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Abstract— We compared four automated methods for hip-
pocampal segmentation using different machine learning algo-
rithms (1) hierarchical AdaBoost, (2) Support Vector Machines
(SVM) with manual feature selection, (3) hierarchical SVM
with automated feature selection (Ada-SVM), and (4) a publicly
available brain segmentation package (FreeSurfer). We trained
our approaches using T1-weighted brain MRI’s from 30 subjects
(10 normal elderly, 10 mild cognitive impairment (MCI), and 10
Alzheimer’s disease (AD)), and tested on an independent set of 40
subjects (20 normal, 20 AD). Manually segmented gold standard
hippocampal tracings were available for all subjects (training
and testing). We assessed each approach’s accuracy relative to
manual segmentations, and its power to map AD effects. We
then converted the segmentations into parametric surfaces to
map disease effects on anatomy. After surface reconstruction,
we computed significance maps, and overall corrected p-values,
for the 3D profile of shape differences between AD and normal
subjects. Our AdaBoost and Ada-SVM segmentations compared
favorably with the manual segmentations and detected disease
effects as well as FreeSurfer on the data tested. Cumulative
p-value plots, in conjunction with the False Discovery Rate
method, were used to examine the power of each method to
detect correlations with diagnosis and cognitive scores. We also
evaluated how segmentation accuracy depended on the size of
the training set, providing practical information for future users
of this technique.

Index Terms— AdaBoost, Alzheimer’s disease, hippocampal
segmentation, support vector machines, surface modeling

I. INTRODUCTION

Hippocampal segmentation is a key step in many medical
imaging studies for statistical comparison of anatomy across
populations, and for tracking group differences or changes
over time. Specifically in Alzheimer’s disease, hippocampal
volume and shape measures are commonly used to examine
the 3D profile of early degeneration, and detect factors that
predict imminent conversion to dementia [2]. Early detection
of AD has grown in importance over the last decade because
of the acknowledged benefits of treating patients before severe
degeneration has occurred [12]. In epilepsy, hippocampal
shape measures computed from a pre-operative scan, can also
predict whether patients will be seizure-free following surgical
treatment [32]. A broad range of ongoing neuroscientific
studies have used hippocampal surface models to examine
the trajectory of childhood development [21], childhood-onset
schizophrenia [43], autism [42], Alzheimer’s disease and mild
cognitive impairment [6], [18], [68], drug-related degeneration
in methamphetamine users [60], and hypertrophic effects of
lithium treatment in bipolar illness [5], [4]. Hippocampal

models are also used in genetic studies that seek anatomical
shape signatures associated with increased liability for illness,
providing measures to assist in the search for genes influ-
encing hippocampal morphology [40]. There has also been
work developing algorithms for 3D nonlinear registration or
computational matching of hippocampal surfaces, based on
elastic flows in the surface parameter space [72], [69], direct
surface matching using exterior calculus approaches [66],
spherical harmonic approaches [23], or level-set approaches
and intrinsic shape context measures to constrain 3D harmonic
mappings [54].

One of the first steps for all these methods is segmenting out
the hippocampus from a 3D brain MRI scan. Despite much ac-
tive work on the computational anatomy of the hippocampus,
segmentation is still commonly performed manually by human
experts. Manual tracing is difficult and time consuming, so
automating this process is highly desirable. As a result, several
partially or fully automated approaches have been proposed to
segment the hippocampus, but none is currently in wide use.

Semi-automatic methods still require some user input and
therefore some amount of expert knowledge. Hogan et al. [25]
used a deformable template approach to elastically deform
a hippocampal model to match its counterpart in a target
scan. This method was successful, but required 10-15 minutes
of user interaction to define both global and hippocampal
specific landmarks. Another approach by Yushkevich et al.
(ITK-SNAP) [71] used active surface methods implemented in
a level-set framework. In ITK-SNAP, the user must first deter-
mine an approximate boundary for the structure of interest, and
the final segmentation depends to some extent on the starting
position of the active surface. Also, the deforming surface is
driven by an intensity-based energy minimization functional.
This makes it very difficult to segment a structure like the
hippocampus as local intensity information is not sufficient to
determine the hippocampal boundary, particularly its junction
with the amygdala. Shen et al. [52] also used an active contour
method augmented by a priori shape information. Neverthe-
less, they are still subject to some of the same limitations as
ITK-SNAP, requiring some user initialization.

Fully automatic methods do not require any user input,
and are usually based on extracting and combining some set
of image features to determine the structure boundary. Some
commonly used features include image intensity, gradients,
curvatures, tissue classifications, local filters, or spectral de-
compositions (e.g., wavelet analysis). However, determining
which features are informative for segmentation, and how to



combine those features is difficult without expert knowledge
of the problem domain, and without proper features for each
different problem, segmentation becomes very difficult. Lao
et al. [30], used a multispectral approach to segment white
matter lesions based on co-registered MRI scans with different
T1- and T2-dependent contrasts. They used SVMs to combine
the intensity profile of these different scans, and performed
multivariate classification in the joint signal space. This will
only work if segmentation is possible with only these specific
MRI signals, which in general it is not. Powell [46] also
used SVMs and artificial neural networks to segment out
the hippocampus. Although they report very good segmen-
tation performance for their data, their test size is small (5
brains) and they use 25 manually selected features, which
means that generalization to other datasets is not guaranteed.
Golland et al. [22] proposed using a large feature pool, and
Principal Component Analysis (PCA) to reduce the size of
the feature pool, followed by SVM for classification. PCA
does not choose features that are necessarily well-suited for
segmentation, it only chooses features with a large variance.
Therefore, the features chosen by PCA are not guaranteed to
give good classification results. Another common approach for
fully automated segmentation is to nonlinearly transform an
atlas, where the hippocampus is already segmented, onto a new
brain scan, using deformable registration. Such an approach
was proposed by Hammers et al. [24], but its accuracy depends
on the image data used to construct the atlas, as well as
the registration model (e.g., octree- or spline-based, elastic,
or fluid) and may have difficulty in labeling new scans with
image intensities or anatomical shapes that differ substantially
from the atlas. A fully automatic extension of the level-set
approach was suggested by Pohl et al. [44]. In this approach
the traditional signed distance function applied in most level-
set implementations is transformed into a probability using the
LogOdds space. This can lead to a more natural formulation
of the multi-class segmentation problem by incorporating
statistical information into the level-set approach.

Another fully automated approach for subcortical segmen-
tation is FreeSurfer by Fischl et al. [16]. FreeSurfer uses a
Markov Random Field to approximate the posterior distribu-
tion for anatomic labelings at each voxel in the brain. However,
in addition to this, they use a very strong prior based on
the knowledge of where structures are in relation to each
other. For instance, the amygdala is difficult to distinguish
from the hippocampus based on intensity alone. However, they
always have the same spatial relationship, with the amygdala
immediately anterior to the hippocampus, and this is encoded
by the statistical prior in FreeSurfer to separate them correctly.
FreeSurfer also makes use of additional statistical priors on
the likely location of structures after scans are aligned into a
standard stereotaxic space, and their expected intensities based
on spatially-adaptive fitting of Gaussian mixture models to
classify tissues in a training dataset. As FreeSurfer is a freely
available package over the internet, we compared its segmen-
tation results to ours throughout this paper. This required us
to develop some extensions of the freely available capabilities
of FreeSurfer, such as converting its usual outputs — multi-
class segmented volumes — into parametric surfaces, allowing

us to compare surface-based statistical maps of disease effects,
based on the outputs of all segmentation methods.

Recent developments in machine learning, such as Ad-
aBoost [17], have automated the feature selection process
for several imaging applications. Support Vector Machines
(SVM) [67] can effectively combine features for classification.
AdaBoost and SVM may be used to classify vector-valued
examples, and both have been separately applied to medical
image analysis before, but this paper evaluates the benefits of
combining them sequentially.

Statistical classification is an active area of pattern recogni-
tion and computer vision research in which scalar- or vector-
valued observations are automatically assigned to specific
groups, often based on a training set of previously labeled
examples. In medical imaging, different types of classifica-
tion tasks are performed, e.g., classifying image voxels as
belonging to a certain anatomical structure, or classifying
an individual scanned into one of several diagnostic groups
(disease versus normal, semantic dementia versus Alzheimer’s
disease, for example). For clarification, we note that this paper
classifies voxels in a brain MRI scan as belonging to the
hippocampus versus not, but in a second step we use these
classified structures to create statistical maps of systematic
differences in anatomy between Alzheimer’s patients and
controls. As such, although the main goal of the paper is
to achieve segmentations of the hippocampus, we illustrate
the use of the these segmentations in an application where
differences between disease and normality are detected and
mapped.

Among several algorithms proposed for statistical classifi-
cation, AdaBoost is a meta-algorithm that sequentially selects
weak classifiers (i.e., ones that do not perform perfectly
when used on their own) from a candidate pool and weights
each of them based on their error. A weak learner is any
statistical classifier that performs better than pure chance. Each
iteration of AdaBoost assigns an “importance weight” to each
example; examples with a higher weight, classified incorrectly
on previous iterations, will receive more attention on sub-
sequent iterations, tuning the weak learners to the difficult
examples. Testing examples with AdaBoost is therefore simply
a weighted vote of the weak-learners.

SVMs, on the other hand, seek a hypersurface in the
space of all features that both minimizes the error of training
examples and maximizes the margin, defined as the distance
between the hypersurface and the closest value in feature
space, in the training data. SVMs can use any type of hy-
persurface by making use of the “kernel trick”. [10].

SVMs have been used widely in medical imaging for brain
tumor recognition and malignancy prediction [35], white mat-
ter lesion segmentation [47], for discriminating schizophrenia
patients from controls based on morphological characteristics
[71] and for analyzing functional MRI time-series [28].

Although SVMs have been widely used in medical imaging,
AdaBoost has not. However, as AdaBoost can select infor-
mative features from a potentially very large feature pool,
it is likely to offer advantages in automatically finding good
features for classification. This can greatly reduce, or eliminate
the need for experts to choose informative features based on



knowledge of every classification problem. Instead, one just
needs to define a list of possibly informative features, and
AdaBoost will choose those that are actually informative.

For our classification problem, we compared four different
classification techniques, (1) FreeSurfer [16], (2) SVM with
manually selected features (manual SVM), (3) AdaBoost, and
(4) SVM with features automatically selected by AdaBoost
(Ada-SVM). As AdaBoost can select features automatically,
we improved the classification ability of AdaBoost and Ada-
SVM by implementing them in a hierarchical decision tree
framework.

As a testbed to examine segmentation performance, we
trained and tested our methods on a dataset of 70 3D volumet-
ric T1-weighted brain MRI scans. 30 of these subjects were
reserved for training, and 40 for testing. The training subjects
were composed of 10 subjects with Alzheimer’s disease (AD),
10 with mild cognitive impairment (MCI), a state which
carries an increased risk for conversion to AD, and 10 age-
matched controls. The 40 testing subjects were composed of
20 AD and 20 controls. Due to the small number of MCI
subjects available for this study, we choose to add them to the
training group because it increased the variability on which
to train. All subjects were scanned on a 1.5 Tesla Siemens
scanner, with a standard high-resolution spoiled gradient echo
(SPGR) pulse sequence with a TR (repetition time) of 28 ms,
TE (echo time) of 6 ms, field of view of 220mm, 256x192
matrix, and slice thickness of 1.5mm. For application to drug
trials, and neuroscientific studies of disease, we would require
our algorithm to perform accurate segmentation for normal
subjects and those affected by degenerative disease, which
affects hippocampal shape and image contrast; therefore, we
trained our classifier on manually segmented scans from both
normal and diseased subjects.

Recently the authors have also proposed another segmenta-
tion method based on AdaBoost [38]. In this implementation,
we use AdaBoost inside of a new classification scheme which
incorporates context information. We call this the auto context
model, as a spatial prior on the labels is successively refreshed
and features based on the updated spatial prior (e.g. gradients,
and filter outputs) are also included as extra features for
AdaBoost to consider. In this paper, we wish to show how
AdaBoost is less effective than a combination of AdaBoost and
SVM. Although the problems are the same in both papers, here
we are focusing on the learner itself (AdaBoost versus Ada-
SVM) and in our other work we are focusing on incorporating
contextual information into the classification problem. In fact
we could use our new Ada-SVM inside of the auto context
model, but we forgo that here to concentrate on the added
benefits of Ada-SVM as compared to AdaBoost.

II. PROBLEM

A typical goal of image segmentation problems is to assign
each image voxel to one of several classes e.g. background,
hippocampus, amygdala, ventricles, etc. For hippocampal seg-
mentation, we focus here on the case where there are only two
classes, hippocampus and background. Therefore, our problem
is reduced to taking in an input volume V and outputting a

binary classification Vy, where each voxel in Vi, has either
+1 or —1 denoting whether we estimate it to be inside the
hippocampus (+1), or outside (—1). If we let each voxel in
V be an example x and the corresponding output in Vi, be vy,
the solution to this problem may be formulated in a Bayesian
framework as shown in eqn. 1.

V" = argmazv, P(Vp|V) =
argmazv, P(V|Vy)P(Vyp) (D

However, this approach is not reasonable in practice because
it requires full knowledge of all possible features. Instead,
we approximate the posterior distribution P(V|Vy) with
both AdaBoost and SVM techniques, and implicitly integrate
P(Vyp) as a shape parameter.

For the remainder of this paper, each example is considered
as a vector of features (e.g., gradient strength, mean filter
response) derived from a single voxel, and for the first voxel
this example can be written as ;. If &; is the feature vector for
the i-th voxel, then the set of all examples can be represented
as an ordered set of examples, or as the vector (Z1, - ,Zn),
where each ; is the same length as the number of features.
Individual voxels are treated as independent examples, and all
the voxels from the same subject are treated in the same way as
voxels from other subjects in the training set. In other words,
(Z1, - ,ZN) is a long vector where the number of examples,
N, equals the number of labeled voxels in the training set. For
each voxel with feature vector Z; in the training set, a label
y; is assigned, so the set of labels is (y1, - ,yn), with a
label corresponding to each voxel (or to the feature vector
derived from it). Since we are only dealing with the two-
class classification problem, y; can only take values of —1
or +1. For the image segmentation task, an example is a
specific voxel from a given image. Each voxel is treated as
a separate example. A feature is any property of the image,
such as intensity, z, y, z position, or an image filter, such
as a mean filter, Haar filter, x, y, z gradient filter, etc. The
specific feature set we use for our experiments is described in
the Experiments section.

III. METHODS

In this section, we first formally define AdaBoost and
SVMs, and then show how they approximate the ideal
Bayesian classifier. Next we give reasons for using one method
versus the other, or both together. Then, we outline how we
express AdaBoost and SVMs in a hierarchical format. Finally,
we define our methodology for mapping the effects of AD on
the hippocampus.

A. Support Vector Machines

SVMs are very popular for discrimination tasks because
they can accurately combine many features to find an optimal
separating hyperplane. SVMs minimize the classification error
based on two constraints simultaneously. They both seek a
hyperplane with a large margin — i.e. the distance from the
closest example to the separating hyperplane — and minimize
the number of wrongly classified training examples, using



slack variables. If an example is perfectly classifiable in feature
space then the second constraint is not necessary. However,
this is not the case in our problem, so SVMs both minimize the
error on the training set and maximize the margin, increasing
their generalization ability. Eqn. 2 summarizes the SVM
formulation [67].

1
min §||&|\2+C’Z:zi
subject to  y; (@8- Z—b) > 1— 2 2)

Here, @ is the vector corresponding to the separating hy-
perplane, m is the margin of the hyperplane, according to
the lo — norm, & is a vector consisting of the features, b is a
scalar bias term (so the hyperplane is not forced to go through
the zero point), z; are slack variables (those classified on the
wrong side of the margin of the separating hyperplane), and
C is a user-defined parameter controlling the tradeoff between
margin and the number of slack variables.

To minimize eqn. 2, one can formulate the problem in its
dual form (eqn. 3) and maximize that problem.

max(z o — Z aiajyiyjfffj) subjectto «; >0 (3)
7 %]
W= Z QYT “4)
i

class(Z) =w - & = Z QYT - T+ b (5)

Once formulated in its dual form, quadratic programming
is used to find the best «; and b from eqn. 3. This formulation
allows the introduction of the “kernel trick” [39] and extends
the classification ability of SVMs from generating classifica-
tions that are purely linear to a large variety of hypersurfaces
in feature space.

SVMs may be viewed as an approach to find the « and b
that maximize P(y = 1|, b). When expressed in this form
we can formulate the posterior distribution as in eqn. 6.

P(W,bly = £1)P(y = 1)
P, b)

The denominator is a constant, and a shape model is needed
to capture the P(y = 41) term. Expressed in this form, SVMs
may be seen as approximating the posterior distribution using
a given set of features to define « and b.

(701, [9], [15]

Py = 1[0, b) = (6)

B. AdaBoost

AdaBoost combines a set of weak learners in order to form
a strong classifier in a “greedy fashion,” i.e., it always chooses
the weak classifier with the lowest error, ignoring all others.
We use a decision stump as a weak learner. A decision
stump, based on a given feature, classifies all examples less
than a threshold as belonging to one class and greater than

Given: N training examples (Z1,- -+ ,Z ) with € X, correspond-
ing labels (y1,---yn) with y; € {—1,1}, and an initial distribution
of weights D1 (¢) over the examples.
Fort=1,..T:
e Train a weak classifier hy : X — {—1,1} using distribution
Dy.
e Calculate the error of ht : e; = vazl D¢ (3)1(y; # he(xy)).
e Seta; = —% log (e/(1 — €t)).
e Set Diyq (Z) = Dt(z) exp (—Oztyiht($i))/zt,
where Z; = 2\/ €t(1 — €;) is a normalization factor.

Output the strong classifier H(z) = sign (f(z)), where
f(:p) _ Z?:l aih(z)

23:1 Xt -

Fig. 1. Discrete AdaBoost algorithm. 1 is an indicator function.

a threshold as another class. Formally, a decision stump
consists of a feature on which the decision will be made, a
separating threshold, and a boolean saying whether positive
examples are less than or greater than the threshold. A decision
stump is advantageous over other weak learners because it
can be calculated very quickly and there is a one-to-one
correspondence between a weak learner and a feature when
a decision stump is used.

AdaBoost explicitly seeks to minimize the error according
to a distribution of weights, D;, at each iteration. However, if
we follow the logic of [50] and view {a;}~ ; as a vector of
coordinates, @, then we can rewrite f(x) as eqn. 7.

)

Here we can view & as a hyperplane and ﬁ as the
margin. We can then see that AdaBoost explicitly minimizes
the error, and implicitly maximizes the margin according to
the [ — norm at each iteration, causing it to generalize well.
Because AdaBoost greedily selects features, it can take a
complicated problem, one composed of many features, and
create a sparse classification rule, one composed of only a
few features. However, this is also a drawback. Due to the
greedy nature of AdaBoost it can only minimize the error, and
maximize the margin with respect to features that have already
been selected. AdaBoost is also limited by the fact that it can
only combine weak learners by adding them together.

AdaBoost approximates the Bayesian posterior distribution
by incrementally adding new weak learners (h;(x)) at each
iteration. This is equivalent to formulating the overall classifier
at time ¢ as H(z) = sign[P(y = £1]h1(x) - - he(x) > 0.5)]
[53]. If we let hy(x)---hi(x) = hy, we can formulate the
posterior distribution as eqn. 8.

huly = £1)P(y = £1)
Phn)

Ply = +1h) = ®

The denominator is again a constant and P(y = =1)
is a shape model which must be integrated later. In this
formulation, AdaBoost also approximates the ideal Bayesian
distribution after a long enough ¢, drawing features from a
very large feature pool.



We could stop here and just apply an ideal Bayesian
classifier to the features selected by AdaBoost. For problems
with a large number of i.i.d. examples that lie in a low-
dimensional space, this would be ideal. However, our problem
lies in a high-dimensional space, meaning that it would require
a large number of i.i.d. examples for the Bayesian classifier
to generalize well. Although we do have many examples, they
are all correlated (non-i.i.d) and therefore the ideal Bayesian
classifier would most likely be memorizing the posterior prob-
ability Pz ---a¢|y = £1), resulting in poor generalization.

C. SVM and AdaBoost Comparison

As one can see, SVMs globally and explicitly maximize
the margin while minimizing the number of wrongly classified
examples, using any desired linear or non-linear hypersurface.
This is both an advantage and a disadvantage. The advantage is
that SVMs take into account each example in the entire feature
space when creating the separating hypersurface. The disad-
vantage is that this makes them computationally intractable as
the number of features becomes large.

Because of this, one must either have prior knowledge of the
features most suited for classification for the specific problem,
or one must select them at runtime. Feature selection for
classification is an area that has been explored before [70], [9],
[15] specifically in the SVM domain. However, the goal of the
previously published papers is slightly different than ours. In
previous feature selection literature, the goal was to ascertain
useless features over the space of all available features. To do
this, all examples calculated at all features must be stored at
once, and a convex minimization problem is performed over
this matrix. However, we are allowing this matrix to grow to
a size that is too large to be computationally tractable (the
number of examples times the number of features exceeds the
storage capacity of the computer). Since AdaBoost greedily
selects features, it does not have this requirement. But, since it
is a greedy feature selector, given the same set of features, we
expect SVM to outperform AdaBoost. We exploit this fact to
design our Ada-SVM classifier. We use AdaBoost to select the
features that most accurately span the classification problem,
and SVMs to fuse those features together to form the final
classifier.

To make AdaBoost directly compatible with SVM, one
small adjustment must be made to the AdaBoost algorithm.
Traditionally, AdaBoost may choose features more than once
when constructing weak learners; however, having the same
feature appear twice in an SVM formulation does not make
sense. To overcome this, when choosing features with Ad-
aBoost for Ada-SVM, features are chosen without replace-
ment. In all experiments involving just AdaBoost, however,
traditional AdaBoost is implemented.

We implicitly take into account the Bayesian prior (shape
information) necessary in both models by creating a shape
prior based on the LogOdds formulation by Pohl et al. [45].
We create a signed distance map for each training subject, with
negative values inside the ROI and positive values outside the
ROI and then transform each of those values into the interval
(0, 1) using eqn. 9, where I(z) is the intensity of voxel x:

1

/ _
I'(w) = q T eI

V x € voxels )]

After getting a signed distance map transformed into the
interval (0, 1) for each subject, we then perform a voxel-by-
voxel averaging in order to create one prior image that we
store for both training and testing. We note that this map
contains statistical information on the likely position of the
target structure in the coordinate space to which all images

have been aligned.

D. Hierarchical Formulation

AdaBoost uses all image voxels as examples when choosing
features to minimize the segmentation error. However, many
voxels are easy to classify, and features that perform well on
a lot of easy examples may perform poorly on examples that
are more difficult to classify. To overcome this problem, we
implement a decision tree framework.

Each node in the decision tree represents a new classifier
using either AdaBoost or Ada-SVM with only those examples
that reach that node. After classification two new child nodes
are created, and examples are passed to the children. Using
this approach, examples that are difficult to classify can be
classified with different features than those that are easy to
classify.

However, overfitting can be a problem when examples are
only passed to one child or the other. Therefore, we employ
a fuzziness factor based on the margin of both AdaBoost and
SVM to control the overfitting problem. When a decision
tree is based only on AdaBoost, if examples fall within the
margin defined by m then those examples are passed to
both children. When using a decision tree based on Ada-SVM,
examples that fall within the SVM margin defined by m 071||z
are passed to both children.

An overview of the training process is given in Figure 2.
To test the tree, an example, x, is given to the root node and
its assignment is determined by the leaf classification.

Procedure for training an Ada-SVM tree of depth D

o Use AdaBoost to select important features and SVM to classify
examples with those features over all examples

e Test all examples using SVM, and obtain two classes, positive
and negative

e If an example falls within the margin, assign it to both classes

e If tree depth is greater than D, quit

e Recursively train the positive child on only the data which the
previous node classified as positive

e Recursively train the negative child on only the data which the
previous node classified as negative

Fig. 2. Procedure for Ada-SVM tree training. The AdaBoost tree is trained
in the same way except that it does not use SVM for classification — it uses
traditional AdaBoost for classification.

Although hierarchical AdaBoost [64] has already been
applied to medical image segmentation [65], the Ada-SVM
tree can be substituted anywhere that traditional hierarchical
boosting is used to allow for a margin maximization based
segmentation approach.



E. Alzheimer’s Disease Detection

In neuroscientific studies of disease, it is typical to compute
average hippocampal maps for disease and control groups,
visualizing regions with systematic anatomical differences in
the form of 3D statistical maps. In one popular approach,
3D parametric surface models are fitted to each hippocampal
segmentation and combined across subjects by geometrical
averaging. These average shapes may be compared, and the
effects of factors that may influence local hippocampal mor-
phology can be tested statistically.

To examine the performance of our classifiers in con-
structing this type of map, the hippocampal surface points
segmented by each approach were made uniform by modeling
them as a 3D parametric surface mesh in each subject, as
described in our prior work [59]. To create a measure of ‘radial
size’ for each subject’s hippocampus, first a medial curve was
computed threading through the hippocampus, and the distance
from each surface point to this curve was calculated, providing
a measure that is sensitive to local atrophy. Rather than use
the approach developed by Blum and colleagues for surface
skeletonisation [8], which would in general yield a stratified set
of surfaces, a medial curve was derived from the line traced
out by the centroid of the boundary for each hippocampal
surface model. The local radial size was defined for each
boundary point as the radial distance between that boundary
point and its associated medial curve, in that subject. As in
prior work, regressions were performed to assign a p-value to
each point on the surface in order to link radial size to different
covariates of interest. Surface contractions and expansions
were statistically compared between groups using Student’s
t tests, and were correlated with clinical characteristics (such
as Mini-Mental State Exam (MMSE) scores [19]) to yield an
associated significance value at each point. Finally the p-maps
were presented as color coded average subcortical shapes.

This surface parametrization allows measurements to be
made at corresponding surface locations in each subject. The
procedure also allows the averaging of hippocampal surface
morphological features across all individuals belonging to a
group and records the amount of variation between corre-
sponding surface points relative to the group averages. Several
groups have used parametric surface meshes for hippocam-
pal shape analysis based on sampled medial representations
(M-reps) [56], conformal mappings, spherical harmonic or
spherical wavelet analysis, or high-dimensional diffeomorphic
metric mappings (LDDMM) [68], [37]. Some groups have
also used parametric surface meshes for anatomical analyses
using Gaussian random fields defined on surfaces [3] and for
asymmetry quantification [34].

Here, for simplicity, we use a surface averaging approach
used frequently in past studies [59], but we note that many
methods to establish pointwise correspondence for hippocam-
pal surfaces are under active development by our group and
others [54], [69], [66], [57]. Some use automatically defined
intrinsic geometric landmarks on the hippocampal surface to
enforce higher-order correspondences across subjects when
averaging anatomy across a group.

Given that independent statistical tests were made at many

hippocampal surface points and statistics from adjacent data
points are highly correlated, permutation testing was employed
to control for multiple comparisons [59]. All our permutation
tests are based on measuring the total area of the hippocampus
with suprathreshold statistics, after setting the threshold at
p < 0.01. To correct for multiple comparisons and assign
an overall p-value to each p-map [41], [58], permutation
tests were used to determine how likely the observed level
of significant atrophy (proportion of suprathreshold statistics,
with the threshold set at p < 0.01) within each p-map would
occur by chance [58], [59]. The number of permutations N
was chosen to be 100,000, to control the standard error SEp of
omnibus probability p, which follows a binomial distribution
B(N,p) with known standard error [14]. When N = 8000,
the approximate margin of error (95% confidence interval) for
p is around 5% of p. We prefer to use the overall extent of
the suprathreshold region as we know that atrophy is relatively
distributed over the hippocampus, and a set-level inference is
more appropriate for detecting diffuse effects with moderate
effect sizes at many voxels, rather than focal effects with very
high effect size (which would be better detected using a test
for peak height in a statistical map).

When reporting permutation test results, one-sided hypoth-
esis testing was used, i.e. we only considered statistics in
which the AD group showed greater atrophy than the controls,
in line with prior findings. Likewise, the correlations are
reported as one-sided hypotheses, i.e. statistics are shown in
the map where the correlations are in the expected direction,
e.g. greater atrophy associated with lower MMSE scores.
This type of map has revealed aspects of brain structure that
predicts imminent onset of AD, but they have been time-
consuming to compute in past studies, that have relied on hand
segmentations [2], [1], [6], [18], [49].

F. Surface Reconstruction Error

For the volumetric comparisons, the posterior probability
map in each subject’s scan was thresholded at the voxel level
and supra-threshold voxels were counted without performing
surface fitting. For the surface reconstructions, we followed
the algorithm detailed for open parametric patch-like surfaces
[61] and [62], which was modified to cope with closed tubular
surfaces (logical cylinders) [59]. In test data, the polyline
determined by the boundary contour in each section, sam-
pled using 1 mm cubic voxels, is replaced by a uniformly
parameterized curvilinear mesh of grid size 100x150 (these
values were chosen empirically to give good reconstruction
fidelity, given the resolution of MRI). The resulting network
of sampled grid points always falls on the edges of the voxels
in the classified bitmap, and implied geometric tiles on the
surface are at most 1/1/2 or ~0.7 mm away from the original
bitmap in each section. Even so, the cross-group statistics
are computed from the sampled grid points and not from the
points interior to the surface tiles, and these are exactly on the
boundary of the bitmap. As such, no additional reconstruction
error is introduced in the surface relative to the classified
bitmap. Needless to say, when the objects are replaced by
binary objects with a resolution of 1 mm cubed, an upper



bound on the reconstruction error between the bitmap and the
true object is v/3/2 or less than one voxel. This may impact
the maximum achievable overlap between different methods,
and the reproducibility of segmentations in different scans.

IV. EXPERIMENTS

To facilitate fast development of our software, we used
CImg [63] to do many basic image manipulations and an im-
plementation of SVM called SVMPerf developed by Joachims
[27] for SVM analysis. We also made use of the LONI
Pipeline environment (http://pipeline.loni.ucla.edu), which was
developed by the Laboratory of Neuro Imaging, for fast and
easy parallel processing [48].

Before performing classification, we registered all of the
brain images into the same stereotaxic space. Each subject’s
brain MRI was co-registered with scaling (9-parameter trans-
formation) to the ICBMS53 average brain template [13]. Since
this registration involves scaling, global scaling is removed
during this stage of pre-processing. Because of this pre-
processing step, we do not have to restrict our attention to
rotation, scaling, or translation invariant features. This also
allows us to define a bounding box around the training
hippocampi plus some neighborhood voxels. These neighbor-
hood voxels might contain hippocampal voxels outside the
bounding box of the training set and are also necessary for
computing neighborhood based features. Any voxels outside
of this bounding box are definitely not hippocampus, and can
therefore be ignored by our classifier. For all our experiments,
our bounding box is a rectangular region with corners at (-
48, -54, -44) and (-1, 5, 17) for the left hippocampus and, a
corresponding region in the opposite hemisphere for the right
hippocampus in the standard ICBMS53 space [36].

Next, we have to define our pool of candidate features from
which AdaBoost will select. The important conditions that
must be taken into account are robustness to noise, sensitivity
to local differences in image intensity and structure shape, and
most importantly calculation speed. Our feature pool consists
of information from three different image “channels”: (1)
the T1-weighted image, (2) tissue classification maps of gray
matter, white matter, and CSF (obtained by an unsupervised
classifier, PVC [51]), and (3) our Bayesian shape prior (eqn.
9). From each one of these images, the following features
are computed: intensity, gradients, curvatures, 1D, 2D, and
3D Haar filters, mean filters, and standard deviation filters,
all computed using a neighborhood kernel of size 7x7x7.
Because of the large number of examples and features, we use
randomization to decrease these numbers to a computationally
tractable size. During each run of AdaBoost, a new set of
200,000 examples and 2500 features is randomly chosen to
learn the classification rule (for either AdaBoost or Ada-SVM).
These numbers were determined empirically to give optimal
results.

Additionally, when running SVM there are several parame-
ters that need to be specified. We found that using a polynomial
kernel of order 3, with a b value of 0 and a C value of 20
gave the best results (eqn. 2). Most of these parameters were
the defaults for the SVM implementation we used [27], with

the only exception being the kernel choice, which was also
chosen empirically.

As a final step, after segmentations are computed by either
AdaBoost, Ada-SVM, or manual SVM, the binary masks
are convolved with a 3x3x3 averaging kernel. Partial volume
effects are removed from the resulting mask by setting voxels
with a value of less than 0.5 (those with fewer than 13
neighbors) to 0 and greater than 0.5 (those with more than
13 neighbors) to 1. This is done to smooth the boundary and
fill any holes.

A. Evaluation Metrics

To assess the accuracy of our methods, we report some
standard error metrics. To define each error metric we define
2 sets A and B, where A is the set of hippocampal voxels
as defined by the manual segmentation and B is the set of
hippocampal voxels as defined by automatic segmentation.
Now, we define precision (eqn. 10), recall (eqn. 11), relative
overlap (R.O.) (eqn. 12), and similarity index (S.I.) (eqn. 13).

Precision = W (10)
Recall = W (11)
RelativeOverlap = m (12)
SimilarityInder = volume(A N B) (13)

volume(A)+volume(B)
2

Additionally, we compute two distance metrics, Hausdorff
distance [33] and mean distance. Hausdorff distance and mean
distance are defined by equations 14 and 15, where A and B
are all points in the volumes and d(a, b) is the Euclidean dis-
tance between points a and b. Because the Hausdorff distance

is not symmetric, we make it symmetric by formulating it as
H(A,B)+H(B,A)
5 .

H(A7 B) = maxaGA(mianB(d(a7 b))) (14)

M (A, B) = meange a(minpep(d(a,b))) (15)

It would be of interest to determine what added advantage
the many additional features provide over the basic prior term
used for approximate specification of statistics on structure
position. However, the prior is such a strong constraint on the
final labeling that it is not clear that some of the algorithms
could operate without it, so a fair comparison would be
difficult. For instance, it is not clear that FreeSurfer can be
run without a prior, as the intensity distributions and adjacency
priors are the main features used for segmentation. As the first
two features selected by AdaBoost are based on the mean and
Haar filters derived from the prior, we know that the selected
additional features provably show additional error reduction
on the test set (via the AdaBoost rule).



B. Manual SVM v. Ada-SVM

In order to show the importance of automatic feature
selection, we compare manual SVM and Ada-SVM. As noted
already, manual SVM feeds a set of features chosen by the user
into SVM, while Ada-SVM decides which features to use via
the automated learning rules that are part of the AdaBoost
method. In what follows, for the manually-guided SVM, our
feature vector was chosen to be the same length as that learned
by Ada-SVM (100 features) and consisted of intensity, X, y, z
positions, mean curvatures defined over small neighborhoods,
X, y, z intensity gradients, standard deviation filters, and Haar
filters in 3D.

Ada-SVM Manual SVM

Left Right Left Right

Precision | 0.785 | 0.802 | 0.364 | 0.755

Recall 0.851 | 0.848 | 0.973 | 0.719

R.O. 0.691 | 0.701 | 0.360 | 0.582

S.L 0.814 | 0.822 | 0.526 | 0.732

Hausdorff | 4.34 4.63 6.05 6.83

Mean 0.029 | 0.034 | 0.384 | 0.047
TABLE I

PRECISION, RECALL, RELATIVE OVERLAP, SIMILARITY INDEX,
HAUSDORFF DISTANCE, AND MEAN DISTANCE MEASURES ARE REPORTED
FOR MANUAL-SVM AND ADA-SVM. DISTANCE MEASURES ARE
EXPRESSED IN MILLIMETERS. R.O. DENOTES RELATIVE OVERLAP, AND
S.I. DENOTES SIMILARITY INDEX, AS DEFINED IN THE TEXT. THESE
RESULTS ARE MEASURED ON THE TESTING DATASET.

Table I shows the large discrepancy between manual SVM
and Ada-SVM (especially on the left side). This illustrates
the necessity for using informative features. This means that
an expert must select features which are appropriate for the
dataset at hand each time a new problem is proposed, or use an
automatic feature selection method. Due to this fact, for the
remainder of the paper, we will not consider manual SVM.
In order to emphasize this table II gives the first ten features
selected by AdaBoost. Notice the wide variety of types and
shapes of features selected, making manually choosing these
features very difficult.

C. Comparison to Manual Segmentations

Fig. 3 shows some of our segmentation results. Compared
with the manual gold standard, Ada-SVM gives a smoother
boundary and is visually close to the tracings obtained by
hand. Both AdaBoost and FreeSurfer give a more jagged but
visually reasonable segmentation.

Our overlap and distance metrics compare well with seg-
mentations from FreeSurfer [16], as shown by Table III. Note
that for each error metric tested, the training results are slightly
better than the testing results. This is to be expected; however
it is important to note that the metrics are only slightly
worse in the testing case. This suggests that both AdaBoost
and Ada-SVM are not memorizing the data, but learning a
generalizable model. Also note that for each metric in the
testing case Ada-SVM gave the best results, AdaBoost the
next best, and FreeSurfer the worst. FreeSurfer also had the
most visually inconsistent segmentations (fig. 3). In fairness,
FreeSurfer provides segmentations of many brain structures

other than the hippocampus; future work with Ada-SVM will
examine how it generalizes to other structures. Even so, the
time efficiency of our approach (it takes about 3-5 minutes
per brain), at least for the steps after the training phase, is
advantageous given the large scale of AD morphometry studies
now underway (e.g., N=3000 [26]).

Table IV gives some error metrics reported by other semi-
and fully automated approaches. These numbers are presented
only to show that our methods are close to theirs since an
exact comparison is not possible without using the same data.
This is evident by the fact that the numbers reported by Fischl
[16] are different from the numbers we are achieving by their
algorithm on the data tested here.

One more question that we want to answer is how many
brains must be labeled by hand, in a given dataset, in order
to get an acceptably low test error. While this may depend
on the image contrast and the power required for the study,
it is still possible to test how robust the segmentations are to
deliberate reductions in the size of the training set. To measure
this, we plot the error in the test set, against the number of
brains used in the training set. We expect that performance
would inevitably degrade with reductions in the training set
size, but that extensive increases in the training set would
give diminishing returns, with asymptotic convergence to a
maximum obtainable accuracy. Each point in Fig. 4 represents
randomly varying the number of training brains, and testing
on all 40 test brains each time. Fig. 4 suggests that for each of
both AdaBoost and Ada-SVM about 20 brains is the point of
diminishing returns. One can note a slight increase in the error
when using 25 brains for Ada-SVM on the left hippocampus.
This is due to the randomization processes for both feature and
example selection, and such small perturbations are ordinary.

Varying Number of Training Brains
0.018 J\
0.016

0.014
0.012

0.01

Error

0.008
0.006
0.004
0.002

5 10 15 20 25 30

Number of Training Brains

——Left AdaBoost -=-Right AdaBoost —+Left AdaSVM -<Right AdaSVM

Fig. 4. The effect of varying the size of the training set versus the error
between automated and gold standard manual segmentations. Error is defined
on the number of incorrectly classified voxels inside the bounding box. Values
are obtained for 5, 10, 15, 20, 25, and 30 brains. Note that the curves level
off after 20 brains indicating diminishing returns by using more than 20 brain
on which to train.



Left Right
Channel Name Neighborhood Channel Name Neighborhood
Prior Image Mean Filter 3,6,3 Prior Image Mean Filter 6,7,3
Prior Image Haar Filter 6,3,3 3D) Prior Image Haar Filter 7,7,6 (3D)
Prior Image Mean Filter 6,5,1 T1-weighted Image Haar Filter 7,7,3 (3D)
Tissue Classification Image Mean Filter 3,1,1 Prior Image Standard Deviation Filter 7,6,6
Prior Image Standard Deviation Filter 7,6,6 Prior Image Haar Filter 5,4,5 (3D)
T1-weighted Image Haar Filter 4,5,7 3D) Tissue Classification Image Intensity n.a.
Prior Image Haar Filter 1,3,6 (3D) Prior Image Mean Filter 6,5,1
Prior Image Haar Filter 7,7,2 (2D) Prior Image Gradient Filter 5,72 (y)
T1-weighted Image Intensity n.a. T1-weighted Image Haar Filter 3,1,7 (3D)
Tissue Classification Image Haar Filter 3,2,4 (3D) Prior Image Haar Filter 5,3,1 (2D)
TABLE 11

THESE ARE THE FIRST TEN FEATURES SELECTED BY THE ADABOOST ALGORITHM (USED DURING BOTH ADABOOST AND ADA-SVM). NOTE THE
VARIETY OF SIZES, SHAPES, TYPES, AND CHANNELS SELECTED MAKING IT VERY DIFFICULT TO DISCERN A PATTERN FOR MANUAL FEATURE SELECTION.

ALTHOUGH IT IS INTERESTING TO NOTE WHICH FEATURES ARE CHOSEN BY ADABOOST FOR A GENERAL OVERVIEW OF THE PROBLEM, DETAILED

STUDY OF THESE FEATURES WILL NOT IN GENERAL GIVE A LOW-DIMENSIONAL SUBSET OF FEATURES FOR BUILDING A CLASSIFIER. ADABOOST IS

DESIGNED TO SELECT WEAK LEARNERS (OR FEATURES) FROM A VERY LARGE POOL TO LEARN A POSTERIOR DISTRIBUTION SPECIFIC TO ONE DATASET,

AND GENERALLY EACH OF THESE FEATURES MAY PERFORM ONLY SLIGHTLY BETTER THAN CHANCE. THERE IS NO EXPECTATION THAT THESE
FEATURES WILL GENERALIZE WELL TO CREATING A MODEL FOR OTHER SUBCORTICAL STRUCTURES, OR EVEN HIPPOCAMPI FROM OTHER STUDIES.

Ada-SVM AdaBoost FreeSurfer
Left Right Left Right Left Right
Training | Testing | Training | Testing | Training | Testing | Training | Testing | Testing | Testing
Precision 0.821 0.785 0.844 0.802 0.792 0.771 0.777 0.760 0.716 0.737
Recall 0.868 0.851 0.848 0.848 0.841 0.828 0.827 0.839 0.743 0.732
R.O. 0.728 0.691 0.732 0.701 0.687 0.665 0.666 0.663 0.572 0.577
S.I 0.841 0.814 0.845 0.822 0.813 0.795 0.797 0.795 0.726 0.729
Hausdorff 4.04 4.34 4.41 4.63 4.64 4.98 5.20 4.83 4.97 4.99
Mean 0.019 0.029 0.018 0.034 0.024 0.028 0.027 0.041 0.075 0.065
TABLE III

PRECISION, RECALL, RELATIVE OVERLAP, SIMILARITY INDEX HAUSDORFF DISTANCE, AND MEAN DISTANCE MEASURES ARE REPORTED FOR TRAINING

AND TESTING DATA FROM EACH SEGMENTATION ALGORITHM: ADA-SVM,

ADABOOST, AND FREESURFER [16]. DISTANCE MEASURES ARE EXPRESSED

IN MILLIMETERS. R.O. DENOTES RELATIVE OVERLAP, AND S.I. DENOTES SIMILARITY INDEX, AS DEFINED IN THE TEXT. NOTE THAT THE ADA-SVM

TESTING NUMBERS ARE THE SAME AS REPORTED IN TABLE I, AND ARE REPRODUCED HERE FOR CONSISTENCY.

Left Right
[46] N =5) | [I6] (N=134) | [25](N=5) | [46] N =5) | [16] (N =134) | [25] (N =5)
Recall 0.82 n.a. n.a. 0.83 n.a. n.a.
R.O. 0.72 0.78 0.74 0.74 0.80 0.76
S.I. 0.84 n.a. n.a 0.85 n.a. n.a.
TABLE IV

RECALL, RELATIVE OVERLAP (R.O.), AND SIMILARITY INDEX (S.I.) MEASURES ARE REPORTED FOR THREE OTHER PUBLISHED METHODS. THESE ARE
PRESENTED ONLY FOR A ROUGH COMPARISON AS AN EXACT COMPARISON IS NOT POSSIBLE UNLESS THE SAME DATASET IS USED. NOTE FOR INSTANCE

THE VARIABILITY BETWEEN WHAT IS REPORTED BY FISCHL [16] AND THE METRICS REPORTED FOR THE SAME METHOD IN THIS PAPER.

D. Disease Detection

In addition to segmentation accuracy, it is also impor-
tant to assess how effectively each method can differentiate
disease from normal. For instance, in a study aiming to
map disease effects, increases in segmentation accuracy are
beneficial if they provide additional power to differentiate
groups. As the effect of AD on the brain is not uniform,
such studies commonly rely on mapping of group differences
to identify regions that are especially susceptible to early
changes, or where changes predict imminent decline or help
differentiate one type of dementia from another [49]. We
note that in reporting classification accuracy and detection of
disease effects on hippocampal anatomy in groups of subjects,
both of these metrics evaluate desirable characteristics of a
tissue segmentation approach, but they are not necessarily

causally related or even correlated. That is, a method that
produces relatively better segmentation is not necessarily more
discriminative and vice versa, and it is misleading to suggest
that one implies the other. From a logical standpoint, there
could be a bad segmentation algorithm that exaggerates the
difference between AD and controls, for example, and this
could be a very good discriminator. In general, this depends
on whether the voxels that are misclassified by a segmentation
approach are also relevant for disease classification.

First, Table V shows the percent difference in agreement
with manual tracings between all subjects, and subjects broken
down by diagnosis. We do this by taking the difference
between an error metric broken down by disease and the
same error metric on all subjects and dividing by the error
metric broken down by disease. Positive percentages indicate
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Example hippocampal segmentations from each of the methods being compared: manual tracing, Ada-SVM, AdaBoost, and FreeSurfer [16]. The

left hippocampus is shown in yellow, and the right hippocampus is shown in green. Ada-SVM gives smoother, more spatially coherent result than any of
the other methods, and even appears slightly less noisy than the manual traces, which are typically created in coronal sections and may appear jagged when
resliced in other planes. All methods give anatomically reasonable segmentations, but some give highly irregular or noisy boundaries. Here we show only the
test cases for Ada-SVM and AdaBoost, because we wish to evaluate their performance on unseen images, not on the same manually segmented images that
were used for training. The brain MRI quality here is typical of those used in AD morphometric studies, showing widespread atrophy and moderate to poor

gray/white matter contrast.

that a given metric shows better performance on a specific
diagnostic group (e.g. the controls) relative to the performance
on all subjects combined, while negative percentages indicate
a worsening in a given metric in a specific diagnostic group,
relative to the performance on all subjects combined. For
almost all error metrics, the normal group was segmented more
accurately than the AD group, which is to be expected because
there is less variance in the normal group, and disease-related
atrophy can greatly distort the geometry of the structure.
Secondly, for three out of the four volumetric measurements
(with the exception of precision), Ada-SVM gives a more
consistent segmentation for both normal and AD subjects (the
distance metrics are too prone to outliers to be very useful
in this table, and many of them show a better segmentation

for AD than normal). This can be identified by the smaller
absolute value of most error metrics when comparing methods.

Fig. 5 shows our results for mapping disease effects on
the hippocampus, and for detecting associations between hip-
pocampal atrophy and cognitive performance on the MMSE,
a widely-used test in studies of AD. Strictly speaking, we
do not have ground truth regarding the extent of anatomical
atrophy, but it is reasonable that an approach that detects
atrophy, while controlling for false positives at the accepted
rate (by permutation testing) is more valuable than one that
fails to detect atrophy (see below for more discussion of this
premise). The overall pattern of atrophy in the maps based
on the manual traces is also in strong agreement with past
studies of hippocampal atrophy in independent samples of



Ada-SVM AdaBoost FreeSurfer
Left Right Left Right Left Right

Normal AD Normal AD Normal AD Normal AD Normal AD Normal AD

Precision 5.13 -5.71 0.90 -0.92 6.13 -6.98 2.29 -2.40 1.21 -1.24 -1.56 1.51
Recall 1.10 -1.12 0.17 -0.17 1.66 -1.72 1.22 -1.25 5.86 -6.63 6.29 -7.19
R.O. 5.10 -5.68 0.94 -0.96 6.25 -7.15 2.90 -3.08 5.57 -6.27 4.23 -4.62
S.I. 3.31 -3.54 0.64 -0.65 4.16 -4.54 1.94 -2.02 3.77 -4.07 2.89 -3.06
Hausdorff | -12.42 9.95 4.38 -4.80 -15.50 11.83 2.28 -2.39 -8.67 7.39 -0.68 0.67
Mean -79.09 15.04 -70.44 0.38 -92.32 15.07 -42.73 -8.52 -46.22 -32.45 -33.73 -43.54

TABLE V

THESE ARE THE PERCENT DIFFERENCES IN PRECISION, RECALL, RELATIVE OVERLAP, SIMILARITY INDEX, HAUSDORFF DISTANCE, AND MEAN

DISTANCE, MEASURES FROM ALL SUBJECTS (TABLE III) TO SUBJECT GROUPS BROKEN DOWN BY DIAGNOSIS. WE TOOK THE DIFFERENCE BETWEEN AN

ERROR METRIC ON JUST A DIAGNOSTIC GROUP AND THE SAME ERROR METRIC ON ALL SUBJECTS AND THEN DIVIDED THAT BY THE ERROR METRIC FOR

A DIAGNOSTIC GROUP. POSITIVE NUMBERS REPRESENT AN INCREASE IN A METRIC, AND NEGATIVE NUMBERS A DECREASE. THE MAIN THING TO NOTE
FROM THIS TABLE IS HOW ALMOST ALL ERROR METRICS SHOW A BETTER SEGMENTATION FOR THE NORMAL GROUP THAN FOR THE AD GROUP. THIS IS

NATURAL BECAUSE DEGENERATIVE DISEASES ARE OFTEN ACCOMPANIED BY A REDUCTION IN THE CONTRAST BETWEEN GRAY AND WHITE MATTER,

AND DISEASE-RELATED ATROPHY CAN GREATLY DISTORT THE GEOMETRY OF THE STRUCTURE.

subjects with AD, showing widespread volume reductions in
both the hippocampal head and tail [1], [18], [49]. All methods
tested show widespread areas of significance. This shows that
each method is correlating both diagnosis and MMSE well
with radial atrophy. These observations are confirmed by the
permutation tests of VI. Each entry is table VI is well below
the significance level of 0.05. In a morphometric study of AD,
these corrected significance values would be used to determine
whether a disease effect had been detected. Based on several
prior papers [59], [1], it is known that hippocampal atrophy
correlates with MMSE scores in AD, and it is important in a
morphometric study to establish that the atrophy detected is
correlated with a meaningful behavioral measure or outcome
measure for the patient, rather than just correlating with
diagnosis [11].

Perhaps surprisingly, in the discriminative pattern shown in
Fig. 5 (e.g., in the left column comparing AD with normal
controls), AdaBoost methods find significant discriminative
effects in the regions where manual segmentations do not.
This is quite possible because the inter-rater reliability for
manual segmentation is not spatially homogeneous, and there
are some regions where it is more difficult for a human rater
to segment the hippocampus accurately (the easiest region is
typically the posterior hippocampus, and the hardest region is
typically the anterior junction with the amygdala, where there
is poor contrast between the two boundaries). If the image
based criteria are more consistent than humans in identifying
a boundary in the image in certain regions, they will tend to
offer more statistical power in detecting systematic alterations
in these regions.

To emphasize the differences between segmentation meth-
ods, we plotted the cumulative distribution function of the p-
values in the maps, against the corresponding p-values that
would be expected under the null hypothesis of no group
difference (Fig. 6). For a null distribution, this cumulative
plot falls along the line y = x, as represented by the black
line. Larger upward inflections of the CDF curve near the
origin are associated with significant signal, and greater effect
sizes are represented by larger deviations (the theory of false
discovery rates gives formulae for thresholds that control false
positives at a known rate). For the association of diagnosis with

Diagnosis MMSE
Left Right Left Right
Manual 0.00173 | 0.00011 | 0.0112 | 0.00011
Ada-SVM | 0.00011 | 0.00013 | 0.00061 | 0.0001
AdaBoost | 0.00028 | 0.0002 0.0003 | 0.00011
FreeSurfer | 0.00011 | 0.0001 0.001 0.00012
TABLE VI

PERMUTATION VALUES FOR DISEASE EFFECTS AND ASSOCIATIONS WITH
COGNITIVE PERFORMANCE, BASED ON CREATING GROUP DIFFERENCE
MAPS FROM 100,000 DIFFERENT RANDOM ASSIGNMENTS OF SUBJECTS

TO GROUPS. IF AN OMNIBUS PROBABILITY (L.E., CORRECTED FOR
MULTIPLE COMPARISONS) IS DETERMINED BY COMPARING THE NUMBER
OF SUPRA-THRESHOLD VOXELS IN THE TRUE LABELING TO THE
PERMUTATION DISTRIBUTION, THE NUMBER OF PERMUTATIONS N MUST
BE CHOSEN TO CONTROL THE STANDARD ERROR S Ep OF OMNIBUS
PROBABILITY P, WHICH FOLLOWS A BINOMIAL DISTRIBUTION B(N, p)
WITH SEp = \/p(1 — p)/N [14].

radial atrophy both manual tracings and FreeSurfer appear
to perform best, followed closely by Ada-SVM and finally
by AdaBoost. For the MMSE associations AdaBoost appears
the best followed by Ada-SVM, manual tracings and finally
FreeSurfer. The main point to note from these graphs are that
all methods show a large significant value (very different from
the ¥y = z line), and no clear winner can be determined. In
order to show one method is clearly better than another a more
sensitive correlation must be looked for (such as the correlation
between normals and MCI with atrophy or MCI and AD with
atrophy), however due to data limitations such experiments
were not possible at this time. This CDF approach has been
used in Leporé et al. [31] to compare effect sizes in TBM, and
is based on the False Discovery Rate concept used in imaging
statistics for multiple comparisons correction [55].

E. Inter Dataset Comparison

As a final comparison, we used our models that were trained
on the data used throughout this paper, and tested on data
drawn from ADNI [26]. We performed this test as a way to
show how our method generalizes between datasets. Table VII
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shows our results.

Ada-SVM AdaBoost
Left Right Left Right
Precision | 0.195 | 0.353 | 0.237 | 0.375
Recall 0.315 | 0.557 | 0.320 | 0.471
R.O. 0.144 | 0.299 | 0.164 | 0.279
S.IL 0.234 | 0428 | 0.267 | 0.414
Hausdorff | 13.86 | 13.13 | 12.88 | 12.00
Mean 0.435 | 0.346 | 0.322 | 0.292

TABLE VII

PRECISION, RECALL, RELATIVE OVERLAP, SIMILARITY INDEX
HAUSDORFF DISTANCE, AND MEAN DISTANCE MEASURES ARE REPORTED
FOR MODELS THAT WERE TRAINED ON THE DATA USED THROUGHOUT
THIS PAPER AND TESTED ON THE ADNI DATA. THESE RESULTS ARE WELL
BELOW THE OTHER REPORTED RESULTS SHOWING THAT THIS METHOD IS
ONLY USEFUL WHEN TRAINED AND TESTED ON DATA DRAWN FROM THE
SAME STUDY.

As shown in Table VII, the metrics are well below other
error metrics reported for both our own method and FreeSurfer.
This gives two important conclusions. First, our method is

Significance maps (p-maps) based on manual, Ada-SVM, AdaBoost, and FreeSurfer segmentations

not scan parameter independent. Since we only use a linear
registration and our features are not independent on the MRI
parameters used to acquire the scans, our model does poorly
on and inter-dataset basis. This shows that our model is most
useful when a large cohort of subjects need to be analyzed,
where hand segmenting 20 subjects will allow the rest of the
study to be automatically segmented. Secondly, this shows
that FreeSurfer is robust to inter-dataset variability. This is
due to the fact that FreeSurfer uses a very accurate non-
linear registration algorithm and a strong prior. FreeSurfer,
therefore, lends itself better to segmenting hippocampi from
smaller studies.

V. CONCLUSIONS AND FUTURE WORK

While manual segmentation detects differences with greatest
effect size, it can become prohibitively difficult if the number
of MRI’s in a study is very large. We have shown some
evidence that Ada-SVM may perform better than AdaBoost
and FreeSurfer in finding the approximate boundary of the hip-
pocampus. We have also shown that all methods are capable of
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Fig. 6. Cumulative distribution of p-values for different methods. (a) shows the p-values when the covariate is the Alzheimer’s disease diagnosis. (b) shows
the p-values when the covariate is the MMSE [19] score. These CDF plots are commonly generated when using false discovery rate methods to assign overall
significance values to statistical maps [7], [20], [55]; they may also be used to compare effect sizes of different methods, subject to certain caveats [31], as
they show the proportion of supra-threshold voxels in a statistical map, for a range of thresholds. A cumulative plot of p-values in a statistical map, after the
p-values have been sorted into numerical order, can compare the proportion of supra-threshold statistics with null data, or between one method and another,
to assess their power to detect statistical differences that survive thresholding at both weak and strict thresholds (in fact at any threshold in the range [0,1]).
In the examples shown here, the cumulative distribution function of the p-values observed for the statistical comparison of patients versus controls is plotted
against the corresponding p-value that would be expected, under the null hypothesis of no group difference (shown here in black).

capturing both disease related effects and correlations between
cognition and structure for these well known, widespread
effects.

Although for the experiments shown in this paper, both
AdaBoost and Ada-SVM outperform FreeSurfer, this is not
a completely fair test. FreeSurfer was trained with different
raters on different images, and although we test on different
subjects than we train on, all subjects are still from the same
study. An important subject of future study is the generaliz-
ability of the methods proposed here as a function of the MRI
acquisition parameters. Even though this is interesting, this
method is already useful in large scale studies for which the
scanning parameters remain stable (such as ADNI [26]), where
one could segment 20 brains manually for training purposes,
and then segment all the rest automatically.

In the future, we will apply both of these techniques to new
datasets to examine different diseases and to rank segmentation
methods for power and accuracy. It will be interesting to note if
Ada-SVM more powerfully detects disease effects or segments
other subcortical structures better than AdaBoost does.

Although the ability to map disease effects automatically
is encouraging and likely to benefit many ongoing studies,
one caveat is necessary regarding the use of p-value plots
to compare the effect sizes of different methods. These plots
provide a clear comparison of the distribution of effect sizes
in a statistical map when methodological parameters are
varied, strictly speaking, many repeated large and independent
samples would be required to prove that one cumulative p-
value distribution differs from another on the interval [0,1].
Without confirmation on multiple samples, it may not reflect a
reproducible difference between methods. FDR and its variants
[29], [55] declare that a CDF shows evidence of a signal if it

rises more than 20 times more sharply than a null distribution,
so a related criterion could be developed to compare two
empirical mean CDFs after multiple experiments. As simple
numeric summaries sacrifice much of the power of maps, and
provide a rather limited view of the differences in sensitivity
among voxel-based mapping methods, additional work on
CDF-based comparisons of methods seems warranted.

In addition, although the results presented here are
anatomically congruent with hippocampal mapping studies in
Alzheimer’s disease, strictly speaking, we do not have ground
truth regarding the extent and degree of hippocampal atrophy
in AD. So, although an approach that finds greater effect
sizes in disease is likely to be more accurate and valuable
than one that fails to detect disease, it would be better to
compare these models in a predictive design where ground
truth regarding the dependent measure is known (i.e., mor-
phometry predicting future atrophic change, future cognitive
deterioration, or drug response). We are collecting this data
at present. Any association between the segmentation method
employed and the resulting power for a predictive model may
allow a stronger statement regarding the relative power of
AdaBoost variants for hippocampal mapping versus manual
or FreeSurfer segmentations.
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