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ABSTRACT—Human mental representations are both flexi-

ble and structured—properties that, together, present

challenging design requirements for a model of human

thinking. The Learning and Inference with Schemas and

Analogies (LISA) model of analogical reasoning aims to

achieve these properties within a neural network. The

model represents both relations and objects as patterns of

activation distributed over semantic units, integrating

these representations into propositional structures using

synchrony of firing. The resulting propositional structures

serve as a natural basis for memory retrieval, analogical

mapping, analogical inference, and schema induction. The

model also provides an a priori account of the limitations

of human working memory and can simulate the effects

of various kinds of brain damage on thinking.
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A fundamental aspect of human intelligence is the ability to

acquire and manipulate concepts defined by systematic rela-

tionships among multiple objects. Many people view the Iraq

situation in 2005 as ‘‘the same kind of thing’’ as Vietnam in 1968

because they perceive a variety of relational parallels: the

American military bogged down in low-level conflict in a distant

theater, an unfriendly local populace, difficulty distinguishing

friend from foe, and lack of an exit strategy. Relational concepts

abound in social understanding (e.g., a love triangle is defined by

relations of affection among three people), law (e.g., breach of

contract, based on a relations among two or more parties to an

agreement), religion (e.g., atonement for sins, which relates a

person’s actionsand their belief in adeity), science (e.g., force is a

relation between mass and acceleration), and indeed even basic

perception (e.g., recognition of arrangements of objects in

scenes).

Relational thinking involves the ability to see analogies be-

tween superficially disparate situations and to form more general

schemas, or relationally defined concepts (Gick & Holyoak,

1983). For example, force is an abstract relation between mass

and acceleration whose properties remain constant across the

object’s other properties (e.g., it takes the same force to accelerate

a 10-pound bowling ball from 0 to 10 mph as to accelerate a 10-

pound rock or 10 pounds of water). Similarly, if person A loves

person B but person B loves person C, it is reasonable to con-

jecture that A will be jealous of C, regardless of who A, B, and

C are: The jealousy relation is suggested by the unrequited-

love relation, not by the features of the people involved.

Relational thinking is so commonplace that it is easy to assume

that the psychological mechanisms underlying it are simple. But

the capacity to form and manipulate high-level relational rep-

resentations appears to be a uniquely human ability, a late evo-

lutionary development that develops relatively late in childhood.

The power of relational thinking resides in its structure sensitiv-

ity—the ability to generate inferences and generalizations that

are determined by the roles elements play in relational concepts

rather than simply by the features of the elements themselves

(e.g., it is the fact that person A is a lover who is not also a beloved,

rather than the particular features of A, that suggests that he or

she will be jealous).

In this article, we review our attempts to model the under-

pinnings of human relational thinking using a computational

system (i.e., a computer program) called LISA (Learning and

Inference with Schemas and Analogies). Many computational

models of analogy have been developed (for reviews, see Doumas
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& Hummel, 2005; Holyoak, 2005), but few have been based on

what is known about the brain’s neural structure, and (perhaps for

that reason) few have incorporated a general mechanism for

learning new schemas. Our goal is to understand how relational

thinking can be accomplished in a cognitive architecture that is

both psychologically and neurally plausible. Ultimately, we aim

to understand the neurocomputational basis of symbolic thought.

THE LISA MODEL

Knowledge Representation: LISAese

Our proposal is a form of symbolic connectionism: a computational

system that codes relational structures within a neural network.

LISA represents both objects and relational roles in a distributed

fashion—that is, as patterns of activation over units (roughly

analogous to neurons) representing the objects’ or roles’semantic

features. For example, the object John might be represented by

features such as human, adult, male, etc.; Sally by human, adult,

female, etc.; the lover role by emotion, positive, strong, etc.; and

beloved by emotion-object, positive, etc. Objects are dynamically

bound to roles by synchronizing the firing of their distributed

representations (e.g., John is bound to the lover role by syn-

chronizing the firing of units representing John and lover); sep-

arate role–filler bindings fire out of synchrony with one another

(e.g., the John1lover set fires out of synchrony with the Sal-

ly1beloved set). The resulting propositional representations

(e.g., ‘‘John loves Sally’’) are stored in long-term memory (LTM)

using a hierarchy of units that collectively represent objects,

relational roles, and their arrangement into complete proposi-

tions (see Fig. 1). This architecture (LISAese) achieves both the

representational power and the structure-sensitivity of tradi-

tional symbolic systems and the flexibility of feature-based (e.g.,

connectionist) systems.

The hierarchy depicted in Figure 1 represents the propositions

‘‘John loves Sally’’ and ‘‘Sally knows that John loves Sally’’ in

LISA’s LTM and active or working memory (WM). In this hier-

archy, the binding of roles to objects that fill them is represented

by the subproposition (SP) units. When a proposition enters

WM—that is, when it becomes active—its roles and fillers are

bound by synchrony of firing (Hummel & Holyoak, 1992; Shastri

& Ajjanagadde, 1993). When a proposition (P) unit becomes

active, it excites the SPs (such as ‘‘John1lover’’) to which it is
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Fig. 1. Learning and Inference with Schemas and Analogies (LISA) representation of the propositions (a) ‘‘John
loves Sally,’’ and (b) ‘‘Sally knows that John loves Sally.’’ Objects in these propositions (e.g., John, Sally; large
circles) and relational roles or predicates (triangles) are represented as patterns of activation distributed over se-
mantic units (small circles at the bottom of the hierarchy). For example, John might be represented by features such
as human, adult, and male, and Sally might be represented as human, adult, and female; roles these objects may
play (e.g., lover, beloved, knower, and known) are also represented by units capturing their semantic content.
Subproposition units (SPs; rectangles) represent bindings of objects to roles. Separate SPs are bound into complete
propositions via proposition (P) units (ovals). Simple propositions such as ‘‘John loves Sally’’ may serve as role
fillers in other propositions, forming hierarchical propositions such as ‘‘Sally knows that John loves Sally’’ (as in b).
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connected. Separate SPs inhibit one another, causing them to fire

at different times (e.g., ‘‘John1lover’’ does not fire together with

‘‘Sally1beloved,’’ but rather in sequence). When an SP fires, it

activates the object and role units (e.g., John and lover) below it,

and these in turn activate the semantic units below themselves.

At the level of the semantic units, the result is a collection of

mutually desynchronized patterns of activation, one for each

role–filler binding. For example, the proposition ‘‘John loves

Sally’’ would be represented by two such patterns, one binding

the semantic features of John to those of lover, and the other

binding Sally to beloved. The proposition ‘‘Sally loves John’’

would be represented by the very same semantic, object, and

predicate units, but the synchrony relations would be reversed

(with lover firing together with Sally and beloved with John).

The resulting representations are extremely well suited to

support relational thinking: Augmented with a few simple

processes, they provide a natural account of memory retrieval,

the discovery of analogies, analogy-based inferences, and the

generation of schemas from specific examples, as well as the

limitations of WM and patterns of deficit following brain damage

or degeneration.

Processes: Operations on LISAese

WM Limits

In LISA, the fact that subjects and predicates are bound dy-

namically by synchrony of firing imposes a hierarchical temporal

structure on knowledge representations. Consider how LISA

performs analogical mapping—that is, discovers correspond-

ences between elements that play parallel roles in two similar

situations (analogs). The two analogs and the emerging corre-

spondences between them are assumed to reside in active

memory (i.e., the currently active portion of LTM). Within active

memory, a very small number of role–filler bindings can enter the

phase set—the set of active, mutually desynchronized role–filler

bindings representing one or more propositions. Each phase

(i.e., temporal period of synchronized firing) in the set corre-

sponds to one role–filler binding; a single phase corresponds to

the smallest unit of WM. The phase set corresponds to the current

focus of attention and is the most significant bottleneck in the

system. The size of the phase set is determined by the number of

role–filler bindings it is possible to have simultaneously active

but mutually out of synchrony. This number is necessarily limited

(see Hummel & Holyoak, 2003, Appendix A). In LISA, the phase

set is the WM, so the capacity of the phase set is the capacity of

LISA’s WM.

There is evidence that, in the brain, binding of roles to fillers is

accomplished by synchrony of firing in the 40-Hz (gamma) range,

which means that a neuron or population of neurons involved in

representing a proposition generates one spike (or burst) ap-

proximately every 25 ms. According to Singer and Gray (1995),

the temporal precision of spike timing is in the range of 4 to 6 ms.

These figures imply that human WM capacity is approximately

four to six role bindings. LISA thus yields a principled estimate of

the maximum amount of information that a person can process at

any given time during analogical mapping: four to six role

bindings, or roughly two to three propositions.

Because of the phase set’s strongly limited capacity, LISA’s

processing of complex analogies is necessarily highly sequential:

LISA can hold at most three propositions in WM simultaneously,

so it must process large analogies in small pieces. The basis of

LISA’s algorithm for analog retrieval, mapping, inference, and

schema formation is a form of guided pattern recognition. At any

given moment, one analog (i.e., a set of interrelated propositions)

is the focus of attention and serves as the driver. One (or at most

three) at a time, propositions in the driver become active, gen-

erating synchronized patterns of activation of the semantic units

(one pattern per SP). In turn, these patterns activate propositions

in LTM (during analog retrieval) or in active memory (during

mapping, inference, and schema formation).

Retrieval and Mapping

Memory retrieval in LISA occurs when a novel problem, the

target, serves as the driver, cuing the retrieval of a useful source

analog (recipient) fromLTM:Upto three propositions in the target

fire at a time, generating patterns of activation (one pattern for

each role–filler binding) of the semantic units; these patterns

activate propositions in LISA’s LTM, retrieving source analogs

into WM for mapping and inference. For example, given the novel

target analog ‘‘Mary loves Tom and Tom loves Cathy,’’ LISA is

likely to be reminded of other analogs in which males and females

love one another (as the same semantic units are involved in

multiple propositions). LISA’s algorithm for analogical retrieval

as guided pattern recognition provides an excellent fit to the data

on analogical reminding in people (Hummel & Holyoak, 1997).

LISA’s algorithm for analogical mapping—that is, for finding

the structural correspondences between the elements of two

different but similar situations—consists of its algorithm for

analog retrieval augmented with a mechanism for learning which

elements of one analog tend to activate which elements of the

other. Whenever a unit in one analog (e.g., the target) becomes

active in response to the semantic patterns generated by a unit in

another analog (e.g., the source), LISA updates the weight on a

mapping connection (a direct link) between the source unit and

the target unit (see Hummel & Holyoak, 2003, for more detail).

The resulting mapping connections serve as LISA’s hypotheses

about which units map to which, and to constrain future mappings

based on mappings already discovered (e.g., if LISA makes a

mapping connection from A to B on one occasion, then the con-

nection representing that mapping will allow A to excite B di-

rectly on future occasions).

This algorithm provides an account of the known strengths and

limitations of people’s ability to discover analogical mappings.

It also correctly predicted previously unknown effects of text

coherence (i.e., relational interconnectedness, defined as

shared objects linking propositions) on people’s ability to find
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structurally coherent mappings between the elements of two

situations (Kubose, Holyoak, & Hummel, 2002). Processing

multiple, interrelated propositions together generated more ac-

curate mappings than did processing individual propositions,

both for LISA and for human reasoners. LISA also correctly

predicted previously unobserved asymmetries in mapping and

inference accuracy. When one analog was more internally

coherent than the other, inferences generated from the more

coherent analog to the less coherent analog were more accurate

than those made in the reverse direction.

Relational Inference and Schema Induction

Augmented with a simple algorithm for self-supervised learning,

LISA’s algorithm for analogical mapping provides an account of

relational inference and schema induction (Hummel & Holyoak,

2003). When elements of the driver have no corresponding

structures in the recipient, then initially random units in the

latter are recruited to represent the ‘‘missing’’ elements; con-

nected together, these units form appropriate inferences. For

example, if a driver containing the propositions ‘‘John loves

Sally,’’ ‘‘Sally loves Bill,’’ and ‘‘John hates Bill’’ is mapped onto a

recipient stating that ‘‘Susan loves Tom’’ and ‘‘Tom loves Cathy,’’

new units in the recipient will be recruited to construct the in-

ferable proposition ‘‘Susan hates Cathy.’’ The same operations,

augmented with a simple mechanism for discovering what ele-

ments of one analog have in common with elements of the other,

serves as a basis for relational schema induction. Together, these

simple operations form a surprisingly complete account of ana-

logical inference and schema induction.

Scaling Up: LISA Can Map Large Analogs Despite

Limited Capacity

One of the surprising successes of LISA is its ability to explain an

apparent paradox of human analogical thinking. People have

great difficulty mapping some small, spartan analogies, yet easily

map other analogies that are much larger and might seem more

complex. For example, Hummel & Holyoak (1997) showed that

LISA, like college students, is unable to reliably find the correct

correspondences between boys and dogs (and their traits) in the

following apparently simple analogy:

‘‘Boys’’ analog ‘‘Dogs’’ analog

smart (Bill) hungry (Rover)

tall (Bill) friendly (Rover)

smart (Steve) hungry (Fido)

timid (Tom) frisky (Blackie)

tall (Tom) friendly (Blackie)

This tiny analogy problem is hard because the semantics of the

two analogs provide no clues to the mapping, and the structural

constraints that need to be processed jointly exceed LISA’s (and

people’s) WM capacity. (The only consistent one-to-one corre-

spondences between the two analogs are the following: Timid

corresponds to frisky, Tom to Blackie, tall to friendly, Bill to

Rover, smart to hungry, and Steve to Fido.)

In contrast, even large, ‘‘messy’’ analogs can be mapped reli-

ably if rich semantic constraints guide the mapping. For example,

college students were able to identify the major plausible cor-

respondences between the Persian Gulf crisis of 1991 (when Iraq,

under Saddam Hussein, invaded Kuwait) and World War II (e.g.,

Hussein and Iraq mapped to Hitler and Germany; President

George H.W. Bush and the United States might map either to

Franklin Roosevelt and the United States or to Winston Churchill

and Great Britain). Although the analogs were large and the map-

pings were complicated by possible many-to-one correspond-

ences (e.g., Bush might map to either Roosevelt or Churchill),

rich semantic connections helped guide the mapping (Spellman

& Holyoak, 1992).

To assess LISA’s ability to scale up to such large examples, we

applied it to several variations of this war analogy, with about 100

propositions describing each analog (Holyoak &Hummel, 2001).

LISA’s preferred mappings corresponded closely to those most

frequently given by people. These results establish that LISA can

find sensible mappings for large, ambiguous, and semantically

rich analogies of the sort that people are able to map, while op-

erating within psychologically realistic limits on WM.

LISA as a Neuropsychological Model of Relational

Reasoning

The processes that control WM resources in LISA provide a

natural account of the loss of relational reasoning in people with

some forms of brain damage, such as patients with either frontal-

lobe or temporal-lobe variants of frontotemporal lobar degener-

ation (FTLD; Morrison et al., 2004). These two patient groups

showed different deficits in picture and verbal analogies: Fron-

tal-lobe FTLD patients tended to make errors due to impairments

in WM and inhibitory abilities, whereas temporal-lobe FTLD

patients tended to make errors due to semantic memory loss.

LISA provides a specific account of how such deficits may arise

within neuralnetworks supporting analogical reasoning. We were

able to simulate the observed pattern of frontal-lobe deficits by

impairing LISA’ ability to rapidly learn mapping connections,

while also reducing inhibitory control. Both rapid learning and

inhibitory control appear to be key functions of the frontal cortex.

To model the loss of conceptual knowledge produced by tempo-

ral-lobe damage, we destroyed connections between semantic

units representing relational roles and the predicate units for

those roles.

CONCLUSION

LISA shows promise as a neurocomputational model of symbolic

thought. For example, we hypothesize that the mappings in LISA

may correspond to neurons in the frontal cortex that have rapidly

modifiable synapses. LISA may thus pave the way for integrative
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theories that better ground high-level human cognition in neu-

robiology. LISA also models many other aspects of normal

cognitive functioning, including relations between effortful, re-

flective, forms of reasoning and more effortless, reflexive rea-

soning (Hummel & Choplin, 2000) and the human ability to

exploit perceptual representations in the service of more general

reasoning (Hummel & Holyoak, 2001).

There are numerous important questions about relational

thinking that LISA in its current form does not address. Among

the most important of these are issues of relation discovery (how

do people learn new relational concepts?) and metacognition

(how do people monitor their own progress toward solving a

problem?). These issues provide goals for our ongoing research

(e.g., Kittur, Hummel, & Holyoak, 2004).
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