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Abstract

Models of unordered choice typically assume that all agents can choose
freely among a known set of choices. Such models have been applied to many
problems, including job choice, migration, party switching by politicians, and
most frequently, consumer choice. However, in many cases, some choices
are excluded from the choice set, though this exclusion is unobserved by the
analyst. In this paper, I show how unobserved variation in choice sets can
bias estimates from choice models and offer a method that will correct for this
bias. The method estimates both predictors of the components of the choice
set as well as predictors of choice from whatever options are available.

∗Thanks to Alex Braithwaite for useful suggestions.



Introduction

Unordered choice models have been widely implemented in the social sciences since
McFadden (1973)’s seminal paper on transportation choice. This paper presents a
method to estimate parameters for choice models with unobserved choice set se-
lection. With such models, individuals choose among several options, but each
individual has a different choice set, as a function of their characteristics. The an-
alyst is aware of the maximal choice set, but does not know which options are in
any particular individual’s choice set. Although unobserved choice set variation is
effectively ignored in the literature, it is present (and biases estimates) in many cur-
rent applications of choice models. For example, traditional methods might be used
to model workers’ employment decisions, students’ university choices, and prime
ministers’ choice of government partners. But unbeknownst to the analyst, some
choices simply aren’t in the choice set. Would-be employees can’t take a job not
offered to them. Students cannot attend UC Berkeley (at least not for credit) if not
admitted. A prime minister can’t add an extremist party to her governing coalition
if that party rejects the invitation.

Previous empirical work examining such choices usually uses standard choice
models, especially conditional logit. Related alternatives include multinomial probit
and more generally, mixed logit. If the choice sets don’t have unobserved variation,
such methods are appropriate. But when the analyst cannot observe choice set
variation, traditional methods lead to biased results. Intuitively, the agent might
prefer option “A”, but if only B and C are available, the analyst would incorrectly
infer that B or C offers higher utility, when in fact they do not. This unobserved
choice set variation will bias estimated coefficients toward zero, as we will see.

A few scholars have examined some related issues, but not directly tackled vari-
ance in choice sets. Previous work on selectivity focuses on the fact that the expected
payoffs for choices are unobserved for options not chosen. For example, if studying
labor market migrations, we don’t observe agent i’s wages in a city that she did
not move to. Lee (1983) offer a solution, which has been implemented by labor
economists for migration and employment models, but do not consider the problem
of choice set variation.

In this paper I present a method for studying consumer choice when choice
set selection exists. I proceed by illustrating the problem, proposing a solution,
and examining its properties in simulations, and offer recommendations for model
building when analysts suspect unobserved choice set variation.

Standard Conditional Logit

In the classic conditional logit model (McFadden, 1973), consumers choose among
options to maximize their utility. In the original application, McFadden (1973)
examined subjects’ choice of transportation medium: private automobile versus
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several public transportation options. An individual i chooses the option j of m
available choices that maximizes her utility Uij:

Uij = Max(Ui1, ..., Uim) (1)

The utility associated with a choice is a function of choice-specific covariates plus a
random error:

Uij = xijβ + εij

where the εij are distributed iid extreme value with expected value 0 and variance
1.

The utility Uij is unobserved; we only observe the ultimate choice of the agents.
The probablity that individual i chooses option j is:

P (Uij = MAX(Ui1, ..., Uim)) =
exijβ

∑m
j=1 exijβ

(2)

the likelihood function is simply the product of the probability of each observed
outcome:

L =
n∏

i=1

m∏

j=1

P (yij = 1)yij (3)

where n is the number of individuals in the dataset and yij is an indicator variable
for the observed choice, coded “1” if i chose j, and “0” otherwise. Estimation is
straightforward and canned routines exist in most software packages. The properties
of this method and resulting estimator b are well-studied and documented elsewhere.

Unobserved Variation in Choice Sets

Conditional logit and recent extensions have been widely applied in economics, ge-
ography, and political science to study diverse questions include vote choice, firms’
location decisions, labor market and migration patterns, and family size (Morgan
and Rindfuss, 1985; Adams and Samuel Merril, 1999; Fox, 1996; Stafford, 2000;
Whittington, 1992; Berger, 1988; Woodward and Rolfe, 1993; Boskin, 1974; Alvarez
and Nagler, 1998; Hartman, 1982). Ultimately, the classic conditional logit model
assumes that all choices are indeed available to the agent. But in many situations,
each individual’s choice set may vary, and such variance may be unobserved by the
analyst. A firm might prefer to locate in a particular municipality, but be excluded
by local ordinances. A President may want to invite a large party into a coalition
government, but said party may refuse on ideological grounds. A couple may want
a large family but be unable to have children. A graduate student might want a
tenure-track job at Harvard, but not have that option. In effect, each agent’s choice
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set is first determined, then agents choose from their available options, but the an-
alyst does not observe the determination of the choice set and is unaware which
options are available and which are not.1

Previous work has at least acknowledged the possibility of unobserved choice
set variation, but not offered any solutions. Parsons and Kealy (1992) examine
consumers’ choice of recreational alternatives - lakes - in Wisconsin. Their concern
is different from mine; they seek an estimation solution to the problem of having huge
choice sets. However, given that there are thousands of possible lakes for recreation
in that region, they acknowledge that if individuals do not have full knowledge about
all options, their choice set may be smaller than that included in the empirical
analysis. They dismiss choice set variation as not important for their analysis, since
“no information” options are likely to be those that consumers would not choose
anyway: an avid fisherman would certainly be aware of a large, unpolluted, well-
stocked fishing lake close to home. Effectively, they assume that strong correlation
between choice predictors and choice set predictors will alleviate any bias induced
by unobserved choice set variance. As we will see, their approach diminishes but
does not eliminate the bias associated with ignoring choice set variation.

I propose explicitly modeling the unobserved choice set selection. This alterna-
tive model of choice, which I call “conditional logit with choice set selection”, can be
formalized as follows. First, the presence of option j in the choice set is a function of
a standard random utility function. For individual i, option j’s presence or absence
in her choice set is determined by the value of an underlying variable, z∗:

j is included in i’s choice set iff: z∗ij ≥ 0

j is excluded from i’s choice set iff: z∗ij < 0

z∗ is a linear function of a set of observed variables w, their coefficients, and a
random error γ:

z∗ij = αwij + γij

where all γij are identically and independently distributed logistic with variance 1.
Thus, the probability that j is included in i’s choice set is P (z∗ > 1) or eαw

1+eαw .
Intuitively, one can imagine an employer deciding whether or not to make a job
offer, a party deciding whether or not they are willing to be part of a coalition,
or a university deciding whether or not they would accept prospective student i

1Such choice set selection might even apply to voting decisions. Conditional logit has been
used to examine voting decisions in multi-party elections, sometimes including “not voting” as a
choice Palfrey and Poole (1987). However, some respondents may not be registered to vote and
consequently have a restricted choice set, though unobserved by the analyst. Not being registered
to vote could be voluntary, but might also be involuntary, imposed by institutional bias, recent
moves, or felony convictions. Many other examples exist.
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as a member. The analyst does not observe this choice directly, just the ultimate
decision made by the agent.

Let option j = 1 be available to every individual i. This eliminates the possibility
that individual i winds up with no choices in the final set. This notion of a default
option makes sense: an individual can choose not to enter the labor market, not to
go to college, not to join any party, and so on. Thus given m options, there are 2m−1

possible choice sets. Suppose there are three choices, labeled A, B, and C, and the
default option that is present in every choice set is A. There are thus 23−1 = 22 = 4
possible choice sets, listed below:

Table 1: All Possible Choices Sets for m = 3 and j = A default
Choice Sets

1 A B C
2 A B
3 A C
4 A

In set 1, all choices are available, in set 2, just A and B, and so on. In set
4, only the default option, A, is available. Note that the choices observed provide
information about which choice sets i did or did not face. Choosing “B” means that
the choice set is 1 or 2; B is not an option for the other choice sets. The exception is
the default choice, “A” - it is available in every choice set and thus does not restrict
the possible sets.

For individual i, the probability of observing a particular choice set is:

M∏

j=1

P (αwij > 0)zij(1− P (αwij > 0)1−zij

=
∏ (

eαwij

1 + eαwij

)zij
(
1− eαwij

1 + eαwij

)1−zij

(4)

where zij is an indicator variable for the presence of option j in individual i’s choice
set. For the example given above, the probability of choice set number 2 is (recalling
that A, the default option, is present in every set with probability 1):

P (set2) = P (B) ∗ (1− P (C))

or
P (αwiB > 0) ∗ (1− P (αwiC > 0)

=
(

eαwiB

1 + eαwiB

)
∗

(
1− eαwiC

1 + eαwiC

)
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When we observe a choice of “B”, as mentioned, this could reflect either of two
choice sets (1 or 2). Given the choice set, calculating the probability of observing
choice B is easy:

P (B|1) = P (UiB = Max(UiA, UiB, UiC))

P (B|2) = P (UiB = Max(UiA, UiB))

P (B|3) = 0

P (B|4) = 0

Since we do not observe the choice set, only the predictors of inclusion/exclusion
from the choice set, we write the probability of observing individual i choose option
B as the sum of the conditional probabilities of choosing B in each of the choice
sets, times the probability of each set:

P (Yij = B) = P (UiB = Max(UiA, UiB, UiC)) ∗ P (Set1)

+P (UiB = Max(UiA, UiB)) ∗ P (Set2)

dropping the i’s for clarity and writing out the probabilities:

=

(
exBβ

exAβ + exBβ + exCβ

eαwB

1 + eαwB

eαwC

1 + eαwC

)
+

(
exBβ

exAβ + exBβ
∗ eαwB

1 + eαwB

(
1− eαwC

1 + eαwC

))

More generally, the probability of observing individual i choosing choice j = J is:

S∑

k=1

exiJβ

∑m
j=1 exijsβIijk

P (αwiJ > 0)
∏

j 6=1

P (αwij > 0)Iijk(1− P (αwij > 0))1−Iijk

where k indexes the choice sets, and Iijk is an indicator variable coded “1” if option
j is included in the kth choice set of individual i, and “0” otherwise. If J is the
default choice that is available in every choice set, then the term immediately before
the product (P (αwiJ > 0)) is “1” - because J is always available - and S = 2m−1. If
J is not the default choice, then the term before the product is less than one, and
S = 2m−2.

The log-likelihood of observed choice Yij given covariates x and w is:

LL =
n∑

i=1

xiJβ + log(P (αwiJ)) +

log

(
S∑

k=1

1∑m
j=1 exijsβIijk

∏
P (αwij > 0)Iijk(1− P (αwij > 0))1−Iijk

)
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Estimation and Examples

Estimation of β and α is straightforward, though much more computationally in-
tensive than classic conditional logit, because one must sum the probabilities across
all choice sets for each individual. With M = 3 this is not so bad; there are only 4
possible choice sets. But with M = 7, there are 27−1 = 64 possible choice sets; with
M = 20 there are over 500,000.

In the following sections, I examine the properties of CLS via simulation, first
comparing CLS with classic conditional logit, then considering CLS’ weaknesses and
limitations.

Simulated Comparison: Classic Conditional Logit versus Conditional
Logit with Unobserved Choice Set Selection

Figures 1, 2, and 3 compare simulated coefficient estimates for three models. In
each graph, the x-axis is the sample size from the simulated dataset (100 to 1000),
and the y-axis shows the estimated value of β. The shaded area is the range of
95% of the simulated estimates - the area between the 2.5th quantile and the 97.5th
quantile. The dashed line shows the mean estimated value and the dotted line the
median estimated value over all 1,000 simulations for each sample size.

The first column in each figure shows classic conditional logit, ignoring the choice
set variation. The second column shows results for classic conditional logit, but in-
cluding the selection covariates w in the matrix of choice covariates, without model-
ing choice set selection.2 The third column shows estimates of β using my proposed
method - explicitly accounting for choice set selection.

In each case, 1,000 datasets were generated for each sample size with a single
covariate at the choice level, with a parameter value of “1”, and an intercept and
single covariate at the selection level, both with parameter values of “1”.3 The three
graphs show how manipulating different parameters affects estimation.

In Figures 1, each row shows results for different values of α0, the intercept in
the choice set model. Effectively, manipulating α0 affects the baseline probability of
inclusion in the choice set. In the top row, the probability that a choice is included
is .2, in the second row, the probability is .5, and in the bottom row the probability
is .8.

2This last option deserves additional explanation. For example, suppose we are modeling Pres-
idents’ choices of coalition partners in government formation, but we believe that some parties
are not in the choice set, because they will refuse to join an ideologically incompatible President.
A “quick and dirty” fix to the selection problem might be to simply include a measure of ideo-
logical compatibility in the model of Presidential choice, expecting that Presidents’ won’t choose
incompatible parties - because they can’t. Ultimately, this solution fails to fix the bias problem.

3x and w were simultaneously generated from a bivariate normal random variable. In most
cases, I set the correlation between x and w to 0, but I experiment with collinearity, shown in
Figure 2.
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Three results are immediately apparent. First, the conditional logit with un-
observed selection (henceforth CLWS) model will provide unbiased estimates while
both of the other approaches will not. The median simulated value for conditional
logit with selection is consistently close to the true value 1, and its variance around
that value falls as sample size grows. In contrast, for both of the alternatives, es-
timates are consistently well below the true value. In almost every case, the true
value is well outside the 95% interval of simulated values. Specifically, when there is
choice set selection, coefficient estimates from classical conditional logit are biased
toward zero.

Intuitively, the classic conditional logit has a harder time making correct pre-
dictions, because it is unaware of the varying choice sets. The additional errors
are taken as evidence that the options j are more similar than they really are,
or that β is closer to zero. Related, the bias in traditional methods is greatest
when P (include) is low. When there is a significant amount of choice set variation,
traditional methods will be furthest from the true parameter value. Where such
unobserved variation is minimized, the classic model’s estimates approach the true
value, though they are still biased downward.

The second core result is that using conditional logit when there is unobserved
choice set variance will produce misleadingly small standard errors and inflate sig-
nificance tests. CLWS gives estimates have significantly more variance than the
classical approach. For larger sample sizes, the range of estimates narrows around
the true value to acceptable limits, but for small samples the range of estimates is
more than three times that of the classical model. This, too, makes sense. The se-
lection model has to incorporate additional variance associated with the uncertainty
about which choice set is available; the classic model assumes away this additional
variance, resulting in much tighter (and biased) confidence bands. Note, however,
that as the probability of a full choice set increases (moving to the bottom row),
CLWS is nearly as efficient as conditional logit and still the only unbiased approach.
The third finding from Figure 1 is that adding the selection covariates to a tradi-
tional conditional logit (aka, the 2nd column) has effectively no impact on the bias,
indicating that this approach is not a solution to choice set variation.

Figure 2 repeats the procedure, but examines the impact of variation in the
correlation (ρxw) between the choice and selection covariates (x and w). The cor-
relation between the two variables is 0 in the first row, .45 in the second row, and
.90 in the third. The figure shows that traditional approaches are still biased with
correlation between x and w, though that bias fades for both alternatives (1st and
2nd columns) as the correlation increases. Including the selection covariates in a
traditional conditional logit, however, does not work very well. The bias only fades
slightly as ρ increases, and the variance quickly grows.

CLWS remains unbiased regardless of the value of ρxw. In addition, increasing
ρxw increases the variance of estimates of β for all methods. For small samples,
CLWS is again very imprecise: the range of estimates for a sample of size 100 with
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ρxw = .90 is more than three times that of the alternative methods. Precision
increases as sample size grows.

Finally, Figure 3 compares bias when increasing the size of the choice set from 3
(top row) to 6 (middle row) and 9 (bottom row) choices. In each case, the selection
model (CLWS) continues to return unbiased estimates, and increasing the number
of choices decreases the variance in estimates: larger choice sets provide more in-
formation about β. For classic results, increasing the number of choices decreases
the bias, with confidence intervals capturing the true value for the smallest (highest
variance) samples.

Discussion

Combined, these observations suggest that conditional logit with selection should
be used whenever the analyst suspects unobserved choice set variation, with one
important qualification. Traditional approaches lead to biased coefficient estimates
and smaller standard errors than are in fact the case. CLWS will produce unbiased
estimates, though it is extremely inefficient for small sample sizes.

The important qualification is a practical one. As discussed, the method does
have an important computational problem: it is constrained by the size of the
choice set. As the number of choices increases, the number of possible choice sets
increases exponentially, and becomes cumbersome to compute for large choice sets.
Estimating β for a sample of size 1,000 with 3 choices takes 10 seconds (including
matrix setups and transformations) on a desktop computer with a Pentium 4 c©
processor. With a choice set of 6, the time increases 300% to 40 seconds. And
with a choice set of 9, the time increased another 200% to 205 seconds, and with a
choice set of 12, estimation time increased to 1,516 seconds, or about 25 minutes.
In contrast, traditional conditional logit without selection reached convergence in
less than 2 seconds for all these choice set sizes.

When choice sets are of a manageable size and the analyst suspects choice set
variation, CLWS is clearly superior - it elminates bias and avoids understating stan-
dard errors. What should one do when agents are faced with many options? Es-
timates will still be biased, but not by very much. One solution would be to use
the selection model, but sample randomly from the available choice sets to increase
computational ease. Further, in cases where there is public information about the
choice set, the analyst can incorporate such information into the likelihood func-
tion. An example is the study of party-switching by legislators, common in many
new democracies. Some parties may refuse ideologically incompatible new members;
other parties don’t care about ideology, and just want to maximize their size. Unfor-
tunately, the analyst usually doesn’t observe private offers or denials of membership
between parties and politicians, so there is unobserved choice set variance. How-
ever, occasionally parties make public statements about their willingness to accept
a new member, or their refusal of membership to one they deem incompatible. Such
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information can be incorporated directly into the likelihood function, reducing the
number of choice sets and providing additional information about α.

Finally, while I have focused on extending the conditional logit model, the
method can easily be extended to other variants of choice models, including multi-
nomial probit, or mixed logit.
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Figure 1: Impact of P(In Choice Set) on Estimates of β: Rows are P(I) = .2,.5,.8
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Figure 2: Impact of Corr(x,w) on Estimates of β: Rows are ρxw = 0,.45,.90

0 200 400 600 800

0.
0

0.
5

1.
0

1.
5

2.
0

Conditional Logit

Sample Size

E
st

im
at

e 
of

 β̂

0 200 400 600 800

0.
0

0.
5

1.
0

1.
5

2.
0

Conditional Logit w/Select Vars

Sample Size

E
st

im
at

e 
of

 β̂

0 200 400 600 800

0.
0

0.
5

1.
0

1.
5

2.
0

Conditional Logit w/Selection

Sample Size

E
st

im
at

e 
of

 β̂

0 200 400 600 800

0.
0

0.
5

1.
0

1.
5

2.
0

Conditional Logit

Sample Size

E
st

im
at

e 
of

 β̂

0 200 400 600 800

0.
0

0.
5

1.
0

1.
5

2.
0

Conditional Logit w/Select Vars

Sample Size

E
st

im
at

e 
of

 β̂

0 200 400 600 800

0.
0

0.
5

1.
0

1.
5

2.
0

Conditional Logit w/Selection

Sample Size

E
st

im
at

e 
of

 β̂

0 200 400 600 800

0.
0

0.
5

1.
0

1.
5

2.
0

Conditional Logit

Sample Size

E
st

im
at

e 
of

 β̂

0 200 400 600 800

0.
0

0.
5

1.
0

1.
5

2.
0

Conditional Logit w/Select Vars

Sample Size

E
st

im
at

e 
of

 β̂

0 200 400 600 800

0.
0

0.
5

1.
0

1.
5

2.
0

Conditional Logit w/Selection

Sample Size

E
st

im
at

e 
of

 β̂

12



Figure 3: Impact of Choice Set Size on Estimates of β: Rows are M = 3,6,9
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