Syllogistic Reasoning Errors

- Atmosphere Effects
- Superficial Processing
- Conversion Effects
- Comprehension Problems
- Belief Bias
- Intrusion of Prior Beliefs
- Figural Effects
- Findings that suggest people more likely to produce a conclusion that relates the subject of one premise to the predicate of another
- More indicative of reasoning process itself

Mental Models Theory

- Johnson-Laird
- People reason by constructing models
- Conclusions drawn by inspecting models
- If no alternative models refute, draw inference as valid conclusion

Integrating Premises

(1) Some of the artists are beekeepers.
(2) All of the beekeepers are chemists.
(3) Some of the artists are chemists.

```
artist = beekeeper = chemist
(artist) (beekeeper) = chemist
(chemist)
```


What about negatives?

None of the artists is a beekeeper.

```
artist = ~beekeeper
artist = ~beekeeper
~artist = beekeeper
~artist = beekeeper
```


Implicit Notation

- Each line shows representative individual w/particular combination of properties
- Dots indicate there may be other types of individuals
- [] place restrictions on what properties implicit individuals can have
- Individuals w/in brackets have been exhaustively represented
- All A are B
[a] $=\mathrm{b}$
[a] = b
- Some A are B
$\mathrm{a}=\mathrm{b}$
$\mathrm{a}=\mathrm{b}$
- No A are B
[a]
[a]
[b]
[b]

Drawing Conclusions	
$\begin{aligned} & \text { All A are B } \\ & {[a]=b} \\ & {[a]=b} \end{aligned}$	All B are C $\begin{aligned} & {[b]=c} \\ & {[b]=c} \end{aligned}$
	Combined $\begin{aligned} & {[[a]=b]=c} \\ & {[[a]=b]=c} \end{aligned}$

A 3-Model Syllogism

Some B are A
No B are C
Therefore: Some A are not C.

Some B are A	No B are C
$b=a$	$[b]$
$b=a$	$[b]$
\cdots	$[c]$
	$[c]$

$b=a \quad[b]$
$\mathrm{b}=\mathrm{a}$
[c]
[c]

Second Model

Some B are A	No B are C	
$\mathrm{b}=\mathrm{a}$		[b]
$\mathrm{b}=\mathrm{a}$		[b]
\cdots		[c]
		[c]
Potential Conclusions	Combined	d
Some A are C		
Some C are A	$\mathrm{a}=[\mathrm{b}]$	
Some A are not C	$\mathrm{a}=[\mathrm{b}]$	
Some C are not A	$\mathrm{a}=$	[c]
		[c]

Second Model

Some B are A	No B are C
$b=a$	$[b]$
$b=a$	$[b]$
\cdots	$[c]$
	$[c]$

$\underline{\text { Potential Conclusions }}$	
Some A are C	Combined
Some C are A	$\mathrm{a}=[\mathrm{b}]$
Some A are not C	$\mathrm{a}=[\mathrm{b}]$
Some C are not A	$\mathrm{a}=$

[c]
[c]

Common Errors on this Syllogism

Premise 1: Some B are A
Premise 2: No B are C

- All A are C ? (no)
- Not compatible with any of the models!
- No C are A ? (yes)
- Compatible $w / 1^{\text {st }}$ model, but not $2^{\text {nd }} \& 3^{\text {rd }}$
- No A are C ? (yes)
- Compatible w/first model, but not $2^{\text {nd }} \& 3^{\text {rd }}$

Alternative Alternative Model

Some B are A	No B are C
$b=a$	$[b]$
$b=a$	$[b]$
\cdots	$[c]$
	$[c]$

Potential Conclusions
Some A are C
Some C are A
Some A are not C
Some C are not A

Combined
$\mathrm{a}=[\mathrm{b}]$ $\mathrm{a}=$ [b] $\begin{array}{ll}a= & {[c]} \\ a= & {[c]}\end{array}$

Evidence for Mental Models Theory

- Problems that require more models are more difficult
3-model problems harder than 2-model problems
2-model problems harder than 1-model problems
- Error patterns suggest people construct some (but not all) mental models

Mental Models Theory \& Wason Selection Task

- If there is a circle, then there is a triangle. [circle] triangle

Modus Tollens requires spelling out the dots: constructing 3 models
circle triangle
\sim circle triangle
\sim circle \sim triangle

Mental Models Theory Recap

- The more models needed for valid conclusion, the more errors
- Errors reflect conclusions from initial models

