Statistical Reasoning & Decision Making

Decision Making

- · Is human decision making optimal?
 - Guided by normative theories devised by economists and philosophers
- Traditional Assumption: Yes.
 - Just need to figure out what's being optimized
 - Study what people value
 - If we know what people value, can predict their choices

Decision Making

- Modern Take: Probably Not!
 Limited information
 - Limited processing capacity
- However, people good at quick decisions under non-optimal conditions
- But first, how does human decision making deviate from economists' norms?

Heuristics & Biases

- Visual Illusions
- Cognitive Illusions - Situations where heuristics and strategies fail or are misleading
- Sub-optimal/Irrational decisions point to mechanisms
- Sub-optimal, but largely effective
 - Analogous to visionBounded Rationality
 - (Simon)

Normative Rational Models

- Irrational Reasoning
- · Consistency important
 - If John prefers a paper clip to a stereo, and a stereo to a free trip around the world, then John should prefer a paper clip to a free trip around the world

Normative Rational Models

- Prescriptive Models
 How we should
 - perform – Given assumptions about a person's goals, these models tell us what choices
 - are optimal – Provides norms for evaluating human decision making
- Descriptive Models – How we do perform
 - Sometimes differs from that prescribed by normative models

Expected Value Theory

- Winning \$40 with probability of .2
- Winning \$30 with probability of .25
- \$40 x .2 = \$8
- \$30 x .25 = \$7.50
- Expected Value = (Value of Outcome) x (Probability of Outcome)

Come on! Who takes EVT seriously?

The Government

Since Executive Order 12291 all federal agencies must weigh costs against benefits before writing new regulations 51 construction workers

died when a scaffold collapsed at a power plant. OSHA proposed new safety rules estimated to save 23 lives/year and cost \$27.3 million "Since OSHA valued a life at \$3.5 million, the regulation easily passed the costbenefit test. But the Office of Management and Budget, the administration's regulatory gatekeeper, stepped in with a new price on a construction worker's life – \$1 million, based on its own research – that stalled the rules for years." San Diego Union July 14, 1990

Paradoxes Generated by EVT

- Limitations of EVT revealed in paradoxes it produces
- Paradox 2 inconsistent statements, both of which are intuitively true
- Resolution of a paradox can lead to changes in theory that gives rise to it

Allais Paradox

- Propose 2 choice situations where people agree on the rational decision in each case
- Then show that these 2 decisions are inconsistent

- \$1,000 w/probability .11
- \$0 w/probability .89
- \$5,000 w/probability .10
- \$0 w/probability .90

Certainty Effect (Kahneman & Tversky)

- 80% probability of losing 100 lives
- 100% probability of losing 75 lives
- People prefer 80% probability of losing 100 lives
- 10% chance to lose 75 lives
- 8% chance to lose 100 lives
- People prefer 10% chance to lose 75 lives
- But this choice is the same as the first, with probabilities reduced by a factor of 10

Certainty Effect (Kahneman & Tversky)

- 80% probability of losing 100 lives
- 100% probability of losing 75 lives
- EVT says
 - first choice loses 80 lives
 second loses only 75 lives
 - second choice better
- Outcomes perceived with certainty are overweighted relative to uncertain outcomes

10% chance to lose 75 lives 8% chance to lose 100

- 8% chance to lose 100 lives
- EVT says
 - first choice loses 7.5 lives
 second loses 8 lives
- first choice (the one people choose) better
 When certainty doesn't
- When certainty doesn't cloud the picture, people choose in accordance with the normative theory

Preference Reversals

 People make a distinction between how attractive a particular choice is and how much they're willing to pay for the chance to make the gamble

Preference Reversals

- Bet A
 - 11/12 chance to win
 12 chips
 - 1/12 chance to lose 24 chips
- Bet A chosen 50% of time
- Bet A received a higher selling price 12% of time
- Bet B
 - 2/12 chance to win 79 chips
 10/12 chance to lose 5
 - chips
- Bet B chosen 50% of time
- Bet B received a higher selling price 88% of time

Slovic and Lichtenstein, 1968

Framing Effect

- Program A and Program C identical
- Program B and Program D identical
- · But people prefer
 - A (save 200 people) over B (1/3 save 600) and
 - D (2/3 600 die) over C (400 people die)
- Certainty affected decisions about lives lost differently from lives saved

Sunk Cost Fallacy

- When past actions affect future choices in an irrational manner
- Walk out of a play when you've paid \$10/ticket, but not when you've paid \$50/ticket
- If you walk out, you will not get your money back, regardless of how much you paid!

Framing Effects

- Change in decision associated w/different presentation forms
 - Lives Saved versus Lives Lost
 - Sunk Cost of \$10 vs. Sunk Cost of \$50
- Irrational because inconsistent
- But can lead to adaptive decisions in some circumstances
 - E.g. sunk cost 'fallacy' adaptive in cases that require modest negatives followed by strongly
 - positive outcomes
 - learning tennis
 - · long-term investment in the stock market

Expected Value Theory

- Winning \$40 with probability of .2
- Winning \$30 with probability of .25
- 40 x .2 = 8
- \$30 x .25 = \$7.50
- Expected Value = (Value of Outcome) x (Probability of Outcome)

- Utility subjective value, not objective value
- People maximize expected utility rather than expected value

$$\label{eq:product} \begin{split} n \\ \sum & P_i W_i = P_1 W_1 + P_2 W_2 + \ldots \, P_n W_n \\ & i = 1 \end{split}$$

- W = subjective worth of consequences (utility)
- P = probability of outcome
 To calculate worth
 - Compute worth of each of the possible consequences and the
 - probability of each
 - Multiply each W by its PSum the products
 - Sum the products

- Expected Value
- $= P(W)^*V(W) + P(L)^*V(L)$
- = 1/6(\$4) + 5/6(-\$1)
- = \$1/6
- Expected Utility
- $= \mathsf{P}(\mathsf{W})^*\mathsf{U}(\mathsf{W}) + \mathsf{P}(\mathsf{L})^*\mathsf{U}(\mathsf{L})$
- = 1/6(\$4+\$2) + 5/6(-\$1)
- = +\$1/6

Allais Paradox • \$1,000 w/probability of 1.0 • \$1,000 w/probability of .89 • \$5,000 w/probability of .10 • \$0 w/probability of .01 • \$0 w/probability .90 • \$0 w/probability .90

Prospect Theory

- Kahneman & Tversky
- · Modification of EUT
 - Utilities not evaluated in absolute sense
 Evaluated wrt reference point
 - Utilities not multiplied by objective probabilities
 - Multiplied by the π function instead

• People overweight anticipated feelings of regret when the difference between outcomes is large

Ticket Numbers					
Option	1-9	10-21	22-24		
А	\$24	\$0	\$0	←	
В	\$0	\$16	\$0		
Ticket Numbers					
Option	1-9	10-12	13-24		
С	\$24	\$0	\$0		
D	\$16	\$16	\$0	←	