Prospect Theory

- Kahneman \& Tversky
- Modification of EUT
- Utilities not evaluated in absolute sense
- Evaluated wrt reference point
- Utilities not multiplied by objective probabilities
- Multiplied by the π function instead

Framing Effects

- Imagine the US is preparing for an outbreak of disease which is expected to kill 600 people. 2 programs are proposed:
- Program A: 200 people will be saved
- Program B:
- 1/3 prob 600 people saved
- 2/3 prob no people will be saved
Reference Point: 600 deaths

Alternative Framing

- Program C: 400 people will die
- Program D: $1 / 3$ probability no people will die, 2/3 probability 600 people will die

Reference Point: status quo (no deaths)

Regret Theory

- People overweight anticipated feelings of regret when the difference between outcomes is large

Allais Paradox

- \$1,000 w/probability of 1.0
- \$1,000 w/probability of . 89
- \$5,000 w/probability of .10
- \$0 w/probability of regret .01

Regret Theory

- People overweight anticipated feelings of regret when the difference between outcomes is large

Ticket Numbers

Option	$1-9$	$10-21$	$22-24$		
A	$\$ 24$	$\$ 0$	$\$ 0$	\leftarrow	Chance of not getting $\$ 24$ similar to that of not getting $\$ 16$, and $\$ 24$
B	$\$ 0$	$\$ 16$	$\$ 0$		better outcome

Irrationality

- 2 accounts of irrational decisions
- Prospect Theory
- Regret Theory
- Is regret important?
- Should it be included when calculating utilities?
- Bounded Rationality
- Limited Processing Resources
- Huge Amount of Information

Heuristics \& Biases

- Heuristics - cognitive shortcuts
- Use of heuristics leads to various judgment biases
- Double-edged sword
- Used by experts, Usable by novices
- Can be misleading

Kahneman \& Tversky

- Deviations from rational judgment result from use of heuristics
- Anchoring \& Adjustment
- Availability
- Representativeness

Anchoring \& Adjustment

- Strategy in which estimation begins with an initial anchor and adjusts estimate in light of incoming information
$1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8=512$
$8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=2,250$
$=40,320$

Availability Heuristic

- Tendency to form a judgment on the basis
$---n_{-}$
125 of what's readily
--_ing
880 brought to mind

Tversky \& Kahneman (1974)

- If a word of 3 or more letters is taken randomly from an English text, is it more likely that the word starts with r or has r as its 3 rd letter?
- Availability reflects effectiveness of search strategy
- May or may not reflect actual probability

Pros \& Cons of Availability

- Availability \rightarrow Frequency
- Frequency -> Probability
- Memory distortions
- Availability not correlated
w/Probability
- Recency
- Publicity

Von Restorff Effect

- Finding that a single non-category member embedded in a list of items from a category will be the best remembered
- Carrot
- Celery
- Cucumber
- Porsche
- Zuchini
- Eggplant
- Squash

Solo or Token Members

Group A
5 Caucasians
1 African American

Tape
6 voices

Group B
3 Caucasians
3 African Americans

- Statements attributed to African American remembered better in group A than group B
- Statements attributed to the African American were more negatively evaluated in group A than group B

Hindsight Bias

- Tendency to overestimate probability you would have predicted X, once you know X occurred
- Arkes \& colleagues
- 4 Hindsight Groups
- Assigned 2-3x > probability estimates to the "correct" diagnosis than did the foresight group

Availability \& Hindsight

- Availability of correct outcome outweighs other evidence
- Even when consciously 'ignoring' it
- Hindsight Bias can lead outside observers to an inadequate appreciation of original difficulty of a decision
- Medical Diagnosis
- Airline Operation

Causal Schema

- Evaluate the probability of an event via the difficulty you have imagining a plausible scenario leading to that outcome
- Good for understanding events and stories
- The careless man threw a cigarette out the window. The forest won't be restored in our lifetime.
- Use of causal schemas to estimate probabilities can be misleading

Down Side of Causal Schemas

- People have limited imaginations
- Overestimate likelihood of events consistent w/causal schemas
- Predicting daughter's eye color from mother's eye color vs. mother's eye color from daughter's
- Predicting scores on a short quiz from performance on a 10 -hour exam, or vice versa

Representativeness Heuristic

- Evaluate evidence by judging it's similarity to the outcome
- What's the probability that exemplar E is a member of category C?
- How many features typical of C does E have?
- Lots: Probable!
- Few: Improbable...

Steve

- Steve is very shy and withdrawn, invariably helpful, but with little interest in people, or in the world of reality. A meek tidy soul, he has a need for order and structure and a passion for detail.
- What's the probability that he's a
- Farmer
- Pilot
- Doctor
- Librarian

Conjunction Fallacy

Which of the following events is the most likely?

1. That a man is under 55 and has a heart attack
2. That a man has a heart attack
3. That a man smokes and has a heart attack
4. That a man is over 55 and has a heart attack

Conjunction Fallacy

Which of the following events is the most likely?

1. That a man is under 55 and has a heart attack
2. That a man has a heart attack
3. That a man smokes and has a heart attack
4. That a man is over 55 and has a heart attack

Representativeness Heuristic and Bayes Theorem

$\mathrm{P}(\mathrm{O} \mid \mathrm{E})$
$\mathrm{P}(\mathrm{O})$
P(~O)
$\mathrm{P}(\mathrm{E} \mid \mathrm{O})$
P(E|~O)
Probability of Outcome given Evidence
Base Rate (Prior Probability of Outcome)
Inverse of Base Rate (1-P(O))
Hit Rate (Prob of Evidence given Outcome)
False Alarm Rate

An Example

Given that Harold talks to strangers, how likely is it that he is an extravert?
(What is the probability of the outcome given the evidence?)
Evidence: Harold talks to strangers
$=\mathrm{T}$
Outcome: Harold is an extravert
$=\mathrm{X}$

Evidence: Harold talks to strangers
Outcome: Harold is an extravert
Assume
P(Outcome): Base Rate of being an extravert
P (Evidence): Probability of talking to strangers P(E\&O): Probability of being extraverted and talking to strangers
$=\mathrm{T}$
$=\mathrm{X}$
$p(X)=.6$
$p(T)=.85$
$p(T \& X)=.6$

Harold

Assume
P(Outcome): Base Rate of being an extravert

$$
p(X)=.6
$$

$P($ Evidence $)$: Probability of talking to strangers

$$
p(T)=.85
$$

$P(E \& O)$: Probability of being

Calculate
Likelihood: Probability of evidence given outcome $p(T \mid X)=p(T \& X) / p(X)$
.6/. 6

1 extraverted and
talking to strangers
$p(T \& X)=.6$

$p(X \mid T)$

But what is the probability of the outcome given the evidence? $\mathrm{p}(\mathrm{X} \mid \mathrm{T})$

$$
\begin{aligned}
\mathrm{p}(\mathrm{X} \mid \mathrm{T}) & =\mathrm{p}(\mathrm{X} \& \mathrm{~T}) / \mathrm{p}(\mathrm{~T}) \\
& =.6 / .85 \\
& =.71
\end{aligned}
$$

Some people who talk to strangers are not extraverts.

Representativeness Heuristic and Bayes Theorem

$\mathrm{P}(\mathrm{O} \mid \mathrm{E})$
$\mathrm{P}(\mathrm{O})$
P(~O)
$\mathrm{P}(\mathrm{E} \mid \mathrm{O})$
P(E|~O)
Probability of Outcome given Evidence
Base Rate (Prior Probability of Outcome)
Inverse of Base Rate (1-P(O))
Hit Rate (Prob of Evidence given Outcome)
False Alarm Rate

Probabilities vs. Frequencies

The probability of breast cancer is 1% for a woman at age 40 who participates in routine screening. If a woman has breast cancer, the probability is 80% that she will get a positive mammography. If a woman does not have breast cancer, the probability is 9.6% that she will get a positive mammography. A woman in this age group had a positive mammography in a routine screening. What is the probability that she actually has breast cancer?

High Base Rate Low Base Rate

P(Illness)=. 10
P(~IIlness) $=.90$
$P($ E|lllness $)=.80$
P(E|~Illness)=. 20
$P($ Illness $\mid E)=$
.80(.10)
$.10(.80)+.9(.80)$
=. 01

P(Illness)=. 01
P(~Illness) $=.99$
$P($ ㅌ|llliness $)=.80$
$\mathrm{P}($ E| \mid Illness $)=.20$
$\mathrm{P}($ Illness $\mid \mathrm{E})=$
.80(.01)
$.01(.80)+.99(.80)$
$=.004$

Base Rate Neglect

- 85% cabs green
- 15% cabs are blue
- Witness: "Cab was blue."
- Witness: 80\% accurate when identifying colors in similar conditions
- What's the probability that the cab in the accident was blue?
- Survey Says: 80\%
- Bayes Says: 41\%

