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Abstract—Automatic whole-brain extraction from magnetic
resonance images (MRI), also known as skull stripping, is ady
component in most neuroimage pipelines. As the first elemerih
the chain, its robustness is critical for the overall perfomance of
the system. Many skull stripping methods have been proposed
but the problem is not considered to be completely solved yet
Many systems in the literature have good performance on cedin
datasets (mostly the datasets they were trained/tuned orfut fail
to produce satisfactory results when the acquisition condions or
study populations are different.

In this paper we introduce a robust, learning-based brain
extraction system (ROBEX). The method combines a discrim-
inative and a generative model to achieve the final result. Té
discriminative model is a Random Forest classifier trained @
detect the brain boundary; the generative model is a point
distribution model that ensures that the result is plausibe. When
a new image is presented to the system, the generative modsl i
explored to find the contour with highest likelihood according to
the discriminative model. Because the target shape is in geral
not perfectly represented by the generative model, the conotir is
refined using graph cuts to obtain the final segmentation. Bdt
models were trained using 92 scans from a proprietary datase
but they achieve a high degree of robustness on a variety ofleér
datasets.

ROBEX was compared with six other popular, publicly avail-
able methods (BET [1], BSE [2], FreeSurfer [3], AFNI [4],
BridgeBurner [5] and GCUT [6]) on three publicly available
datasets (IBSR [7], LPBA40 [8] and OASIS [9], 137 scans in tal)
that include a wide range of acquisition hardware and a highy
variable population (different age groups, healthy/diseaed). The
results show that ROBEX provides significantly improved pefor-
mance measures for almost every method / dataset combinatio

Index Terms—Skull stripping, Random Forests, point distri-
bution models, minimum s-t cut, comparison.

|. INTRODUCTION AND BACKGROUND

Over the last decade, the research community has produced a
number of methods. However, as shown below, these systems
fail to consistently provide highly accurate segmentation
across datasets acquired with different protocols.

Some aspects of whole brain segmentation are not very well
defined. There seems to be consensus that skull stripping is
expected to follow the major folds on the surface; if the agep
sulci are to be extracted for brain surface analysis, suesgq
post-processing can be performed. However, protocolgrdiff
on which parts of the brain to extract. Most include the
cerebellum and brainstem in the segmentation (see Figures
la and 1b), but others only extract the cerebrum, leaving the
cerebellum and brainstem out (Figure 1c).
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Fig. 1.
the manually skull-stripped volume, including the cerfrel and brainstem.
c) Skull stripping without the cerebellum or brainstem.dtthe purpose of
this study to automatically generate segmentations likeothe in b).

a) Saggital slice of a T1-weighted MRI. b) Correspogdslice of

The majority of skull stripping methods are designed to
work with T1-weighted MRI for two reasons: 1. T1 it is the
most frequent MRI modality in neuroimaging; and 2. even if
another modality (such as T2 or FLAIR) is to be segmented,
it is very likely that the data were acquired next to a T1 scan,

HOLE brain segmentation, also known as skull stripyhich provides superior contrast. In that case, skull ptnig
ping, is the problem of extracting the brain from &s usually performed on the T1 volume and the resulting mask

volumetric dataset, typically a T1-weighted MRI scan. Thigropagated to the other channels.

process of removing non-brain tissue is the first module of Most popular skull stripping methods have publicly avail-
most brain MRI studies. Applications such as brain mogble implementations. We consider six in this study. All of
phometry, brain volumetry, and cortical surface recorstoms them include the cerebellum and brainstem in the segmen-
require stripped MRI scans. Even early preprocessing stéption, and all but one are designed to work only with T1-

such as bias field correction can benefit from skull strippingveighted data:

Automatic skull stripping is a practical alternative to mah

delineation of the brain, which is extremely time consuming
Segmentation in MRI is in general a difficult problem due
to the complex nature of the images (ill-defined boundaries,

low contrast) and the lack of image intensity standardirati
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o The widely used Brain Extraction Tool (BET) [1], which
is part of the FSL package, utilizes a deformable model
which evolves to fit the brain surface. The model is
initialized as a spherical mesh around the center of gravity
of the brain as if it was a balloon, and locally adaptive
forces “inflate” it towards the brain boundary. BET is
very fast and relatively insensitive to parameter settiitgs
provides good results considering its simplicity, but ofte
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produces undesired blobs of false positives around the

brainstem. This can be solved using a two-pass scheme:

after running BET once, the preliminary mask is used to
guide the registration of the brain to an atlas. The mask
of the atlas is then used to guide a second pass of BET.
The only disadvantage is that the registration makes the
method much slower. BET is the only method that also
works with T2-weighted MRI.

Another popular method is Brain Surface Extraction

(BSE) [2]. BSE relies on a series of processes to detect
the brain: anisotropic diffusion filtering, edge detection

methods discussed above. It combines a watershed al-
gorithm, a deformable surface, and a probabilistic atlas.
The watershed algorithm creates an initial estimate of
the mask assuming connectivity of the white matter.
Then, a smooth surface is allowed to evolve to refine the
mask, using the statistical atlas to disregard unreasenabl
outputs. The latest version of FreeSurfer uses GCUT to
refine the output. Since both are very specific methods,
the intersection (AND) of the masks from the two algo-
rithms eliminates many false positives without affecting
the sensitivity, improving the segmentation [6].

and a chain of morphological operations. BSE can pro- There are also other noteworthy methods in the literature.
vide highly specific whole-brain segmentations, but itemieux et aluse automated thresholding and morphological
usually requires fine parameter tuning to work on specifigperations in [12]Hahn et al. proposed an algorithm based
images. Another noteworthy feature of BSE is that, asn a watershed transform in [13]. Two cortex extraction
opposed to most other methods, it preserves the spia#orithms that provide the whole brain segmentation as by-
chord. product are presented in [14] and [15]. Level sets are used

« 3dSkullStrip, part of the AFNI package [4], is a modifiedo approach the problem in [16] and [17]. A histogram-based
version of BET that also uses the spherical surface expproach is described b§han et alin [18]. Unfortunately,
pansion paradigm. It includes modifications for avoidinghese algorithms are not publicly available. We believe the
the eyes and ventricles, reducing leakage into the skglk aforementioned methods (BET, BSE, AFNI, BridgeBurner,
and using also data outside the surface (and not ormyeeSurfer and GCUT) are a very representative set of skull-
inside) to guide the evolution of the surface, among othetripping systems that are commonly used in the neuroseienc
adjustments. research community.

» BridgeBurner [5], part of the application FireVoxel, first Meanwhile, hybrid approaches combining generative and
finds a small cubic region in the brain white matter, andiscriminative models have been widely used in medical imag
then uses its mean intensity to compute a window that carny. Discriminative models are easy to train and capture the
be used to create a coarse segmentation of the brain, alpal properties of the data effectively, but cannot motiel t
AFNI. The surface of the preliminary mask is combinedlobal shape information easily. On the other hand, geiverat
with the output of an edge detector to create a boundasgproaches model shape with high specificity, but cannot
set. Then, layers are “peeled” with morphological operde easily adapted to capture the local texture. Due to their
tions that eventually “burn” all the bridges between braibomplementary nature, it is natural to combine both types
and non-brain tissue. One of the disadvantages of this af-model into robust hybrid systems. For example, Gaussian
gorithm is that, if a single bridge survives the process, ttehape models are used in conjunction with probabilisticsboo
output can include large chunks of non-brain tissue. Alsing trees in [19] and with & nearest neighbor classifier in [20]
BridgeBurner is not a skull stripping algorithm but a braimnd [21].
tissue segmentation method, meaning that cerebrospinaln this study we present a new hybrid approach to skull
fluid within the brain (including the ventricles) is oftenstripping of T1l-weighted brain MRI data and compare it
left out of the segmentation. However, the algorithm canith the six aforementioned methods. The proposed system,
be modified to produce an output similar to the othdrenceforth denoted as ROBEX, is designed to work out of
methods by morphologically closing the output and thethe box with no parameter tuning. ROBEX is programmed
filling the holes in the mask. to preserve the cerebellum and brainstem in order to enable

o GCUT [6] is a recently proposed method based on gragbmparison with the previously described methods. It is als
cuts [10]. First, it finds a threshold between the intensitielesigned to be robust against intensity variations and td wo
of the gray matter and the cerebrospinal fluid and use®ll across datasets. ROBEX is a hybrid approach that fits a
it to generate a preliminary binary mask which ideallgenerative model (a point distribution model, PDM [22]) to a
includes the brain, the skull and some thin connectiomsrget brain using a cost function provided by a discrimieat
between them. Then, graph cuts can be used to findredel (a Random Forest [23]). To the best of our knowledge,
connected submask that minimizes the ratio between tROBEX is the first skull stripping method that is based on
cost of its boundary (a data term) and its volume. This hybrid generative / discriminative model. In the contekt o
can be seen as a simple shape prior. This submaskskalll stripping, “hybrid” usually refers to combining regi-
post-processed to obtain the final segmentation. GCWased (such as [12]) and boundary-based methods (such as
is usually quite accurate but sometimes makes lar@&ET), as FreeSurfer [11] does.
mistakes by following a wrong edge (e.g., leaving the The generative model assumes that the brain surface is
whole cerebellum out or an eye in). a triangular mesh in which thé€x,y,z) coordinates of the

o A very popular public method is the hybrid approaclandmarks follow a Gaussian distribution. The discrimivet
from [11], available as part of the software packagmodel attempts to extract the interface between the skl an
FreeSurfer [3]. This method is more robust than thime rest of the data (dura matter, cerebellum, eyes, etc.) by
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assigning to each voxel the probability that it is on the bbrathe following parameters: TR/TE = 40/8 ms, flip angle 50
surface. Modeling the boundary suits the generative modtdgrees, slice thickness 3.1 mm, in-plane resolutigri mm.
very well because the cost of a certain brain shape can Ten scans on six males and four females were performed on
efficiently computed by multiplying the likelihood that dac a 1.5 Tesla General Electric Signa MR System with a 3D-
mesh point is on the interface, making the fitting process fa€APRY pulse sequence and the following parameters: TR/TE
We propose exploring the shape model with coordinate déscen50/9 ms, flip angle 50 degrees, slice thickness 3.0mm, in-
after rotating the model basis with the varimax criteriorplane resolutiorl x 1 mm. The brain was manually delineated
which reduces the interference between the optimization lo§ trained investigators in all the scans. Some of the scans
the different coordinates. have severe striation artifacts which, next to the largeesli
The proposed combination of models also has the advantéigiekness, makes this dataset challenging to segment.
of easily accommodating an efficient method of refining the fit The second test dataset is the LPBA40 dataset [8], which
of the PDM, which cannot match the target shape exactly éan be downloaded from http://sve.loni.ucla.edu/. It tsiBf
general. Each point in the PDM is allowed to shift along thé0 T1-weighted scans (20 males, 20 females, age 2%23D
normal to the object surface to reduce the value of the cgstars) and their corresponding annotations. The scans were
function under the constraint that the shifts of neighbgriracquired with a 3D spoiled gradient echo sequence on a GE
points must be within a certain margin (i.e. the resulting.5T system. The acquisition parameters were: TR: 10.0ms
surface must be smooth). Graph cuts can be used to find thE2.5ms; TE range 4.22ms - 4.5 ms; flip angle 20 degrees.
optimal solution of this problem [24]. Coronal slices were acquired 1.5mm apart with in-plane res-
The rest of this paper is organized as follows. Section #lution of 0.86 mm (38 subjects) or 0.78 mm (2 subjects).
describes the datasets used in this study. Section Ill ibescr The third test dataset consists of the first two discs (77
the methods: how the generative and discriminative moddl§-weighted scans) of the cross-sectional MRI dataset of
were created and how they are fitted to a test scan to produdbe OASIS project: http://www.oasis-brains.org/. The pop
brain segmentation. The experiments and results are Hescriulation consists of 55 females and 22 males, age 51.64
in section V. Finally, section V includes the discussion. £24.67 years. Twenty subjects were evaluated as “demented
and probable Alzheimer’s disease”. The scans were acquired
on a 1.5T Siemens scanner with a MP-RAGE sequence,
TR/TE/TI/TD=9.7ms/4.0ms/20ms/200ms, flip angle 10 de-
Four different datasets were used in this study: one exclyrees. Sagittal slices were acquired 1.5mm apart with amgl
sively for training and three for evaluation. The evaluatioresolution of 1 mm. The brain masks for this set were not
datasets are all publicly available. manually delineated; instead, the brain was segmentedanith
The training dataset consists of 92 T1-weighted scans framhouse method based on registration to an atlas. However,
healthy subjects acquired with an inversion recovery rapide output from the method was reviewed by human experts
gradient echo sequence on a Bruker 4T system. The sizebefore releasing the data, so the quality of the masks is good
the volumes 256 x 256 x 256 voxels, and the voxel size isenough at least to test the robustness of a method. Despite
0.9375 x 0.9 x 0.9375 mm. Manual delineations of the brainthis lack of exactitude, this dataset is very valuable bseau
by an expert physiologist are available for all of them. Thi¢ includes scans from a very diverse population with a very
first volume of the dataset was chosen as “reference volumeide age range as well as diseased brains.
All the other 91 scans in the dataset were then registered to
the reference. The software package Elastix [25] was used I1l. M ETHODS
to optimize an affine transform using a mutual information
metric. Because the scans are resampled to the resolutioqi\p

the reference volume after registration, the referencefiists o iqcriminative model (Section 11I-B) is a Random Forest

?hownsamplte? t01i5| x d1.5f >§h1.5 Immﬂ:esoluélotr;] 0 t:;ghten_classifier. The generative model (Section I1I-B) is a Gaarssi
€ computational foad of the algorithms. Rather than Usiigintion over a set of landmarks that defines the brain

an arbitrary scan as the reference, it is also possible st8rface though a triangular mesh. Given a new volume, the

Izzérn :n unbiased ;near; ¥r?lumehfrqlmt all the_ tra'Tn?h'r?aggggmentation is found as the instance of the generativeImode
[26]. However, we found through pilot experiments that o at maximizes the likelihood of the surface according ® th

algorithm was not sensitive to the choice of the reference. discriminative model. The proposed optimization algarith

The first test dataset is the Internet Brain Segmentati Mescri : - : . s
. . _ scribed in Section IlI-C) consists of two steps: 1. ojing
Repository (IBSR). It consists of 20 T1-weighted scans fro e generative model with coordinate descent (Sectio€1)):

healthy subjects (age 29:@.8 years) acquired at the Cente([jmd 2 refinina the output from the previous steb using graph
for Morphometric Analysis at Massachusetts General HalspitCuts ('Sectliolng:II-CZ)u pu previou p using grap

as well as their corresponding annotations. This dataset Is

available for download at http://www.cma.mgh.harvard/ed S

ibsr/. The scans were acquired with a 3D spoiled gradieft Discriminative model

echo sequence on two different scanners. Ten scans on fout) Random ForestsThe discriminative model in this study
males and six females were performed on a 1.5 Tesla Siemens voxel-based Random Forest [23] classifier, which has
Magnetom MR System with a FLASH pulse sequence aten proven successful in a variety of domains and compares

Il. DATASETS

he proposed segmentation method combines a discrimina-
model and a generative model to obtain the brain mask.
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favorably with other state-of-the-art algorithms [27].rffam strengths).
Forests have only recently been adopted in medical imaging
segmentation [28], [29]. Therefore, we provide a short dpsc
tion of how they work for the sake of completeness. A Rando
Forest is an ensemble of decision trees. Each tree is trait
with a different subset of the training volumes (“bagging”)
which improves the generalization ability of the classif&9].
Voxels are pushed down each tree from the root by performi
a simple binary test at each internal node until a leaf haa be
reached. The tests consist of comparing a certain featuhe w
a threshold.

Training a forest implies finding the set of tests that be
separate the data into the different classes. At each mdtern
node, the feature space is searched for a test that maxithesrig. 2. Bias field correction. a) Saggital slice of a T1-weéighMRI from
reduction of class impurity, typically measured with thesd the training dataset (acquired at 4T). b) Correspondirge sif the estimated
entropy or, as in this study, with the Gini index=1-Y", f?  Miltilcative bias field, wih the registered, heavly deq mask from (e

. . perimposed. c¢) Corresponding slicehef dorrected

(where{f;} are the fractions of the different classes). Rath@pume.
than inspecting the full space of features at each node, a
random subset of them is probed, and the best one selected’he next step is to normalize voxel intensities. First, the
Even if this makes the individual trees weaker, it decreéises robust minimum and maximum voxels intensities are estithate
correlation between their outputs, increasing the perémce  as the first and9*” percentilesc o1, pc.go) of the histogram
of the forest as a whole. Each training voxel is sent to thed the voxels the are located inside the eroded mask. Then,
corresponding child depending on the result of the test, aadlinear grayscale transform that maps,; to 200 and
the process is recursively repeated until the number of Empc 99 to 800 is computed. The transform is then applied to
in a node falls below a threshold, until a predefined maximuthe volumes, and the histogram cropped0aand 1000 i.e.
tree depth is reached or until all the samples belong to th# values below0 and abovel000 are set to0 and 1000
same class. In that case, the node becomes a leaf, andréspectively. Finally, the contrast of the volume is entegihc
most frequent class of the training data at the node is stonedh standard histogram equalization. Again, the histogis
for testing. Because the minimum number of samples canmputed using only the voxels inside the eroded mask. There
be reached at any depth, the tree is in general not perfechg more complex intensity normalization techniques based
balanced i.e. some leaves can be at deeper levels than.otidgtecting the typical intensities of gray matter, white texat

In testing, a previously unseen voxel is pushed down tlaed cerebrospinal fluid [33], but they require skull-stedp
different trees by running the tests corresponding to tleero data.
it travels along. When a leaf node is reached, the tree cast8) Feature pool: Once the intensities are standardized,
a vote corresponding to the class assigned to the node in tbatures can be extracted for each voxel in the volume. A
training stage. The final decision for a voxel is obtained byool of 36 features is considered in this study. They, z)
selecting the most voted class. Moreover, the probabltisit t coordinates of each voxel in the space of the reference wwlum
a voxel belongs to a class can be estimated as the numbewefe used as features in order to capture the context. Since
votes for that class over the total number of trees. the goal is to detect boundaries, the gradient magnitudes at

2) MRI signal standardization:In this study, we train three different scaless(= 0.5,2.0,8.0, in mm) were also
a Random Forest classifier to discriminate brain boundanged. Finally, Gaussian derivatives at the same scalesletamp
voxels from any other voxels using features based on Gausdie feature set. The Gaussian derivatives correspond to the
derivatives and gradients. These features rely heavilyixel p truncated Taylor's expansion of the data around each point
intensities and therefore an intensity standardizatiacgss and therefore capture the local appearance of the volume at
is required as a preprocessing step. The MRI signal leveldferent scales.
are standardized as follows. First, the scan is fed to an4) Data sampling:Because the voxels in a scan are highly
implementation [31] of the N3 bias field correction algomnith correlated, it is not necessary to use all the training data
[32]. The method works much better when a brain mask s build a strong classifier. Using fewer voxels lightens the
available, so we provide the algorithm with an eroded versi@omputational load of the training stage. Preliminary expe
of the mask of the reference volume (see Figure 2). Despiteents showed that the performance does not really improve
being a very rough approximation of the real mask, the emsimuch after 50,000 training voxels. In this study, 10,000alex
guarantees that the mask is highly specific. Even if the masére extracted randomly from each of the 92 training scans
outer part of the brain is left out of the mask, the extrapotat under the following two constraints: 1) to compensate for
of the estimated correction field in that region is usually fathe extremely uneven prior probabilities of the two classes
because the field is assumed to vary very slowly in space. Thedf of the voxels are constrained to be positive examples
correction provided visually pleasing results for all tlearss i.e. they have to lie on the brain boundary, given by a
in the four datasets, even for the data acquired at 4T (bimssk that is calculated as the gold standard mask AND the
field correction is known to sometimes falter at higher fieldegated of a minimally eroded version of itself; 2) 50% of
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the negative examples are constrained to lie within 3 mbe the most appropriate for our edge detection task. Finally
of the brain boundary, defined as above. This makes tterivative features were only selected at the coarsese,scal
classifier focus on the harder examples, decreasing ther@maouhich is reasonable given how noisy these features are at fine
of required training voxels. The width of the band represent scales.

compromise between how correlated and informative (i.ar ne The final classifier was trained on 200,000 voxels which
the boundary) the voxels are. Highly correlated voxels ate nwere selected randomly across the whole dataset. Figure 4
very useful for the classifier, but neither are voxels veny fahows the probability volume for the first scan of each datase
away from the boundary. Pilot experiments showed that 3 mfime probability volume is just the number of trees that have
offered a good compromise. The described sampling schewmged positive for each voxel. Upon division by the number of
led to selecting=0.4% of the total number of voxelsy20% trees in the Random Forest, this volume can be interpreted as
of the positive voxelsx~2.5% of the voxels in the 3 mm banda “real” probability defined between zero and one. The maps
and=~0.1% of the rest of negative voxels. display regions of false positives around the ethmoid siaus

5) Classifier training and feature selectiorhe Random optic chiasm, and large portions of the scalp, but these will
Forest classifier was trained using the following paransetebe easily discarded by the generative model described below
The number of trees was set to 200, a fairly large value
that provides a good granularity for the class probabditie
testing (/200). The number of features probed at each node
in training was set to five. This is a relatively low value, wini
is justified by the large number of trees: it is not a probleat th
the trees are weaker if there are plenty of them. The minimum
number of training voxels in a node was set to 20. The tree
depth was not limited, but depths greater than 17 were never
reached in training.

Random Forests do not require feature selection to be robust
due to their intrinsic ability to disregard unimportant ties.
However, it is still useful to reduce the dimensionality bét ‘ . . ‘
data to lighten the computational load of computing feature B A e teatres O °
In this study, we used backward feature elimination based on
permutation importance. First, the classifier is trainethwall Fig. 3. Feature selection: accuracy in out-of-bag datahgtfisand minimal
the features. Then, the feature with the lowest permutatiBjgdicted loss accuracy for each drop. The diamond markspiérating point
. . e . of the final classifier. Please note that the accuracy of thesiler is not very
Importance Is dropped and the classifier retrained. The pﬁiﬁh in absolute terms because it is trained to solve thecdiffiproblem of
mutation importance of a feature is defined as the drop dbtecting voxels that are exactly located on the brain baynd
accuracy in the out-of-bag (i.e., non-training) data ofretiee
caused by randomly permuting the values of that feature in
the input data. The process is repeated as long as the agcurac TABLE |

. i ST OF SELECTED FEATURES AND THEIR PERMUTATION IMPORTANCHN
of the classifier does not decrease noticeably. Even thoUGhHe Last sTeP OF FEATURE SELECTIONCOORDINATE 2 CORRESPONDS
the permutation importance is known to be biased [34] (more TO LEFT/RIGHT, y TO ANTERIOR/POSTERIORAND 2 TO
important features can eventually Iead to Iower accurabje, INFERIOR/SUPERIOR THE NOTATION abc(d) REPRESENTS THE ORDERS OF

. . . . . THE DERIVATIVES a, b AND ¢ (CORRESPONDING TO THEr, y AND z AXES)
method is considerably faster than combinatorially eX¥ens ar scaLe o = d (INMM). THE MAGNITUDE OF THE GRADIENT AT SCALE
approaches such as [35] and often provides comparablégesul 1s REPRESENTED BY|V|(d). THE IMPORTANCE IS THE PREDICTED LOSS

During the feature SeleCtion, the aCCUracy Of the ClaSSﬁierOF ACCURACY IN OUT-OF-BAG DATA WHEN THE VALUES OF A FEATURE IN

. . L. g THE TRAINING DATA ARE RANDOMLY PERMUTED.

evaluated cross validation. This is accomplished by rargom
dividing the training data into two subsets at each eliniamat Feature | = coord. | 000(2.0) | 001(8.0) | 000(8.0) | [V[(2.0)
step: one for training (60 scans) and one for evaluatign'mportance| 0.1232 | 0.0881 | 0.0815 | 0.0844 | 0.0558

e . . Feature x coord. | 010(8.0) | 000(0.5) | 200(8.0) | y coord.
(32 scans). The classifier is trained using 100,000 randomlyyortance | 0.0539 | 0.0301 | 0.0403 | 0.0375 | 0.0272
sampled voxels from the training subset, making sure eaeh tr
only uses voxels from 40 scans (with bagging purposes). The
accuracy is computed upon all the the voxels in the testing _
subset. The evolution of the accuracy and the permutatifn Generative model
importance of the least important feature are displayed inThe generative model ensures that the result of the seg-
Figure 3. mentation is a plausible shape. In this study, a PDM is

Based on visual inspection of the curves, the final numberwu$ed to represent the set of possible brain shapes. PDMs
selected features was 10 (listed in Table 1). The list offezg are constructed from a set of training shapes (in 2D or 3D)
reveals some interesting aspects of the problem. Firstegbn which are represented by a set of corresponding landmarks.
features are very important: all three are selected, and thdhe landmarks can be manually placed or automatically deter
coordinate has the largest permutation importance. Amothmined from a continuous shape e.g. a parametrized curve or
observation is that only one gradient feature made it to tlaepolygonal line in 2D, or a parametrized surface or a binary
set. The scale of this gradient featue £ 2.0) must then mask in 3D [36]-[39]. Once the landmark representation of
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Fig. 4. Orthogonal slices of the probability volumes (numbg&trees from the 200 that have voted positive) of the firsinsof each dataset: a) training
dataset, b) IBSR, c) LPBA40, d) OASIS. The probability vokasrhave been smoothed with a Gaussian kernel of width mm. As expected, the probability
map looks cleaner for the training dataset. However, thg@msiandardization does a good job and the map looks acteftatihe other datasets, especially
OASIS. Please note that part of the head is out of the field @f i b) and c), therefore the smooth patches.

the training shapes is ready, all the shapes can be joindysurface meshing algorithm [42]. Sometimes this type of
aligned using Procrustes analysis [40] and the distributib landmarks is called pseudo landmark in the literature bezau
the aligned landmark coordinates can be fed to a princighky do not necessarily correspond to salient points. Ia thi
component analysis (PCA) [41]. The PDM can be iterativelstudy, the maximal radius of the Delaunay sphere was set to
deformed, rotated and scaled to detect an instance of tipeshamm, leading toL = 3237 landmarks. Then, the masks of
in an image in a technique known as active shape models [22Je training scans are registered to the mask of the referenc

1) Point distribution model:Mathematically, if the Carte- volume in order to obtain a transform that can be used to
sian coordinates of thd, (aligned) landmarks of training propagate the landmarks. Elastix was first used to optimize
instance: are stacked into &L-dimensional vectors; = a translation transform that was subsequently refined by an
[Ti1,Yi1,2i1, - TiL,Yi.L, zi,0]', any shape in the alignedaffine transform and then a non-linear transform based on
space can be approximated @asv u + Pb, wherep is the a deformable grid of points and B-spline interpolation dgri
3L-dimensional mean shapé, = P?(s — u) is the vector spacing: 15 mm). The: agreement was used as registration
of p shape coefficients and is a matrix whose columns metric.

are the normalized eigenvectoes of the empirical covari- Because the registration is not perfect, the propagated
ance matrixCov corresponding to the largest eigenvalues landmarks do not lie in general on the surface of the training
A =[A1,..., \p]" (Where it holds that\; > \;1): masks. This inaccuracy was corrected by projecting them ont
Nowmptes . oar the s_urfaces, which were first_ meshed with hig_h_resolution
Cov — i T (si = p)(si — p) _ Z)"e'e# (maximum radius: 1 mm) to increase the precision of the
Noamples — 1 = I projection. The mesh of the reference scan and the maximum

registration error for each landmark over the 92 training
P = [e1]...|ey)] volumes are displayed in Figure 5. Most of the maximum
errors are lower than 4mm.
p=minyp, subject to: % >

If all the eigenvectors are preservédfollows a multivariate

Gaussian distribution with zero mean and covariance matrix
¥ = diag(\1, A2, ..., A\3z,) in which the shape coefficients are
independent. The total variance of the model can be computet
aso?, = Z?il Aj. Therefore, the number of components
to keepp can be determined from, the proportion of total
variance to be preserved in the modgH 0.90 in this study):
Ojot Fig. 5. Mesh of the mask corresponding to the reference bFai@ maximum
. registration error for each landmark has been superimpoBee scale is in
2) Landmark extraction:In our case, the landmarks havenm.
to be extracted from a set of masks (the training dataset).
This is accomplished by a method very similar to [37]. First, 3) PCA and basis rotationOnce the landmarks have been
the landmarks for the reference volume are computed usiexfracted, the PDM can be built. In our case, since most

SENTe e a0 N ®

p/
Aj
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of the differences in pose are already filtered out by the. Computing the mask for a test scan
affine registration, we bypass the Procrustes alignmerthdn

X . The elements of the skull stripping pipeline are shown in
PCA, preservingd0% of the total variance led tp = 19

k < Figure 8. The first steps include the same preprocessing that
components. The first three modes of variatipn(k+/A;j€; the training data went through: registration to template (a
for different values of) are shown in Figure 6. in section 11), bias field correction, intensity normalipat,

The optimization procedure in section III-C below exploregaiyre calculation and voxel classification (as in section
the space of shape coefficients to find the model instance tnF‘-FA). The following step is to fit the shape model to the
best fits 'th output.fro_m the classifier. This search can bem"ﬁjrobability volume. Because the shape model cannot exactly
more efficient by finding a rotation of the PCA badisthat  enresent all plausible shapes, a small free deformatigheof
minimizes the spatial overlap of its vectors; because imtat ,ash is allowed to refine the output. Then, a brain mask is
do not modify the spanned space, the set of shapes that Ca@@ﬁerated from the mesh by: 1. creating an empty volume; 2.
represented by the model does not change. In the rotatesl bagitiing to one all the voxels intersected by the trianglethén
the shape parameters can be fitted independently with almegts- and 3. filling the hole in the mask. The resulting binary
no interference, making coordinate descent (i.e. updaif® ,o|ume is warped back to the space of the original scan using
shape coefficient at the time) very efficient. the inverse of the affine transform from the registrationich

We used the varimax criterion [43] to calculate a rotatio
matrix R such that the sparsity of rotated eigenvector matr

1% analytically invertible. The fitting of the shape modeldan
the free deformation step are further discussed next.

@ = PR is maximized. The rotated shape coefficients are

given bybr = R~1b, and they are not independent anymore
They still follow a multivariate Gaussian distribution,cathe
diagonal of the covariance matrix Bz = [R~!]?A, where
[]* denotes the element-wise squared matrix. Figure 7 sho
the first three modes of variation for the rotated eigenvscto
which are (especially the first and third) highly localizec
compared with the original ones in Figure 6.

First mode Second mode Third mode

Fig. 6. First three modes of variation for the original PDMppér row: shapes
corresponding tqu & 3,/\je;. Lower row: magnitude of the eigenvectors.

First mode Second mode Third mode

0.05 0.05

0.04 | 10.04
0.03 0.03

0.02 0.02

0.01 0.01

Fig. 7. First three modes of variation after rotating theegigectors. Upper
row: shapes corresponding jo 4 3,/ e;. Lower row: magnitude of the
eigenvectors.

Bias field
correction and
intensity
normalization

Voxel
classification

Calculation
of features

Scan to
analyze

Registration
to template

H
|

Fig. 8. Steps of the method to segment the whole brain fromaa.sc

Warp back
to original
space

Mesh to
volume

Free
deformation

Fit shape

Output model

1) Fitting the shape modeln active shape models [22], the
pose (translation, rotation and scaling) and shape paessneit
the model are iteratively updated to find an instance of aesshap
in an image. Given an initialization, the normal to the curve
(2D) or surface (3D) at each landmark is first calculated niThe
a fitness function is evaluated along each normal. The optima
shift for each landmark is then added to the coordinates or
the current shape, creating a “proposed” shape. Finaly, th
proposed shape is projected back onto the model and a new
iteration begins.

This method is prone to getting stuck in local optima.
Instead, we propose exploring the space of shape coefficient
directly. Since the pose is not to be optimized (it is already
taken care of by the affine registration) and the shape coef-
ficients represent localized, minimally overlapping vao@as
thanks to the varimax rotation of eigenvectors, the optimal
shape can be efficiently computed using coordinate descent.
If I,(z,y,z) is the normalized probability volume (i.e. the
number of trees which have been voted positive over the total
amount of trees), the cost to minimize is:

L

C=log[Jle+ (1 — o)1= L(m))] =

=1

L

> logle + (1 —2¢)(1 — I(r

=1

L
N = Lgmtog(r) (1)
=1

wherer, is the(z, y, z) position vector of landmark which
can be extracted from the current shafiér) = 1 + Qbr.
The constant avoids taking the logarithm of zero. If the
probability volume is seen as set of independent Bernoulli
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variables with parameter§ (z, y, z), thene can be interpreted of the metric can be found in polynomial time using graph
as a conjugate Beta prior on these distributions. cuts.

The cost function in Equation 1 can be evaluated very If the normals to the surface are calculated at each landmark
rapidly because it only requires interpolatifg= 3237 points location, and the cost function is sampled along the nornaals
in the log-probability volumé,_,,, (r). Before computing this cost profile is defined along each normal at locatienst,n,
volume, it is convenient to smooth (z, y, z) with a Gaussian wheret; is the (continuous) signed shift for landmatke
kernel (we used = 1mm) in order to increase the capture{l, L} andn; is the normal vector at landmark location Let
range of cost function in the optimization method. us assume that that the shifts have to be boundgd<( )

The optimization algorithm starts from the mean shapand that neighboring shifts have to be similgf { ¢z )| < A,
and iteratively loops along the = 19 shape coefficients, whereX(l) represents the neighbors of landméyland A is
optimizing one at the time. The first passes (10 in odpe bound. The problem is then finding the set of shjitg
implementation) do exhaustive search in the inteival; ¢ under these constraints that minimizes the cost in equation

[—3v/AR,j, 3\ /AR,;] i.e three standard deviations. Later iter- L
ations use Newton’s method to refine the output. At the end of C = Z Iy—10g(r1 + tifg)
each iteration, the algorithm verifies that the shape lighiwi =1

a zero-mean ellipsoid that covers 99% of the probabilitysnag  is outside the image field of view, a triangular profile
of the distribution. If it does not, the shape is projectetoon;s sassumed fol, (r; + tii) = 1 — [ti/tmas| in order to: 1.

the surface of the ellipsoid. This ensures that the outpth®f oncourage the landmarks to stay at the locations predigted b
optimization is a plausible shape. The steps of the algorithpe shape model; and 2. ensure a smooth transition of ths shif
are summarized in Table II. from the landmarks which are inside the field of view to those
TABLE Il which are not.
STEPS OF THE ALGORITHM TO FIT THE SHAPE MODEL The problem of minimizing” can be discretized by assum-
‘ ing that the shifts must be multiples of a given step;, = s;0,
IF’{E;EgT' =0 wheres; is an integer. Assuming thétgﬁ and% are integers
LOOP alongj € {1,..,p} in random order (in our implementatiort,,,,., = 19.5mm, A = 1.5mm and

IF it < 10 0 = 0.75mm), we must solve:
Full search inbr ; € [—3\/AR.i,3\/AR.;] to minimize C.
ELSE o€l ! . & )
Use Newton’s method to refinkr ; argmlnz Iy—10g(r) + s1070) (2)
END (i} 1o
b2
Computeb = Rbr and D = ;’:1 <
J .
IF D > Do (calculated with theg? distribution) subject to: s € Z
Dmax
b« D b tmam tmaw
br < R~ 'b Slé{—77 5 }
END
s < 2
it it + 1 Lo oml =75
UNTIL it > itmaz OR convergence

Li et al. show in their study that solving equation 2 can
be simplified to a problem of computing the minimum s-t
2) Free deformation:Using the shape model has the adeut in a related directed grapi = (V, E). For the sake
vantage that the result is highly specific. However, the rhodsf completeness, we summarize their method here. First,
cannot capture the full range of variations in brain shapése graphG must be built as follows. Each shift for each
for two reasons. First, the set of training scans, thougtyfai landmark represents a vertex. Each vertex is connectedto th
large, does not represent the whole population. The secaiift right below except for the vertices on the zero plane

reason is thatl0% of the captured variance was explicitlys; = —1mee je. {s; = i} — {s; = i — 1}, 5 > —lmes,
disregarded when building the model. Therefore, the methgdch vertex is also connected to the shifts exaélyevels
can often benefit from a smooth extra deformation outside thelow corresponding to neighboring landmarks, exceptHer t
constraints of the shape model to improve the cost of the fitertices belows; <= —t’"% + %, which are connected to
To solve this problem, we extenld et al’s method [24] the zero plane of the neighboring landmarks. Moreover, each
to segment surfaces. The two differences with respect o theertex is given a weight which is equal to the difference
method are: 1. defining the graph for a triangular mesh, ratheetween the cost of its shift and the cost of the shift right
than tubular or terrain-like surfaces i, y) — z(z,y); and below, except for the zero plane, which is just assignedadisé ¢
2. minimizing a explicitly learned cost function rather itha of its corresponding shift. Figure 9 displays a typical toon”
a voxel intensity based criterion. The key of the approadh the graph i.e. set of shifts for a landmark.
is to allow the landmarks to shift along their corresponding The problem of finding the optimal set of shifts is equivalent
normals to the surface in discrete steps. The smoothnesdmfinding a non-empty minimum closed set @ This is a
the deformation can be enforced by constraining the shifts well-known problem in graph theory, and it can be solved by
neighboring landmarks to be simildri et al. show in their computing the minimum s-t cut in a related directed graph
study that the set of shifts that provides the global minimu@,, = (Vi, Es). Vi includes all the vertices iV plus a
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Landmark ["€R(1)

Landmark |

Landmark '€ R( l)‘

Fig. 9. Connections in the gragh = (E, V') from the vertices correspond-
ing to the shifts of a landmark, assumi@ = 3.

source and a sinkz, includes all the edges if, with weight

infinity, plus a new set of edges: the source is connected to

all the vertices that had negative weightsGnwhereas every
vertex that had positive weights @ is connected towards the

o BET (version 2.1, in FSL 4.1.5): the authors suggested
using the same sequence of commands for all three
datasets. First, “bet -R” for a first pass with robust brain
center estimation. Then, the preliminary stripped brain is
fed to
standard_space_roi -roi NONE ...

-ssref MNI152 T1 1nm brain.nii.gz
to align it to the MNI152 atlas from FSL. Finally, a
second pass of BET (again, with the switch -R) yields the
output. Both passes use the default value of the fractional
intensity threshold: 0.5.

o BSE (2009 version): for IBSR, the author suggested using

the default parameters: diffusion iterations = 3, diffursio

constant = 25, edge constant = 0.64, erosion kernel width
= 1, trim brainstem = true, remove neck = false. For

LPBA40, he suggested using the following parameters:

diffusion iterations = 5, diffusion constant = 15, edge

constant = 0.65, erosion kernel width = 1, trim brainstem

= true, remove neck = true. The author did not provide

parameter settings for OASIS, so the default values were
used.

o FreeSurfer (version 5.0.0): the authors answered that thei

sink. The weights of these new edges are equal to the absolute goftware is robust and requires no tweaking. Therefore,

value of the weights of their corresponding verticessin

Once the graph is ready, the problem is to find the minimum
cost cut that disconnects the source from the sink. This cut
can be found by solving its dual problem (the maximum flow
problem) using any of the multiple algorithms proposed i th
literature. Here we used the Boykov-Kolmogorov algorithm

[44], which is publicly available at Dr. Boykov’s websiteh&

vertices along the cut can be shown to correspond to thesshift

that minimize equation 2. The reader is referred to the oaigi

papers for a more detailed explanation. Figure 10 shows the

typical effect of this processing step on the detected sarfa

08 08
e 06
04

0.4
02

02

Fig. 10. Brain surface with the probability that each landkria on the brain
surface overlaid. a) Output from shape model. b) Refined wi#iph cuts.

IV. EXPERIMENTS AND RESULTS

A. Setup

In order to compare the methods, the scans from the
different databases were stripped using BET, BSE, FreeGurf

default values were used: pre-weight the input image
using atlas information = 0.82, use the basins merging
atlas information = 0.32, presize the pre-flooding height =
10%, use the pre-weighting for the template deformation
= true, use template deformation using atlas information
= true, use seed points using atlas information = true.

o AFNI (version 2010-10-19-1028): the authors suggested

that we used the following options for IBSR and

LPBA40:

-shrink fac_bot lim.65 -shrink fac .72

And for OASIS:

-shrink fac bot Iim.65 -shrink fac .7

o BridgeBurner (FireVoxel version 81B): the authors sug-
gested using the default parameters: plane for seed search
= axial, Sl low = 0.528 relative to seed average, Sl high
= 1.35 relative to seed average, peel distance = 2.9 mm,
grow distance = 6.4 mm, strict CoreSet surface = true,
use edges = off. Subvoxel level = 1.

o« GCUT (the only available version so far): the authors
encouraged us to use the default values across the three
datasets: threshold = 36, importance of intensity = 2.3.
They also suggested that the increased threshold 40
should also be tested, since this is the value that will
be used in the new version of FreeSurfer (5.1.0).

o FreeSurfer-GCUT: the intersection (AND) of the outputs
from the two methods was taken. Default parameters were
used in FreeSurfer, whereas the GCUT threshold was set
to 40 (as in the new version of FreeSurfer).

AFNI, BridgeBurner, GCUT (with and without FreeSurfer) The authors of BET also had a particular petition. Since
and the method proposed in this study. No preprocessitigir method performs better when the neck is not visible in
was carried out before feeding the scans to the methotiee scan, they requested that the neck was removed from the
Our method requires no parameter adjustment. For the othBSER volumes before running their software. Their petition
methods, the corresponding authors were contacted aniddnvbased on their claim that the neck could be easily removed
to provide parameter values for each of the three datasetsfrom the scans automatically anyway. While this assumption
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might be debatable, we also acknowledge that a skull strippi Another interesting experiment is to remove the free de-
algorithm expects a volume centered on the brain, as oppo$ecnation step from our method (i.e., use the shape model
to a scan with a larger field of view. Therefore, BET was testedirectly) and study the impact on the segmentation. Thosa|
on the original IBSR dataset but also a version in which alis to quantify the importance of the graph-cut refinement.
voxels more than 30mm below the most inferior voxel in the Finally, we also studied the performance of the system
ground truth brain mask were deleted. The authors of the otlveghen a different dataset is used to train the system. The aim
methods were given the chance of using these trimmed masifsthis experiment is to test whether the high performance
but they all declined. The trimming process is illustrated iof our system is due solely to the high quality of the data
Figure 15. is is trained upon, and not due to the algorithm itself. The
The automatically segmented brains were compared wikistem was retrained using an identical configuration viiéh t
the gold standard using a number of metrics. The choioaly difference being that our training dataset was remlace
of metrics is motivated by two different reasons. First, they OASIS. We used OASIS rather than IBSR or LPBA40
metrics must provide different perspectives of the reqelty., because it contains more scans and allows us to build a
precision vs. robustness). Second, the metrics must béasimimore accurate generative model, even though the fact that th
to those used in other studies, for the sake of easy comparisdelineations are not 100% manual compromises the quality of
In this study, we used: the discriminative model.

» The voxel-based Dice similarity coefficiet(X,Y) =
%. This is arguably the most spread performangg. Results
metric in the segmentation literature. It is related to the : .
(also widely used) Jaccard indeX X, ) — IXNY| by 1) Performance of the different methodBigures 11, 12

S ) T IXUY] and 13 show box plots with the different metrics for the

A ) evaluated methods on the three datasets. Tables lll, IV and
« The maximal surface-to-surface distance (Haussdorff dig-gigplay the means and standard deviations of the metrics,

tance): measures the robustness of the algorithm. As Q@ || as Cohen's and p-values for a one-tailed, paired t-
posed to the Dice overlap, it penalizes cases in which tWost comparing our method with all the others. The p-value
greatly overlapping objects have very different bounds {he estimated probability that the hypothesis “ROBEX is
aries, e. @@ _ , better than method X according to metric Y” is false. Cohen’s
« The mean symmetric surface-to-surface distance: Mea;s 5 tyne of effect size, which complements the information
sured from each voxel in the boundary of the grounglyy, he t-test: rather than assigning a significance level
truth to its nearest boundary voxel in the automated Segfiecting whether the relationship could be due to chance,
mentation and the other way around (from each boundggyneasyres the strength of the apparent relationship leetwe
voxel of the segmentation to its nearest boundary VOXgle yariables. The larget is, the stronger the relationship.
in the ground truth). This metric is easier to interpret thaBohen's thresholds for small, medium and large are 0.2, 0.5
the Dice coefficient. _ and 0.8. Figure 14 shows the error volumes, and Figure 15
« The 95% percentile of the surface-to-surface distanGggniays sample outputs from each method and dataset. The
this a more robust way of measuring robustness, since ) niots are rich in outliers, meaning samples (scans) for
Haussdorff distance is too sensitive to noise and outligfgich a method produces segmentations much worse than for
in the annotations and segmentations. the other volumes in the same dataset. In the rest of the paper
It is also interesting to study the distribution of the segmewe use the term “outlier” for such method-specific inferior
tation error around the different regions of the brain stefa segmentations.
i.e., in which brain regions is a given method more accurate?BET provides good results in general across the datasets
This can be done by computing the absolute difference volurard generates very accurate segmentations around théssuper
between the automatic segmentation and the ground truth fegion of the brain. It provides the best Dice overlap andmea
each scan and method, warping it to the space of the referesaeface-to-surface distance for LPBA40. However, it piasu
volume and taking the average across each dataset / methodumber of outliers, especially in OASIS, in which the
pair. Henceforth, we call these “error volumes.” In order teegmentation often leaks into the eyes (see OASIS-2 in Eigur
warp the difference volumes, Elastix was used to nonligearl5, in which the cerebellum is oversegmented). The two-pass
register each ground truth mask to the mask of the refereragproach indeed eliminates most of the false positivesahat
scan (using the same B-spline registration as in sectieB)lll single call to BET is well-known to produce ( [6] reports a
and the resulting transform was then used in the warping. ~50% false positive rate in IBSR). Removal of the neck in
Given that the age of each subject is given for IBSR artie IBSR dataset has a large impact of the output (see top
OASIS, it is also possible to assess the impact of age on tlosv of Figure 14), so preprocessing and/or controlled image
performance of our system. One would expect elder subjeetjuisition are very important for the performance of this
from OASIS, whose brains are often atrophied, to be hardaethod.
to segment for our method, since it is based on a shape moddBSE shows potential to produce very accurate segmenta-
of healthy brain and can have trouble following deep suldions when the parameters are carefully fine tuned. The Hefau
Here, we use linear regression to relate age and performapaeameters work well with the IBSR dataset: except for a case
using the slope of the fit and the correlation coefficient.  in which the overlap is 0%, the segmentations are as accurate
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and robust as those from BET. The parameters given by with FreeSurfer, see Table V).

the authors for the LPBA40 dataset produced again excellens The best mean surface-to-surface distance for all datasets

results except for two scans. However, BSE provides thetwors except for BET in LPBA40. Most of the differences are

results for OASIS when default parameters are used, failing statistically significant ap = 0.05 and display medium

to remove large parts of the neck and skull (see OASIS-2 in or large effect size (again, see tables).

Figure 15). o Atleast medium effect size (i.€.> 0.5) and significantly
AFNI produces extremely accurate and robust results in smaller (atp = 0.05) Haussdorff distances than any other

IBSR, as much as BET and BSE. However, the performance method for all datasets, except for BSE in IBSR and

decreases slightly in LPBA40 (see minor under- and overseg- LPBA40.

mentations in Figure 15), and even further in OASIS, wheres The highest minimum Dice overlap across each dataset,

the results are almost identical to those from BET, inclgdin which is another measure of robustness. Therefore, it also

the presence of outliers (see OASIS-2 in Figure 15 for an provides the highest minimum Dice overlap across all the

example). scans at 93.3% (FreeSurfer is second at 82.6% and BET
BridgeBurner, despite not being a skull stripping algo- third at 77.3%).

rithm, produces acceptable results for most brains. Itsxmai

problem is that it sometimes fails to burn some bridges,teav gtep the refined segmentation significantly improves alk me
in large chunks of skull that are not completely disconnécte.
g P y rics (p < 0.05, d > 0.6) for every dataset except for the

f the brain boundary. This h ticularly oft : . .
i;O?I;SRean;aIEPBXZ% E(Jlsr}e/e L;%Afop_geas Fl?g;rlgulaSr )f/oroae aussdorff distance in LPBA40 and OASIS. The refinement
captures obvious brain boundaries that are slightly oeateid

example). ] . A
FreeSurfer is very robust without any parameter tuningfhe model; see, for instance, case IBSR-1 in Figure 15.

The range of the metrics is in general small across theThe main disadvantage with ROBEX is that it does not

datasets, and it barely produces any outliers. Howevefteho produce segmentations as sharp as BET or BSE. In brains with
undersegments the brain: it provides nearly 100% sertgitivV/€"y convoluted surfaces, gyri and sulci are oversmoothed,
but also the worst specificity for IBSR and LPBA40, andgading to inclusion of du_ra and/or gray matter loss. For the
second-to-worst in OASIS. Moreover, FreeSurfer usuallis fa Séme reason, ROBEX fails to provide a very accurate seg-
to remove the dura matter, which is a well-known flaw of thE1€ntation at the posterior region of the cerebellum-cemsbr
algorithm (see IBSR-1 in Figure 15). Another disadvantadterface (see for example IBSR-2 in Figure 15 and the error
of FreeSurfer is that it consistently crashes when trying ¥9lume in Figure 14).
segment three of the scans in the IBSR dataset (these crashd$ie dependence of the performance on the datasets is
are also reported in [6]). also interesting to observe. IBSR is the dataset with lowest
The results provided bysCUT are very similar to those resolution, most anisotropic voxels 1x3.1mm) and most
from FreeSurfer, with two differences: 1. The sensitivisy iobvious artifacts. LPBA40 is also fairly anisotropic, butaa
(on average) similar and the specificity better, resultimgua much better resolution (0.8@.86x1.5mm) and with much
improvement of the metrics; and 2. they unfortunately poeduless noise. Finally, OASIS is isotropic and has a good signal
more outliers, including a case in which there is no overldp noise ratio but it includes demented subjects with prob-
between the ground truth and the segmentation (OASIS-1dhle Alzheimer’s disease. It is therefore not surprisingt th
Figure 15). Regarding the value of the threshold paraméfer,all methods perform worst in either IBSR or OASIS. BET,
seems to give slightly better results in terms of Dice oyerldreeSurfer, GCUT and their combination achieve the lowest
and surface-to-surface distance. As FreeSurfer did in |IBSRice overlap in OASIS, whereas BSE, AFNI, BB and ROBEX
GCUT consistently crashes when trying to segment two perform worst in OASIS.
the scans from OASIS. It is important to note that there are some discrepancies
Combining FreeSurfer and GCUT-40improves the results between the results presented here and in some other studies
from both methods. Because their sensitivities are nea®l0Ghat used the same datasets. These discrepancies can be
for all datasets, the logical AND of their outputs has thexplained by differences in software version and parameter
effect of removing false positives with very little impach o settings, especially for BSESadananthan et a[6] report a
the sensitivity. Moreover, the combined method displayy veDice overlap equal to 79% for BSE in IBSR (91% in this

Compared with the version without the free deformation

few_outliers. ~ study), but they did not use the default parameters. They als
Finally, ROBEX produces extremely robust results in alteport very poor results for BET (74% vs. 84% here), but the
three datasets, providing: reason is that they used the single-pass versitang et

« The best Dice overlap for IBSRy(< 0.02 andd > 0.5 al., who achieve 96% overlap in IBSR with their proprietary
for all methods except for BSE and BridgeBurner, semethod, report a 69% overlap for BET and 88% for BSE
Table 111). on this dataset, possibly due to using older versions. Fjnal

o The second to best Dice overlap in LPBA40 after BEBhattuck et al[45] report results that are quite consistent with
(p <Be-5 andd > 0.7 for all the others except for BSE, ours in LPBA40. In that study, they also describe a website
see Table IV). in which users can upload their segmentations of LPBA40

« The best Dice overlap in OASI$ (<2e-8 andd > 0.7 and the results are compared. There are several methods that
for all methods except for GCUT and its combinatiomave reported better results than ours, but they are noitghubl
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Fig. 11. Box plots of the results for the IBSR dataset. BETfere to the results on the trimmed scans. ROBEX* corresptmdise results of our algorithm

without the graph-cut refinement. On each box, the centrakrisathe median, the edges of the box are 23" and 75" percentiles and the whiskers
extend to the most extreme data points not considered @utle within three standard deviations from the mean. Titéeos are plotted individually. The
number of points that were left out of the plot (to allow a elofook and better interpretation of the rest of the data) asked in red below the horizontal
axis. The plots do not consider the three cases in which kEré&Sand therefore FreeSurfer+GCUT) crashed.

TABLE Il
IBSR DATASET: MEANS AND STANDARD DEVIATIONS OF THE METRICS COHEN'Sd (EFFECT SIZE AND P-VALUES OF PAIRED FTESTS COMPARING THE
DIFFERENT METHODS WITHROBEX,AND NUMBER OF CASES FOR WHICH THE ALGORITHMS CRASHBET* CORRESPONDS TO THE TRIMMED SCANS
AND ROBEX* TO OUR METHOD BEFORE THE FREE DEFORMATION

Method Dice Av. dist. Haussdorff | 95% dist. | Sensitivity Specificity | # crashes

BET 84.3+16.2 6.6£7.5 38.0£33.8 | 19.7423.3 | 99.9+0.2 75.7421.3 0

p-val / Cohen's d| 3.4e-3/0.7 | 3.9e-3/0.7 | 3.0e-3/0.7 | 3.9e-3/0.7 1.0/-1.5 1.9e-3/0.7 n/a
BET* 93.8£2.9 2.2+1.2 19.1+9.2 6.2+6.2 99.0£3.5 89.1£2.8 0

p-val / Cohen's d| 5.1e-3/0.6 | 5.4e-3/0.6 | 1.1e-2/0.6 | 5.0e-2/0.4 | 3.8e-1/0.1 1.7e-5/1.2 n/a
BSE 90.8+21.6 | 3.9£10.6 | 21.0+22.1 | 10.6+20.2 | 90.2+22.1 | 91.6+21.6 0

p-val / Cohen's d| 1.6e-1/0.2 | 1.6e-1/0.2 | 6.8e-2/0.3 | 7.7e-2/0.3 | 4.2e-2/0.4 4.4e-1/0.0 n/a
AFNI 94.5+0.6 1.8+0.3 16.2+2.5 5.4+0.9 98.1£0.5 91.2+1.4 0

p-val / Cohen's d| 8.1e-7/1.5 | 2.4e-7/1.7 | 4.7e-4/0.9 | 2.1e-8/2.0 | 2.5e-10/2.6| 2.0e-3/0.7 n/a
BB 94.0+6.9 2.5+3.1 55.4+21.7 9.3t+12.7 93.3£7.8 95.8+9.6 0

p-val / Cohen's d| 1.6e-1/0.2 | 7.0e-2/0.3 | 3.1e-8/1.9 | 3.5e-2/0.4 | 1.1e-3/0.8 | 9.4e-1/-0.4 n/a
FS 87.9t1.8 4.4+0.6 26.6t4.4 10.H42.2 97.9t4.4 79.8£1.9 3

p-val / Cohen's d| 7.9e-12/4.0| 8.3e-15/6.3| 1.2e-8/2.5 | 3.8e-10/3.1| 1.0e-1/0.3 | 4.0e-19/11.8 n/a
GC-36 87.5+8.8 4.8+4.1 29.0+£21.2 | 12.2+11.8 | 100.G+0.1 78.6£10.8 0

p-val / Cohen's d| 3.3e-4/0.9 | 9.6e-4/0.8 | 1.9e-3/0.7 | 2.6e-3/0.7 1.0/-1.3 1.2e-5/1.2 n/a
GC-40 85.8+20.2 45t4.6 27.3t20.9 | 11.4+12.9 | 95.0+22.3 | 78.2t18.5 0

p-val / Cohen's d| 2.1e-2/0.5 | 4.0e-3/0.7 | 3.9e-3/0.7 | 9.1e-3/0.6 | 2.0e-1/0.2 1.6e-3/0.8 n/a
FS-GC 90.5+1.9 3.3£0.6 21.4+6.6 8.3t2.6 97.9t4.4 84.2+1.7 3

p-val / Cohen's d| 1.3e-8/2.4 | 6.5e-11/3.5| 2.8e-4/1.0 | 3.8e-6/1.6 | 9.7e-2/0.3 | 7.3e-17/8.5 n/a
ROBEX* 94.6+1.3 1.8+0.5 15.3+4.5 5.4+2.2 96.3£1.2 93.1£2.6 0

p-val / Cohen's d| 1.9e-3/0.7 | 2.2e-3/0.7 | 1.1e-2/0.6 | 2.1e-3/0.7 | 2.4e-13/3.8| 9.2e-1/-0.3 n/a
ROBEX 95.6+0.8 1.5+0.3 13.3:2.6 3.8£0.7 99.2+0.5 92.3t1.9 0
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LPBA40 - 95% perc. distance (mm)

LPBA40 - Mean Distance (mm)

LPBA40 - Dice (%)
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Fig. 12.

Box plots of the results for the OASIS dataset (sqei@a of Figure 11). GCUT (and therefore FreeSurfer+GCUmBshed in two cases.

Fig. 13.
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LPBA40DATASET: MEANS AND STANDARD DEVIATIONS OF THE METRICS COHEN'Sd (EFFECT SIZB AND P-VALUES (SEE CAPTION OFTABLE Il1).

TABLE IV

Method Dice Av. dist. Haussdorff | 95% dist. Sensitivity | Specificity | # crashes

BET 97.3:0.5 1.0+£0.2 14.2£4.3 3.0+£1.0 97.0£1.3 97.7£0.8 0

p-val / Cohen’s d 1.0/-1.3 1.0/-1.1 3.9e-2/0.3 | 8.4e-1/-0.2 1.0/-1.1 4.7e-1/0.0 n/a
BSE 96.2+2.3 1.4+0.8 15.5£8.2 3.6+:3.5 93.7+4.1 99.0+0.5 0

p-val / Cohen's d| 1.1e-1/0.2 | 1.2e-1/0.2 | 6.1e-2/0.3 | 1.8e-1/0.1 | 1.9e-3/0.5 1.0/-1.8 n/a
AFNI 95.6+0.7 1.6+0.3 16.1£2.9 4.8+1.2 96.4+0.8 94.8+1.9 0

p-val / Cohen's d| 1.1e-11/1.5| 2.4e-12/1.5| 4.0e-7/0.9 | 1.2e-12/1.6 1.0/-1.0 5.7e-14/1.8 n/a
BB 90.5+8.6 3.5+3.4 31.2£28.6 | 10.3+t12.2 | 91.1+3.0 91.415.6 0

p-val / Cohen's d| 2.5e-5/0.7 | 3.8e-5/0.7 | 1.4e-4/0.6 | 3.1e-4/0.6 | 5.6e-13/1.6| 1.0e-2/0.4 n/a
FS 92.5+1.0 2.9+0.4 20.14+2.4 8.0+0.8 99.9+0.0 86.1+1.7 0

p-val / Cohen's d| 5.0e-25/3.7| 1.7e-26/4.1| 2.6e-14/1.8| 3.9e-32/5.8 1.0/-4.5 5.9e-37/7.7 n/a
GC-36 94.0+£2.2 2.3+0.9 24.1410.4 7.8+3.3 99.2+1.0 89.4+4.2 0

p-val / Cohen's d| 1.4e-9/1.2 | 4.2e-10/1.3| 8.7e-9/1.1 | 6.2e-12/1.5 1.0/-2.8 4.8e-16/2.1 n/a
GC-40 95.1+1.6 1.8+0.6 21.2+9.2 6.5+2.7 99.1+1.1 91.5+3.2 0

p-val / Cohen's d| 1.1e-7/1.0 | 1.3e-8/1.1 | 3.8e-7/0.9 | 5.7e-11/1.4 1.0/-2.6 4.3e-16/2.1 n/a
FS-GC 95.9+0.8 1.5+0.3 18.2£5.6 5.3+1.2 99.0+1.1 93.1+1.8 0

p-val / Cohen's d| 8.9e-6/0.8 | 1.5e-7/1.0 | 4.8e-8/1.0 | 1.7e-14/1.8 1.0/-2.6 8.5e-21/2.8 n/a
ROBEX* 94.3+0.6 2.0+£0.2 13.0£2.5 4.7+£0.7 91.6£1.5 97.1£1.7 0

p-val / Cohen’s d| 9.4e-35/6.8| 6.3e-34/6.5| 8.5e-1/-0.2 | 2.1e-24/3.6| 1.1e-22/3.2| 1.0e-2/0.4 n/a
ROBEX 96.6+0.3 1.2+0.1 13.3t2.5 3.1+0.4 95.6+0.9 97.7+0.7 0

TABLE V

OASISDATASET: MEANS AND STANDARD DEVIATIONS OF THE METRICS COHEN' Sd (EFFECT SIZE) AND P-VALUES (SEE CAPTION OFTABLE IlI).

Method Dice Av. dist. Haussdorff | 95% dist. Sensitivity | Specificity | # crashes

BET 93.14+3.7 2.7+1.4 23.48.3 8.2+5.5 92.5+5.4 94.245.0 0

p-val / Cohen's d| 1.6e-8/0.7 | 3.9e-9/0.7 | 7.5e-25/1.7| 8.2e-9/0.7 | 5.8e-3/0.3 | 8.4e-8/0.7 n/a
BSE 76.8£8.8 9.7+4.5 40.6+11.3 20.6£7.2 97.1+£2.6 64.9+£14.0 0

p-val / Cohen's d| 4.7e-30/2.1| 2.4e-25/1.8| 5.9e-37/2.7| 1.8e-31/2.2 1.0/-1.2 7.6e-33/2.3 n/a
AFNI 93.0+4.0 2.8t1.6 19.3+9.6 8.2+5.8 90.6+7.9 96.2+2.2 0

p-val / Cohen's d| 1.2e-8/0.7 | 1.6e-9/0.8 | 3.9e-14/1.0| 1.6e-8/0.7 | 3.6e-5/0.5 | 1.1e-8/0.7 n/a
BB 88.6+4.2 4.6+1.6 39.5+£10.1 13.3+5.8 80.6+6.7 98.8+1.7 0

p-val / Cohen's d| 7.6e-27/1.9| 2.3e-28/2.0| 1.2e-40/3.0| 7.5e-24/1.6| 2.2e-33/2.4 1.0/-0.9 n/a
FS 93.9£1.5 2.6+0.6 23.4+4.3 6.4t+1.4 98.1+1.7 90.2£3.5 0

p-val / Cohen's d| 1.8e-10/0.8| 6.6e-14/1.0| 1.9e-37/2.7| 6.2e-17/1.2 1.0/-3.0 9.0e-37/2.7 n/a
GC-36 93.9+11.0 2.1+1.6 17.2+11.6 5.9+55 92.7411.3 | 95.2+11.1 2

p-val / Cohen's d| 9.7e-2/0.2 | 3.3e-2/0.2 | 1.0e-7/0.7 | 8.5e-3/0.3 | 2.1e-1/0.1 | 4.2e-2/0.2 n/a
GC-40 94.0+10.9 2.1+1.4 17.0+8.9 5.4t+4.4 95.2+£11.3 | 92.9+10.9 2

p-val / Cohen's d| 1.2e-1/0.1 | 3.7e-2/0.2 | 1.5e-10/0.8| 2.3e-2/0.2 | 8.8e-1/-0.1| 3.0e-4/0.4 n/a
FS-GC 94.1+11.0 2.3+3.6 17.9£16.1 5.7+7.7 94.8+11.3 94.0+7.6 2

p-val / Cohen's d| 1.4e-1/0.1 | 1.1e-1/0.1 | 1.5e-5/0.5 | 7.3e-2/0.2 | 7.9e-1/-0.1| 9.7e-5/0.5 n/a
ROBEX* 94.4+1.0 2.2+0.4 10.1+1.2 5.2+0.8 90.6+2.3 98.6+0.9 0

p-val / Cohen's d| 5.2e-25/1.7| 6.2e-26/1.8| 9.4e-2/0.2 | 6.0e-21/1.5| 1.0e-42/3.3 1.0/-1.5 n/a
ROBEX 95.5+0.8 1.8+0.3 9.8+1.7 4.44+0.6 93.8£2.1 97.4£1.2 0

available and cannot be compared on the other datdsets.

2) Effect of age:Figure 16 displays a scatter plot of the
Haussdorff distance achieved by ROBEX for each case agains
the age of the subject. We chose the Haussdorff distance
because it shows more spread than any of the other metrics
The two datasets for which age data are available (IBSR
and OASIS) are analyzed separately. The distance shows
positive correlation with age as expected, even though it is
only significant for OASIS ap = 0.05. For IBSR, the 95%
confidence interval of the correlation coefficiemtextends
beyond zero, and theg value for the hypothesis that the slope
of the regression is greater than zergis.4e-2. For OASIS,
the lower bound of the 95% confidence intervalpat 3.6e-3
and thep value for the test on the slope jis= 2.0e-2, so the
relation is significant but very weak: the range of the presdic

Haussdorff distance across the dataset is just 1.25 mm.

Fig.

95% confidence interval of the correlation coefficient is(¢€0.70] for IBSR
and [0.02,0.44] for OASIS. The-value for the hypothesis that the slope is

Effect of age on the performance of the algorithm
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16. Haussdorff distance vs. age for ROBEX in IBSR and (3AShe

LActually, some of the methods in the website have been tlaimethe test positive is 0.0644 for IBSR and 0.0195 for OASIS.
dataset (LPBA40) itself, which makes the comparison witheotalgorithms

unfair.
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Fig. 14. Averages of the error volumes along the inferigrésior, anterior/posterior and left/right axes for eachthod and dataset.

3) Effect of training datasetTable VI compares the dif- skull stripping and a thorough experimental evaluatiomgsi
ferent metrics when OASIS and the original training datasttree different datasets and six competing methods.

are used to train the generative and discriminative models..l.he proposed algorithm uses a hybrid model in which a

The perforr_nance decreases slightly as expected given thafo 4tive model of brain boundary is fitted to the output of
the annotathns of OASIS are not as accur_ate as the I_abel Ylassifier that is trained to find the contour of the brain in
of our proprietary data;et. The deprease IS most r.]o.t'cedtl% data. The use of a hybrid model is imperative in learning-
the surface-tg-sgrface distances, since thg INACCURIEMNG 1), q0q systems for MRI image analysis. Because of the lack of
data makes finding the exact poundary _dlfflcult. However, tri‘l%age intensity standardization in this modality (as ogos
values of the robustnes; metrics are .St.'” bett(_ar than tIF]"[?Seto other modalities such as computed tomography), analysis
the other methods, particularly the _m|n|mal D'C_e_coeﬁ't'enbased solely on discriminative features is not sufficient to
We can thus conclude that the quality of the training data héBtain good results, especially when the acquisition dinTd
some influence on the results, but it is clearly not the Maihange. However, ,the generative model in our framework

reason why the system is robust. guides the segmentation and guarantees than the outpat corr
sponds to a plausible brain shape. The two models complement
V. DISCUSSION ANDCONCLUSION one another very well because the classifier provides local

A new skull stripping method has been presented in thﬁ)gecision whereas the shape model provides robustness.

article. The main contribution of our study lies in two asisgec  The method has been compared with six popular, well-
a learning-based hybrid generative/discriminative mddel established methods that are commonplace in the literahde
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G.T. BET BET* BSE AFNI BB
FS GC-36 GC-40 FS+GC ROBEX* ROBEX

e e EEm .

IBSR-2

LPBA40-1

OASIS-1

OASIS-2

Fig. 15. Outputs for two scans from each dataset. Two orthaigslices are shown for each volume. IBSR: coronal, cordr@BA40: saggital, coronal;
and OASIS: coronal, saggital. Again, BET* refers to the otitfor the trimmed scans. The axial coordinate of the tringrim illustrated in cases IBSR-1
and IBSR-2.
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TABLE VI
PERFORMANCE METRICS WHENOASISIS USED FOR TRAINING
Metric Dice (%) | Dice (range, in %)| Mean dist.(mm)| Haussdorff (mm)| 95% dist.(mm) | Sensit.(%)| Specif.(%)
IBSR - our dataset | 95.6+0.8 [94.1,96.7] 1.5+0.3 13.3+2.6 3.8£0.7 99.2+0.5 92.3+1.9
IBSR - OASIS 93.2+1.3 [91.4,96.1] 2.4+0.5 21.4+4.2 4.0+£1.0 97.8+0.8 91.5+2.2
LPBA40 - our dataset| 96.6+0.3 [95.2,97.0] 1.2+ 01 13.3+2.5 3.1£0.4 95.6£0.9 97.7+0.7
LPBA40 - OASIS 95.7+0.5 [94.5,97.1] 1.7+0.2 15.743.1 3.4+0.6 96.0+1.0 94.8+1.1

publicly available. Three publicly available datasetsevesed images from more than one modality are available for a test
for evaluation purposes. Our method outperforms all thersth case, which is the usual clinical scenario, it would cefyain
in almost every case, and it is much more robust: some of the possible to use all the channels simultaneously for the
other methods produce comparable results in certain dataselassification. This should in principle improve the result
but falter when the scan comes from a different source. However, there are no publicly available datasets (to thet be
The lowest Dice overlap given by ROBEX in the thre®f our knowledge) with multi-spectral information and mahu
datasets is 93%. BET and AFNI, which follow similar prin-delineations of the brain to test this approach.
ciples, perform well in general with little or no parameter Extending the method to other medical image segmentation
adjustment, but produce some outliers for which the Diggoblems would, in principle, be possible. The least gdnera
overlap is below 80%. BET also needs that little or no neckep of the algorithm is be the registration, not because
is visible in the input volume, which can require additionalegistration is not general, but because one cannot expect
preprocessing. BSE produces very accurate results whentf alignment to be as good as it usually is in the brain,
parameters are well tuned, but it is extremely sensitive ¥ghich is relatively easy to register. This is particulartye
parameter values and small deviations can produce suiagtarior articulated or highly anatomically variable structsire
loss of quality in the segmentation. For example, when defau One of the disadvantages of the presented approach is that it
parameter values are used in LPBA40, the Dice overl#@nds to oversmooth the contour of the brain. In some extreme
decreases almost 24 points [45]. BridgeBurner, which doegses, ROBEX can leave out some gray matter, which can
brain tissue segmentation rather than skull stripping,ds nrepresent a problem if the next step in the image analysis
robust at all but produces very sharp brain boundaries,iwhigipeline is estimating the cortical thickness or measuring
can be useful if the user is willing to manually edit the odtputhe gray matter volume. However, it would be possible to
If that is not the case, FreeSurfer can be used instead, ggeradd a second refinement stage to ameliorate this problem,
large sensitivity and robustness (and despite its relstiosv ~ perhaps increasing the density of the mesh or using some othe
specificity). Finally, GCUT is also provides high sensijvi approach. It would also be interesting to study the behavior
and sharp brain boundaries, but when it makes mistakess thet the algorithm in cases with pathologies that alter the
are usually large e.g. leaving the cerebellum out or the @yesbrain structure more severely than dementia and Alzhesmer’
GCUT is best used in combination with FreeSurfer becaudisease, for example, brain tumors.
they are both highly sensitive and cancel some of each sther’ Another aspect of the system that could be improved is the
false positives. image intensity standardization step. The proposed sysses
The experimental evaluation in this study is based onfycombination of robust histogram stretching and equadiaat
on publicly available datasets with publicly available gnd but the segmentation could benefit from more sophisticated,
truth. Hence, all the experiments in this paper can be rerain MRI-specific approaches. The better the intensitychiat
produced. Even though the training dataset is not publidiyd, the higher the quality of the boundary probability voles
available, the trained system can be downloaded from tffdgure 4) and the better the final segmentation.
first author’s homepage: http://loni.ucla.ediglesia/ROBEX. ~ Finally, it is important to discuss the computational re-
Both the source code and executables in different platforfidirements and execution time of the algorithm. Most of
have been made available. To show that the performancetik# methods discussed in this paper run in approximately
the system does not depend exclusively on the unavailaBRe minute on a modern desktop. The two exceptions are
training data, the results were successfully reproducmgusBridgeBurnerand BSE, which run in just two or three seconds.
OASIS as training dataset. The use of publicly availablEhe original BET algorithm is also extremely fast, but thetw
datasets and methods is an increasing trend in the medie@a$s version used in this study requires registration tdlas,a
imaging community, for example in challenge workshops y¢hich is the bottleneck of the algorithm. Our single-thregd
conferences [46]-[49]. It is often the case that meta-étiymis implementation of ROBEX runs in two or three minutes. Half
that combine all the methods in the challenge provide the b&% that time is spent on the registration. Making ROBEX
results (see [50], [51] for meta-algorithms in skull-sfripg faster, refining the output mask and improving the intensity

combining some of the methods described above). standardization remain as future work.
In this study we have focused on T1 MRI, but extending
ROBEX to other modalities (T2, proton density, etc.) would VI. ACKNOWLEDGEMENTS
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