCN) [22] framework. These
skeleton extraction algorithms demonstrate various properties focusing on different aspects,
e.g. scale separation and aggregation [26, 27], structural architecture design [14, 19, 40], and
rich intermediate representation [35].
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Figure 1: Qualitative comparison between a HED-based skeleton detection method [40] and ot
proposed method. Left: an input image and its ground-truth skeleton. Middle: predicted skeleton me
(the rst row) and a superimposed version with the ground-truth in the input image (the second row)
the yellow dashed circle indicates an unsatisfactory area with a blurry effect on elephant's back; purp
rectangles show some false positives. Right: predicted skeleton map (the rst row) by our method ar
a superimposed version with the ground-truth in the input image (the second row).

HED was originally designed to perform end-to-end edge detection. It adopts an image
to-image prediction framework by learning a family of nested edge features beyond imag
gradients. The weighted cross-entropy loss in HED is customized for edge detection, cr
ating a performance gap when applied to skeleton detection. The pixel-wise cross-entro|
loss is most effective for the semantic labeling [5] and edge detection task [37], makin
dense pixel-wise prediction based primarily on local image contents. A skeleton, howeve
observes strong geometric properties with structural information capturing the long-rang
contextual shape informatioe. symmetry). Figure 1 shows a typical example where the
result by a standard HED-based skeleton detector [40] outputs a blurry skeleton for the ma
body of the elephant. In addition, a pixel-wise loss makes an independence assumpti
for each pixel, rendering violations to the global and local geometric constraints that ar
commonly observed for object skeletons. HED-based models learn rich hierarchical edg
features, but the learning process is not made geometry-aware explicitly. Existing metho
in this domain instead rely on a separate post-processing step [40] which often has a limit
scope of success and cannot correct large mistakes. Figure 1 again shows an failure ¢
where signi cant false positive and false negative are present, which is dif cult to be xed
by a standard post-processing algorithm.

Motivated by the above observations, we develop a new convolutional neural networ
based skeleton detector (namedG@asoSkeletonNgby introducing a geometry-aware ob-
jective. Speci cally, the training objective (still learned end-to-end) consists of a weighted
Hausdorff distance and a geometrically weighted cross-entropy loss, providing the glob:
and local geometric constraints. In addition, an extra patch-based point loss is added to t
overall objective in order to employ the local geometric constraints. Our proposed algo
rithm mitigates the limitation in the existing skeleton detection methods [19, 26, 27, 40] tha
do not take into account explicit geometric constraints in training. Figure 1 shows the ac
vantage of our geometry-aware framework when compared with a standard learning-bas
object skeleton extraction system.

The main properties of our GeoSkeletonNet are summarized as follows: (1) we propos



