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Abstract

In this paper, we propose a new skeleton detection method that is geometry-aware and
can be learned in an end-to-end fashion. Recent approaches in this area are based pri-
marily on the holistically-nested edge detector (HED) that is learned in a fundamentally
bottom-up fashion by minimizing a pixel-wise cross-entropy loss. Here, we introduce
a new objective function inspired by the Hausdorff distance that carries both global and
local shape information and is made differentiable through an end-to-end neural network
framework. When compared with the existing approaches on several widely adopted
skeleton benchmarks, our method achieves state-of-the-art results under the standard
F-measure. This sheds some light towards directly incorporating shape and geometric
constraints in an end-to-end fashion for image segmentation and detection problems —
a viewpoint that has been mostly neglected in the past.

1 Introduction
An object skeleton is a compact visual representation that captures the centerline and the
symmetric axis of an object [1]. A wide range of computer vision applications have adopted
the skeleton representation in their systems, including pose estimation [28, 33, 36], object
segmentation [11, 20], scene text detection [3], and character recognition [34]. It is generally
observed that an object skeleton exhibits both global (e.g. medial axis [29, 30, 41]) and local
(e.g. continuity, local symmetry, and junctions [7, 18]) geometric properties.

Object skeleton extraction is a long standing problem in computer vision. Early ap-
proaches [10, 16, 17, 38] are based on classic image processing techniques using morpholog-
ical operators. Learning-based approaches, particularly the ones based on deep convolutional
neural networks (CNNs), have become increasingly popular. A number of recent methods
[14, 19, 26, 27, 35, 40] build their skeleton extraction systems on top of the holistically-
nested edge detector (HED) [37], making use of a balanced cross-entropy loss within a
deeply-supervised [15] fully convolutional neural networks (FCN) [22] framework. These
skeleton extraction algorithms demonstrate various properties focusing on different aspects,
e.g. scale separation and aggregation [26, 27], structural architecture design [14, 19, 40], and
rich intermediate representation [35].
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Image and Ground-truth Previous HED-based Method GeoSkeletonNet

Figure 1: Qualitative comparison between a HED-based skeleton detection method [40] and our
proposed method. Left: an input image and its ground-truth skeleton. Middle: predicted skeleton map
(the first row) and a superimposed version with the ground-truth in the input image (the second row);
the yellow dashed circle indicates an unsatisfactory area with a blurry effect on elephant’s back; purple
rectangles show some false positives. Right: predicted skeleton map (the first row) by our method and
a superimposed version with the ground-truth in the input image (the second row).

HED was originally designed to perform end-to-end edge detection. It adopts an image-
to-image prediction framework by learning a family of nested edge features beyond image
gradients. The weighted cross-entropy loss in HED is customized for edge detection, cre-
ating a performance gap when applied to skeleton detection. The pixel-wise cross-entropy
loss is most effective for the semantic labeling [5] and edge detection task [37], making
dense pixel-wise prediction based primarily on local image contents. A skeleton, however,
observes strong geometric properties with structural information capturing the long-range
contextual shape information (e.g. symmetry). Figure 1 shows a typical example where the
result by a standard HED-based skeleton detector [40] outputs a blurry skeleton for the main
body of the elephant. In addition, a pixel-wise loss makes an independence assumption
for each pixel, rendering violations to the global and local geometric constraints that are
commonly observed for object skeletons. HED-based models learn rich hierarchical edge
features, but the learning process is not made geometry-aware explicitly. Existing methods
in this domain instead rely on a separate post-processing step [40] which often has a limited
scope of success and cannot correct large mistakes. Figure 1 again shows an failure case
where significant false positive and false negative are present, which is difficult to be fixed
by a standard post-processing algorithm.

Motivated by the above observations, we develop a new convolutional neural network
based skeleton detector (named as GeoSkeletonNet) by introducing a geometry-aware ob-
jective. Specifically, the training objective (still learned end-to-end) consists of a weighted
Hausdorff distance and a geometrically weighted cross-entropy loss, providing the global
and local geometric constraints. In addition, an extra patch-based point loss is added to the
overall objective in order to employ the local geometric constraints. Our proposed algo-
rithm mitigates the limitation in the existing skeleton detection methods [19, 26, 27, 40] that
do not take into account explicit geometric constraints in training. Figure 1 shows the ad-
vantage of our geometry-aware framework when compared with a standard learning-based
object skeleton extraction system.

The main properties of our GeoSkeletonNet are summarized as follows: (1) we propose
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to incorporate a geometry-aware objective property within an end-to-end the skeleton de-
tection framework, (2) we adopt a weighted Hausdorff distance and design a geometrically
weighted cross-entropy loss, while utilizing a patch-based point loss for local constraints, (3)
GeoSkeletonNet demonstrates state-of-the-art results on five skeleton detection benchmarks,
outperforming recent competing methods in this domain [14, 19, 26, 27, 35, 40].

2 Related Work
The task of skeleton detection has been long studied [1], both in computer vision [17] and
medical imaging [29]. We refer to a recent paper [35] for a relative comprehensive discussion
about the literature in this subject. Here, we primarily discuss some recent deep learning
based skeleton detection algorithms.

Existing Skeleton Detection Methods. Most recent skeleton detection algorithms [14,
19, 26, 35, 40] are built on top of the holistically-nested edge detector (HED) [37]. Shen
et al. [26] propose to enforce the side output of deep supervision with a specific receptive
field to match the skeleton at the corresponding scale. Ke et al. [14] attempt to apply bi-
directional residual learning to side outputs, aiming at a larger receptive field. Liu et al.
[19] generalize the residual unit in [14] by employing the linear span unit, which improves
the expressiveness of side outputs. Zhao et al. [40] design a hierarchical fusion architecture
in the deep supervision to further enrich the representation of side outputs. However, all
above approaches merely modify the network structure, especially the deeply supervised
part, yet still suffer from the side effects of the pixel-wise loss. Recently, Wang et al. [35]
propose to change the skeleton prediction from the probability-based map to the flux-based
vector field. The flux representation encodes the local geometric relationship between image
pixels and skeletal points, but this representation is difficult to learn accurately, which leads
to many discontinuities in the predicted skeleton map after post-processing. In contrast,
our approach keeps the probability-based skeleton map, while injecting the local and global
geometric relation between the prediction and the ground-truth into the objective function,
which boosts the overall performance and maintain the visual continuity.

Geometry-aware Distances in Vision. In computer vision, geometry-aware distances has
been widely adopted, especially in object matching [6], face recognition [12] and image
retrieval [9]. In the deep learning era, geometry-aware distances have been employed in tasks
such as 3D object reconstruction [8] and object localization [24]: Fan et al. attempts to build
a shape reconstruction framework based on point cloud representation, which minimizes the
Chamfer distance and the Earth-mover distance between the prediction and the ground-truth.
Ribera et al. [24] proposes to relax the Hausdorff distance and optimize it on the location
probability map in the object localization task. Inspired by [24], we adopt the weighted
Hausdorff distance in the objective function for skeleton detection. Besides, we augment
the objective with a geometrically weighted cross-entropy loss and a patch-based point loss,
which provides additional global and local geometric constraints.

3 Method

3.1 Problem Formulation
Consider a training dataset {(Xk,Γk),k = 1,2, ...,K}, where Xk and Γk respectively refer
to the k-th input image and its corresponding ground-truth skeleton. Note that Γk is an
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explicit vectorized representation encoding the object centerline. K is the total number of
training images. In the literature, Γ was represented in various forms, e.g. the medial axis
[29] or the shock graph [30] representation. The simplest form of Γk can be in a parametric
representation Γk = (i(s), j(s) : s∈ [0,1]) where (i(s), j(s)) indicates each 2D skeleton point
(i(s), j(s)) parameterized by s. For notational simplicity, we drop k by considering only one
image X in the training set, {(X,Γ)}.

To facilitate our training process, skeleton Γ is converted into a label map:
Y = (y(i, j);(i, j) ∈ Λ), where y(i, j) = 1 if pixel (i, j) is on the skeleton, and y(i, j) = 0 other-
wise. Thus, our training set is simplified to {(X,Y)}, where X refers to the input image and
Y denotes the corresponding ground-truth label map. For X, its image lattice that includes
all the pixels is defined as Λ = {(i, j), i = 1..Height, j = 1..Width} where Height and Width
refer to the height and width of image X respectively.

3.2 Geometry-aware Objective Function

3.2.1 Revisit the Weighted Cross-entropy Loss

Given a training image X together with its ground-truth label map Y, our goal is to learn,
in an end-to-end fashion, a neural network model to predict Ŷ = (ŷ(i, j);(i, j) ∈ Λ) where
ŷ(i, j) ∈ {0,1} that is as faithful as possible to the ground-truth Y = (y(i, j);(i, j) ∈ Λ). We
further define a positive set Y+ = {(i, j);y(i, j) = 1} and a negative set Y− = {(i, j);y(i, j) = 0},
to have separate notations for the skeleton and background pixels.

To make the learning process differentiable, the hard prediction map Ŷ is relaxed by
a soft probability map P = (p(i, j);(i, j) ∈ Λ). Typically, a neural network model can be
learned through a pixel-wise cross-entropy loss between the predicted probability map P and
the ground-truth Y. Specifically, in [14, 19, 26, 27, 40], a weighted cross-entropy (WC)
proposed by [37] is used to tackle the problem of an imbalanced dataset:

LWC =−β ∑
a∈Y+

log pa− (1−β ) ∑
a∈Y−

log(1− pa), (1)

where β = |Y−|/|Λ| and 1−β = |Y+|/|Λ|. However, the pixel-wise loss in Equation 1 basi-
cally evaluates all pixels independently and is absent of explicit geometric constraints, which
are important prior for tasks like skeleton extraction. A result obtained by such a loss is il-
lustrated in Figure 1, showing problems in localization, precision, and structural consistency.

3.2.2 Weighted Hausdorff Distance

To combat the problem described above, we introduce geometry-aware loss in training to
take into account both global and local geometry of the learned skeletons. Following our
previous notations, let Y+ and Ŷ+ be the set of skeleton pixels for the ground-truth and pre-
diction respectively. We adopt a Hausdorff distance (HD) to capture the geometric relation
between these two sets. For two point sets Ŷ+ and Y+, the Hausdorff distance is computed
as:

DH = max(max
b∈Ŷ+

min
a∈Y+

d(b,a),max
a∈Y+

min
b∈Ŷ+

d(a,b)). (2)

where d(x,y) is the Euclidean distance between point a and b. To increase the robustness of
the Hausdorff distance measure against the outliers due to the max operation, a variant of the

Citation
Citation
{Siddiqi and Pizer} 2008

Citation
Citation
{Siddiqi, Shokoufandeh, Dickinson, and Zucker} 1999

Citation
Citation
{Ke, Chen, Jiao, Zhao, and Ye} 2017

Citation
Citation
{Liu, Ke, Qin, and Ye} 2018

Citation
Citation
{Shen, Zhao, Jiang, Wang, Zhang, and Bai} 2016{}

Citation
Citation
{Shen, Zhao, Jiang, Wang, Bai, and Yuille} 2017

Citation
Citation
{Zhao, Shen, Gao, Li, and Cheng} 2018

Citation
Citation
{Xie and Tu} 2015



XU ET AL.: GEOMETRY-AWARE END-TO-END SKELETON DETECTION 5

Hausdorff distance, the average Hausdorff distance (AHD) is adopted:

DAH =
1∣∣∣Ŷ+∣∣∣ ∑

b∈Ŷ+

min
a∈Y+

d(b,a)+
1
|Y+| ∑

a∈Y+

min
b∈Ŷ+

d(a,b). (3)

Adding geometric constraints such as Equation 2 and 3 to a problem that exhibits a strong
shape prior seems to be natural step to take. However, making geometry-aware loss in an
end-to-end learning framework has been under-explored, due primarily to the difficulty in
making the loss differentiable through back-propagation. In this paper, we combat this issue
by adopting a weighted Hausdorff distance (WHD) that was originally proposed in [24] for
object detection/localization:

DWH =
1

|Ỹ+|+ ε
∑
b∈Λ

pb min
a∈Y+

d(b,a)+
1
|Y+| ∑

a∈Y+

min
b∈Λ

d(a,b)+ ε

(pb)α + ε/dmax
, (4)

where |Ỹ+| = ∑b∈Λ pb is an estimate of the number of positive skeletal points in prediction.
ε is a small positive number (e.g. 10−6) to avoid zero numerator and denominator and dmax
is the length of diagonal of the skeleton map. When pb takes one of the two extreme values
∈ {0,1}, the weighted Hausdorff distance reduces to the average Hausdorff distance [24].
Note the difference between our method and that in [24] where the main focus of [24] is
to use a WHD to better localize the object whereas our motivation is to employ WHD as a
geometry-aware loss for end-to-end learning of image-to-image prediction.

The weighted Hausdorff distance enjoys the benefit of capturing a shape constraint be-
yond pixel-wise prediction, encouraging both local and global shape match between the
predicted and the ground-truth skeletons. This is a much needed property in the current end-
to-end skeleton learning frameworks but remains largely absent in the previous literature.

3.2.3 Patch-based Point Loss

Including the WHD in the objective function reduces the blurry artifacts and makes the pre-
dictions better localized. However, directly training on WHD is unstable and disconnected
skeleton segments are still present. To address this issue, we add an additional patch-based
point loss (PPL) term. PPL aims to minimize the difference between the number of points
in P above a specified threshold λT and the number of points in Y. To prevent the predicted
skeleton from becoming too thick and to enforce local geometric regularities, we apply the
proposed point loss in a patch-wise manner.

We divide the image into patches in a grid like manner with the patch size M×M. Each
patch coordinate set Λi, j can be represented as a strict subset of Λ such that Λ =

⋃
Λi, j.

p̃b represents the probability at the position b if it greater than λT , else it is 0. Thus, the
patch-based point loss term LPPL is formulated as:

LPPL = ∑
Λi, j

∣∣∣∣∣∣ ∑
b∈Λi, j

p̃b−
∣∣Λi, j ∩Y+

∣∣∣∣∣∣∣∣ . (5)

3.2.4 Geometrically Weighted Cross-entropy Loss

Based on the weighted Hausdorff distance in Equation 4, we further adapt the weighted
cross-entropy in Equation 1 to incorporate geometric awareness. For the predicted probabil-
ities corresponding to negative ground-truth points, we scale each pixel-wise cross-entropy
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Figure 2: Schematic illustration of the network architecture of our GeoSkeletonNet framework.

term by multiplying with a geometric distance between current point and its nearest positive
point in the ground-truth:

LGWC =−β ∑
a∈Y+

log pa− (1−β ) ∑
b∈Y−

min
a∈Y+

d(a,b)γ log(1− pb). (6)

where γ is a hyper-parameter to adjust the effect of distance. The second term in LGWC
resembles the first term in DWH, which brings similar benefits such as removing unwanted
blurs and background noise. In practice, this geometrically weighted cross-entropy loss
works significantly well in enhancing the overall performance.

Combining the weighted Hausdorff distance, patch-based point loss and the geometri-
cally weighted cross-entropy loss, the final objective function L is represented as:

L= λ1DWH +λ2LPPL +λ3LGWC. (7)

3.3 Network Architecture
Figure 2 displays the neural network architecture for our model. We follow the network
design from [35]: The VGG-16 [31] network is used as the feature backbone for fair com-
parison with other approaches. On top of the last convolutional layer (conv5_3) of VGG
network, the atrous spatial pyramid pooling (ASPP) [4] is applied to enlarge the receptive
field. Then, to construct a multi-scale intermediate feature map, we fuse the ASPP output
and VGG side outputs (conv3_3, conv4_3, conv5_3) after 1x1 convolutions and bilinear up-
sampling kernels. We convert the intermediate feature map to a single channel probability
map with original image size as prediction.

4 Experiments

4.1 Datasets
We evaluate our method on five major datasets for skeleton detection: SK-LARGE [27],
SK-SMALL [26], SYM-PASCAL [14], SYMMAX300 [32] and WH-SYMMAX [25]. Im-
ages in SK-LARGE and SK-SMALL are selected from MS COCO dataset [13] with single
object, while the ones in SYM-PASCAL may have multiple objects. SYMMAX300 and
WH-SYMMAX are adapted from the BSDS dataset [23] and the Weizmann Horse dataset
[2] respectively.
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Figure 3: Qualitative comparison with the existing methods. We show four examples from four bench-
mark datasets including (a), (b), (c) and (d) that are from SK-LARGE, SK-SMALL, WH-SYMMAX
and SYM-PASCAL respectively. The skeleton maps are the predictions by the competing method and
ours, before the non-maximum suppression operation (NMS).

4.2 Evaluation Protocol

PR Curve and F-measure ODS. After obtaining the predicted probability map P from the
network, we apply the standard non-maximum suppression (NMS) to P and threshold it by
δ ∈ {0.01, ...,0.99} to create the actual skeleton map Ŷδ . We evaluate the performance of
the model by the Precision-Recall (PR) curve of Ŷδ in the dataset over all thresholds. In
addition, the optimal F-measure on the PR curve, named as F-measure at Optimal Dataset
Scale (ODS), is used as evaluation metric as well.

4.3 Implementation Details

Training Settings. We build our network and pipeline in PyTorch and run the experiments
on NVIDIA TITAN X GPUs. In the experiments, we use the Adam optimizer with the
learning rate of 0.0001 and momentum coefficients β1 = 0.9,β2 = 0.999. Batch size is set
as 1 due to the GPU memory limitation, but we track the average gradients every 10 batches
and update the weights once, which indicates an equivalent batch size of 10. In the loss
terms, we set α = 4, ε = 10−6, as recommended by [24], and γ = 0.5 due to the ablation
study. In LPPL, the patch size M = 32 and the threshold λT = 0.95. Besides, during training,
we optimize the model on LGWC (i.e. λ1 = λ2 = 0,λ3 = 1) for 30 epochs and then fine-tune
the model on DWH +LPPL (i.e. λ3 = 0,λ1 = λ2 = 0.01) for 5 epochs. The 2-stage procedure
leads to a more stable training process.
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Methods SK-LARGE SK-SMALL WH-SYMMAX SYM-PASCAL SYMMAX300

MIL [32] 0.353 0.392 0.365 0.174 0.362
HED [37] 0.497 0.541 0.732 0.369 0.427
RCF [21] 0.626 0.613 0.751 0.392 -
FSDS [26] 0.633 0.623 0.769 0.418 0.467

LMSDS [27] 0.649 0.621 0.779 - -
SRN [14] 0.678 0.632 0.780 0.443 0.446
LSN [19] 0.668 0.633 0.797 0.425 0.480
Hi-Fi [40] 0.724 0.681 0.805 0.454 -

DeepFlux [35] 0.732 0.695 0.840 0.502 0.491

GeoSkeletonNet 0.757 0.727 0.849 0.520 0.501

Table 1: Test F-measure ODS comparison on all skeleton datasets. The best numbers are in bold.
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Figure 4: Precision-recall curves on four skeleton datasets.

Resolution Normalization. In most of the skeleton datasets, the images have quite scat-
tered resolutions, which bring a long series of various scales and increase the difficulty in
model training. Therefore, in the training stage before data augmentation, we resize the im-

age and ground-truth from size H ×W to
√

KH
W ×

√
KW
H , which keeps the original aspect

ratio and normalize the number of pixels to a fixed value K. We also apply a standard thin-
ning algorithm [39] on the resized ground-truth to avoid unnecessary thickness. In test stage,
we still feed the normalized image into network to obtain the prediction, then resize the pre-
diction map back to H ×W for evaluation. We use K = 180,000 for the SYM-PASCAL
dataset and K = 60,000 for the other datasets.
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Figure 5: Qualitative comparison on the role of modules.

Data Augmentation. We employ the standard data augmentation following [26] in training
stage: The original image is resized to 3 scales (0.8x, 1.0x, 1.2x), rotated with 4 angles (0◦,
90◦, 180◦, 270◦) and then flipped to 3 directions (none, left-to-right, up-to-down).

4.4 Comparison with the State-of-the-art
As indicated in Table 1, our method outperforms the current state-of-the-art by a decent mar-
gin on all datasets in terms of F-measure ODS. Compared to the recently proposed Deep-
Flux [35], our GeoSkeletonNet improves by 2.5%, 3.2% and 1.8% on the SK-LARGE, SK-
SMALL and SYM-PASCAL datasets respectively, under a similar network design. The PR
curve shown in Figure 4 also indicates a clear performance boost.

In Figure 3, we provide a qualitative comparison between our method and the current
approaches. In Figure 3 (a), (b) and (c), our method significantly reduces the blurry effect
in the previous HED-based methods [26, 40]. Meanwhile, our method avoid the occasional
dis-continuities in DeepFlux with acceptable sacrifice of accurate localization (e.g. in (a),
our predicted skeleton has a thicker junction near the knee while maintaining the whole leg
complete). Figure 3 (d) reveals a failure case: Our method is not able to detect the skeleton
of the screen, but still tries to reduce false positive predicted points as possible. In contrast,
both FSDS and DeepFlux generate a noisy background.

4.5 Ablation Study

Baseline AvgGrad ResNorm GWC WHD+PPL F-measure ODS

X 0.712
X X 0.724
X X X 0.741
X X X X 0.753
X X X X 0.746
X X X X X 0.757

Table 2: Quantitative comparison on the role of modules.

Role of Modules. We conduct
an ablation analysis to under-
stand the role of modules in per-
formance contribution. Table 2
shows the F-measure ODS on SK-
LARGE dataset under multiple
module settings of the model. Av-
erage gradients (AvgGrad), reso-
lution normalization (ResNorm) and geometrically weighted cross-entropy loss (GWC)
greatly contribute to the final performance. Especially, the ResNorm brings the substantial
1.8% improvement, which reflects the difficulty of training on images with various scales.

In addition, Figure 5 compares the qualitative results of different module settings. Visu-
ally, AvgGrad and ResNorm slightly refine the results from baseline. On the contrary, GWC
mitigates the blurry effect by a large margin, which shows the benefits of geometric aware-
ness. Weighted Hausdorff distance (WHD) and patch-based point loss (PPL) further makes
the predicted skeleton thinner and provides a better localization.
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It is noteworthy that we do not separate the WHD and PPL in the performance analysis
on the role of modules. The reason is that directly training on WHD is unstable: WHD
is able to provide better localization in the predicted skeleton, but it sometimes generates
unexpected disconnection or thickness after certain epochs and leads to a performance drop.
Thus, we employ the PPL to stablize the WHD training and always evaluate the performance
when both loss terms are turned on. Besides, we also do not include an inference speed
comparison since AvgGrad, GWC and WHD+PPL do not affect the time of inference. Only
ResNorm will bring a bit overhead, but it is neglectable.

Influence of Distance Hyper-parameter γ . We further analyze the influence of the dis-
tance hyper-parameter γ in geometrically weighted cross-entropy loss (GWC). When γ→ 0,
the GWC reduces to the weighted cross-entropy loss (WC).

Distance
Hyper-parameter γ = 0.125 γ = 0.25 γ = 0.5 γ = 1.0

F-measure ODS 0.746 0.751 0.753 0.745

Table 3: Influence of distance hyper-parameter γ .

Table 3 shows that γ = 0.5 pro-
vides the best F-measure ODS in
the GWC ablation setting (Base-
line + AvgGrad + ResNorm +
GWC). Thus, we set γ = 0.5 in all
other experiments.

5 Conclusion

In this paper, we have developed an end-to-end skeleton detection method that employs ge-
ometric awareness. Specifically, we devise a geometry-aware objective function to compute
the global similarity between the predicted skeleton map and the ground truth in an end-to-
end learning framework. A weighted Hausdorff distance (WHD) is adopted. In addition,
we propose a patch-based point loss (PPL) to mitigate the instability in optimizing WHD
and capture local features. Furthermore, we adapt the weighted cross-entropy into a geomet-
ric form, which significantly boosts the performance of skeleton detection. Evaluation on
five standard skeleton detection benchmarks demonstrates the advantages of our proposed
method, consistently outperforming the current state-of-the-art methods. In the future, we
would like to explore the possibilities of the geometry-aware objective in wider fields, such
as semantic segmentation and object detection.
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