

Issues in Attention Research

- · What happens to unattended information?
- What factors affect our ability to divide our attention?

Studies of selective attention (e.g. Cherry, 1953)

- subjects are presented with <u>2 or more</u> stimuli at the same time
 - -this is called **dual-task** performance
- for selective attention tasks, subjects are instructed to attend to <u>one</u> input only

Dichotic listening task

- 2 simultaneous messages – one to each ear
- each message has different meaning – like listening to TV & radio at same time
- Subjects must shadow one ear only

 repeat the message from one ear only
- Experimenter then asks about unattended ear!
 Listeners extract only certain info from unattended ear

So what do we notice? Listeners are good at detecting physical info could tell whether unattended channel was... ✓ • Male vs. Female ✓ • Speech vs. Buzzing Listeners are bad at detecting meaning info couldn't identify any word/phrase couldn't tell whether unattended channel was... X • Forward vs. Backward X • English vs. German So, attention is sensitive to physical properties

- insensitive to meaning

Broadbent's Filter Model of selective attention

- sensory information (speech) is received in channels

 channel = ear!
- Info goes first to buffer (=temporary store)
- Then filter selects attention (chooses 1 of the channels) based on physical characteristics (e.g. voice tone)
- This single channel is now the focus of attention
- Ignored (=unattended) info can be recalled from the buffer but this decays rapidly!
 - We can only attend to one channel at a time
 - Switching attention between channels requires effort

Switching Ears (Moray, 1959)

- Shadow left, until "switch ears" signal
- Attended (yes) Unattended (no)
- · "Bill switch ears"
 - Attended (yes)
 - Unattended (yes)

Errors in Shadowing

- Treisman (1964)
- Subjects sometimes report mixtures of things from both ears

Norman's model & the data

- · Cocktail Party Effect
 - Name gets into STM just long enough to be recognized
 - Because important, gets extra processing
- Contextual Errors in Shadowing
 - Info from both ears gets into STM
 - Contextually relevant info gets extra processing because pertinent

Deutsch & Deutsch Model of (late) selective attention

- into awareness
 - allows for subliminal perception;
 processing inputs with no conscious awareness
- Non-attended inputs are noticed only if their relevance exceeds the relevance of the attended channel
 allows for breakthrough

Treisman & Geffen (1967)

- Method
 - Task 1: shadow message in one ear
 Task 2: tap pencil
 - Task 2: tap pencil when you hear the target word "green"
- Results
 - Tapping to green in shadowed ear: 87%
 - Tapping to green in
 - the other ear: 8%

