
Frames, Scripts, and Schemas

Concepts & Categories

- Defining Attribute Theories
 - Classic Approach
 - Semantic Networks (a.k.a. Associative Networks)
 - Spreading Activation Models
- Defining and Characteristic Attribute Theories
 - Feature Set Theory
- Prototype Models
- · Exemplar Models
- Schemas, Scripts, Frames

Defining Attribute View

 Categories defined by sets of attributes each of which is necessary and all of which are jointly sufficient to determine category membership.

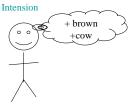
Summary: Defining Attribute Theories

- · Key Points
 - Meaning captured by conjunctive list of attributes
 - Attributes building blocks of concepts
 - Attributes necessary & sufficient to define category membership
- Predictions
 - Clear boundaries between members and nonmembers
 - All members equally representative of category
 - In hierarchical organization, all defining attributes are inherited

Problem with Defining Attribute Theories

- Concepts are often NOT defined by conjunction of necessary features
 - Wittgenstein
 - What makes a game a game?

Typicality



Problem with Defining Attribute Theories

- Not consistent w/empirical observations
 - Rosch (1973)
 - All category members not equally representative
 - Robins better birds than canaries
 - Typicality has cognitive consequences
 - Verification time for 'A canary is a bird' longer than 'A robin is a bird'

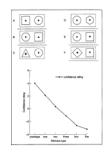
Problems with Classical Picture

- Very few concepts have defining features
- Categorization behavior not all-ornone
 - Some category members better than others
 - Fuzzy boundaries

Prototype Theory

 Categories are represented by prototypes that represent the average of exemplars of that category

Evidence for Prototype Theory

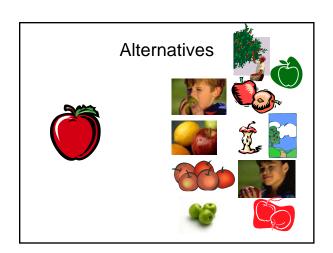


- Show people examples of a category
- Show them novel stimulus and ask if they've ever seen it
- People wrongly say yes to the prototype (average of the faces they have seen)

Prototype Theories

- Concepts have prototype structure
- No delimiting set of necessary and sufficient conditions
- · Category boundaries fuzzy
- · Category instances fall on a typicality gradient
- Category membership determined by similarity of object's attributes to the prototype

Evidence for Prototype Theories

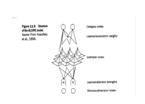

 Confidence that you have or haven't seen a stimulus before related to distance from the prototype

Evidence for Prototype Theory

- · Typicality gradients exist
- Typicality gradients predict categorization times
- Typical items mentioned first on category listing task
- Typical items sketched when people asked to draw an example of Category X
- · Children learn typical examples first
- Typical members more likely to serve as cognitive reference points
- Typicality correlates with family resemblance

Criticisms of Prototype View

- Not all concepts have prototype characteristics
 - Hampton (1981) claims 'rule' and 'belief' don't exhibit prototype structure
- Incomplete account of conceptual knowledge
- · Doesn't explain why categories cohere



Exemplar Models of Concepts

- Categories made up of a collection of instances or exemplars
- Instances grouped relative to one another via similarity metric
- Categorization involves retrieving instances from memory given particular cue
- When exact matches not found, nearest neighbor is retrieved

Nosofsky's ALCOVE Model

- Features of all exemplars stored in large multidimensional space
- Similarity function of distance in hyperspace
- Some features more important than others (alpha)
- Exemplars associated w/multiple categories

Can exemplar models account for standard categorization • Typicality Effects

- - Is a robin/ostrich a bird?
 - Typicality ratings
- "False Alarms" to Prototype

Problems with Exemplar Models

- · Unrealistic storage assumptions
- · How do exemplars get associated w/categories?
 - Still need to explain how information gets grouped into categories...

Prototype Theories (a.k.a.) Characteristic Attribute Theories

- · Categories organized around central properties
- 2 Classes of Prototype Theories
 - Classic Approach
 - Prototype represented by characteristic attributes
 - Abstract
 - Average
 - Alternative Approach: Exemplar Models
 - · Prototype represented by examples
 - Best Member

Exemplar Models vs. Prototypes

- Both explain typicality effects
 - But what about variability within a concept?
- Neither explains fact that correlation between features of category members is not random
 - Flightless birds tend to be large
- Neither explains why ad hoc categories show typicality gradients
 - For example
 - · Change your identity and move to South America
 - · Stay in Las Vegas
 - · "Ways to avoid being killed by the Mafia"