Syllogistic Reasoning Errors

- Atmosphere Effects – Superficial Processing
- Conversion Effects
- Comprehension Problems
- Belief Bias
- Intrusion of Prior Beliefs
- Figural Effects
 - Findings that suggest people more likely to produce a conclusion that relates the subject of one premise to the predicate of another
 - More indicative of reasoning process itself

Mental Models Theory

- Johnson-Laird
- People reason by constructing models
- Conclusions drawn by inspecting models
- If no alternative models refute, draw inference as valid conclusion

Integrating Premises

- (1) Some of the artists are beekeepers.
- (2) All of the beekeepers are chemists.
- (3) Some of the artists are chemists.

artist =	beekeeper =	chemist
(artist)	(beekeeper) =	chemist
		(chemist)

Searching for Alternative Models					
(4) All of the artists are beekeepers.					
(5) Some	of the beekeeper	s are chemis	ts.		
artist =	beekeeper =	chem	nist		
artist =	beekeeper	(chemist)			
	(beekeeper)				
(6) Some of the artists are chemists. [?]					
artist =	beekeeper				
artist =	beekeeper	(chemist)			
	beekeeper =	chemist			

What about negatives?

None of the artists is a beekeeper.

artist =	~beekeeper
artist =	~beekeeper
~artist =	beekeeper
~artist =	beekeeper

S	econd Model
Some B are A	No B are C
$\mathbf{b} = \mathbf{a}$	[b]
$\mathbf{b} = \mathbf{a}$	[b]
	[c]
	[c]
Potential Conclusions Some A are C Some C are A Some A are not C	 Combined a = [b] a = [b]
Some C are not A] a = [c] [c]

Alternative Alternative Model (3rd)				
Some B are A b = a 	Combined a = [b] a = [b] a = a = 	No B are C [b] [b] [c] [c] 		

Common Errors on this Syllogism

Premise 1: Some B are A Premise 2: No B are C

- All A are C ? (no)

 Not compatible with any of the models!
- No C are A ? (yes)

 Compatible w/1st model, but not 2nd & 3rd
- No A are C ? (yes)

 Compatible w/first model, but not 2nd & 3rd

Evidence for Mental Models Theory

- Problems that require more models are more difficult
 - 3-model problems harder than 2-model problems
 - 2-model problems harder than 1-model problems
- Error patterns suggest people construct some (but not all) mental models

Mental Models Theory & Wason Selection Task

- If there is a circle, then there is a triangle. [circle] triangle
- Modus Tollens requires spelling out the dots: constructing 3 models

circle triangle

- ~circle triangle
- ~circle ~triangle

