

Amnesia

- Anterograde amnesia
 - Amnesia for events that occur after some disturbance to the brain
- · Retrograde amnesia
 - Amnesia for events that preceded some disturbance to the brain
- · Pre-morbid period
 - Time prior to brain damage
- · Post-morbid period
 - Time subsequent to damage

HM: Amnesic

- Severe epilepsy, treated with surgery to bilaterally remove medial temporal lobes, including hippocampus
- Operation 9/1953, 27 years old

HM: Amnesic

Operation 9/1953, 27 years old

- Tested 4/1955, age 29
 - Reported date as 3/1953, age of 27
 - No memories since operation
 - IQ better than pre-op (112)
 - Fewer seizures

HM: Amnesic

- · Profound failure to create new memories
 - Can't find new home (after 10 mos.)
 - Can't remember new people, names, tasks
 - Events/People since operation
 - Language essentially frozen in 50's
 - Exceptions: Ayatollah, rock 'n roll

HM: Amnesic • Mirror tracing task, Milner, 1965

HM: Amnesic

Mirror tracing task, Milner, 1965

- improvement in H.M.
- no conscious recollection of previous training episodes

Behavioral Features

- STM functioning
 - Normal performance among amnesiac in digit span
- · Procedural memory
 - HM (Corkin 1984)
 - Severe episodic memory impairment
 - Pursuit rotor task (see next slide)
 - Demonstrated learning within and across sessions
 - No memory of having done the task before

Implications

- Store/Modal model of STM as passageway into LTM falsified
 - Anterograde amnesics can have normal digit spans but not form new memories
- Distinction between Declarative & Procedural Memory supported
 - H.M. learns new procedural knowledge but not new declarative knowledge

Procedural & Declarative memory

- Procedural memory: remembering "how to ..." without awareness that any info from past is accessed?
- Declarative memory: conscious access to info from the past ("I remember that..")
 - -> involves conscious recollection
 - term often used synonymously with episodic memory

Implicit and explicit memory

- implicit memory:
 - past experiences influence perceptions, thoughts & actions
 - without awareness that any info from past is accessed
- explicit memory: conscious access to info from the past ("I remember that..")
 - -> involves conscious recollection
 - -> term often used synonymously with episodic memory

Explicit, Declarative Memory

- Free recall
 - Recall one or two items from a 12 word list after a one minute delay and nothing after a longer delay
- · Paired associate learning with unrelated words
 - Little learning
- Forced choice recognition task
 - Chance performance

HM: Stem-Completion

Graf et al. (1984):

Study: word list (table, garden, umbrella)

Test:

- free recall
- cued recall: complete word stem with word from study list

umb____ ??

- word stem completion: complete word stem with first word that comes to mind

gar___??

Implicit Memory

- Information expressed w/o conscious recollection
- Task-Based
 - Stem completion
 - Priming
- No single goal
 - No direct reference to past events

Explicit Memory

- Information expressed with conscious recollection
- · Task-Based
 - Free recall
 - Recognition
- · Goal-directed
 - Refer to past events

Amnesia & Episodic/Semantic Distinction

- Amnesics remember what words mean, basic facts about the world, but don't remember what happens to them
- However,
 - Little conclusive evidence that different brain systems mediate episodic and semantic memory

Retrograde Amnesia

- Difficulty
 - Identify people and events from different decades
 - Autobiographical cueing
 - Date memories retrieved in response to specific cue words
 - Temporal gradient
 - Memories formed early in life are more likely to survive than memories formed later in life
 - The vulnerability of a memory to brain injury is inversely related to its age

Retrograde Amnesia in PZ

- Scientist who became amnesic after writing an autobiography
- · Memory for events in life
 - Temporal Gradient
- · Memory for scientific facts
 - Temporal Gradient
- Suggests memory for events and for facts more tied together than previously thought

Vharga-Khadem (1997): Episodic vs. Semantic Memory

Atrophied Hippocampal Formation

Amnesic Kids

- Speech, language, IQ all normal
- Digit span normal, immediate recall normal
- Delayed recall severely impaired
- Inability to remember what they did yesterday!

Amnesics Kids' Performance

TYPE OF STIMULI PRESENTED	ITEM RECOGNITION	ASSOCIATIVE RECOGNITION
Nonwords	INTACT	INTACT
Faces	INTACT	INTACT
Object-place pairs		IMPAIRED
Voice-face pairs		IMPAIRED

Performance revealed a selective deficit in remembering the associations or relationships between stimuli.

Why do we have multiple memory systems?

- Explicit, declarative memory
 - Cortex, Medial temporal lobe structures
 - Fast, phylogenetically recent
 - Interference, retrieval failure
- Implicit, procedural memory
 - Phylogenetically early
 - Nonconscious ways of responding to world

Forgetting Theory

- Decay
- · Consolidation Failure
- Interference
- Retrieval Failure

Decay & Forgetting

- · Decay not primary source of forgetting
- Shape of forgetting curve influenced by type of memory and activities during retention interval

Consolidation Theory

- As a result of experience, certain neural processes responsible for permanent memories are set into motion
- Disruption of consolidation activities leads to poorly formed memories, and, thus forgetting

Evidence

- Anecdotal Evidence
 - H.M.'s retrograde amnesia
- · Laboratory Evidence
 - Passive avoidance training
 - Electro-Convulsive Shock

Consolidation & Sleep

- · Plihal & Born
- · Learning Task
 - Paired Associate Lists (Declarative, Explicit)
 OR
 - Mirror Tracing (Procedural, Implicit)
- · Study Phase
 - Early (between 10:15 and 11 PM)
 - Late (after 3 hours of sleep)
- Test Phase
 - Sleep: tested after 3 hours of sleep
 - Wake: tested after 3 hours of viewing slides

Paired Associates Mirror Tracing | Solution | Steep |

Plihal & Born

- Sleeping during retention interval led to better memory than wakefulness
- Early Sleep (SWS?)
 - Aids declarative memory
- Late Sleep (REM?)
 - Aids procedural memory

Problems w/Consolidation

- · Limited range of explanation
 - Trauma disrupts consolidation
 - Sleep aids consolidation
- Does not explain role of content of experiences during a retention interval

Interference Theory

- Forgetting caused by interference btw. info tested and other info that has been learned
- Occurs when
 - Same stimulus associated w/multiple responses
 - Similar stimuli associated w/different responses
- · Two mechanisms
 - Response competition multiple responses elicited by stimulus
 - Unlearning new associations cause extinction of previous responses

Interference

- Phenomenon in which ability to remember concept X is disrupted by additional information about X
 - Proactive Interference
 - · Earlier disrupts later
 - Tennis makes it hard to learn squash, racquetball
 - Retroactive Interference
 - · Later disrupts earlier
 - Do you still remember the phone number of your best friend from 8th grade? Your current best friend's number?
- · Interference related to similarity of items

Proactive Interference

Group	Learn	Learn	Test
Experimental	A-B	A-C	A-C
	Cat-Tree	Cat-Dirt	Cat-Dirt
Control		A-C	A-C
		Cat-Dirt	Cat-Dirt

Retroactive Interference

Group	Learn	Learn	Test
Experimental	A-B Cat-Tree	A-C Cat-Dirt	A-B Cat-Tree
Control	A-B Cat-Tree		A-B Cat-Tree

Interference Effects

- · Barnes & Underwood
- S's learned list of paired associates until perfect recall
 - A-B (chair-dog)
- S's studied a 2nd list w/first terms paired w/new words
 - A-C (chair-tree)
 - Studied 2nd list 1,5,10 or 20 times
- Tested on memory for both response terms

Fan Effect

- Memorize 26 facts (Person in Location)
- Vary # of locations paired to same person/people paired to same location
 - The doctor is in the bank.
 - The fireman is in the park.
 - The lawyer is in the church.
 - The lawyer is in the park.
- Speeded Recognition Judgment

Fan Effect

	1 sentence about a <u>specific</u> <u>person</u>	2 sentences about a <u>specific</u> <u>person</u>
1 sentence using a <u>specific</u> <u>location</u>	1.11 sec	1.17 sec
2 sentences using a <u>specific</u> <u>location</u>	1.17 sec	1.22 sec

Network Representation

Fan Effect

- Limited capacity feature of spreading activation
- Source node has limited activation
- The more paths that exist, the less activation to any one path, the slower the activation
- Increase in RT related to increase in the fan of facts emanating from the network representation of the concept

Retrieval Failure & Forgetting

- Forgetting caused by the inability to access information represented in memory
- Availability
- Is info represented in memory?
- Accessibility
 - Can info be retrieved at a specific time/place?

Lost Memories?

- Penfield
- Recall or Hallucination?

Forgotten Memories

- Nelson (1971)
- Study 20 number-noun pairs until perfect recall
 - 43-dog
- Recall Test 2 weeks later (75% correct)
- Retraining
 - Some missed pairs unchanged (43-dog)
 - Some missed changed (43-house)
- Advantage for unchanged items

- Nelson (1978)
- Study 20 number-noun pairs
- Recognition Test 4 weeks later (70% correct)
- Retraining
 - ½ missed pairs unchanged (34% correct)
 - ½ missed pairs changed (19% correct)
- Suggests memory is "in" there!

Encoding Specificity Principle

- Cue-Dependent Forgetting
 - Retrieval failure resulting from poor cues
- Phonological orienting, semantic retrieval cue...
- Forgetting occurs because cue not present at input does not access stored info

Two-Process Theory: An alternative explanation

- Generate
 - Retrieval cues used to generate associations
- Recognize
 - Recognize items based on familiarity

Encoding Specificity vs. Two-Process

- Encoding Specificity
 - Stresses study-test cue overlap
- Two Process
 - Stresses strength of cue-item association

Thomson & Tulving

- · Study Phase
 - Strong associates: white-black
 - Weak associates: train-black
- Test Phase
 - Strong cues: white
 - Weak cues: train

Test Cues:	Strong	Weak
Study Cues	(white ?)	(train ?)
Strong (white-black)	20.2	9.2
Weak	13.9	15.7
(train-black)		

LTM Processes

- Levels of Processing
 - Emphasizes operations at encoding
 - Semantic/Elaborative processing most effective
- Encoding Specificity
 - Information about retrieval cue must be encoded at the time of study for the cue to be effective
- Transfer Appropriate Processing
 - Memory best when processes at test match those at study