

Stroop Effect

blue green White RED YELLOW BROWN BLACK ORANGE

Stroop Effect

- Experiment I: Say the word.

Incongruent	Congruent	
GREEN	BLUE	
43.3 secs	41.0 secs	(100 words)

- Experiment II: Say what color the word is printed in.

Incongruent	Congruent	
GREEN	BLUE	
110.3 secs	63.3 secs \quad (100 words)	

Automatic	Controlled
- Without intention - Not subject to introspection	- With intention - Subject to introspection
- Few, if any, attentional resources - Rapid (1 second or less) - Inflexible	- Uses most, if not all attentional resources - Relatively slow (several seconds) - Flexible

Memory Search Task (S\&S)

VARIED MAPPING

- Sometimes divided attention is not possible, and the person must rely on controlled processing
- Schneider \& Shiffrin's varied mapping condition
- Letter could be distractor or in memory set

Schneider \& Shiffrin

- Consistent Mapping (diff cat. distr.)
- Memory Set Size (no effect)
- Distractor Set Size (no effect)
- $80 \mathrm{~ms} /$ trial for 95\% accuracy
- Varied Mapping (same cat. distr.)
- Memory Set Size (more is harder)
- Distractor Set Size (more is harder)
- $400 \mathrm{~ms} /$ trial for 95\% accuracy
- Letter/Number distinction automatic: fast and
 done in parallel

Problems w/S \& S

- Redescription of data w/o explanation

Instance Theory of Automaticity (Logan)

- Each time stimulus encountered, traces stored in memory
- Practice
- More info about stim and what to do w/it
- Practice
- Rapid retrieval of info in response to stim

Cheng

- Quantitative Effects
- Qualitative Effects
- Restructuring

$2+2=4$	$2+2+2+2+2+2+2+2+2+2=?$	$2 \times 10=20$
$4+2=6$		
$6+2=8$		
$8+2=10$		
$10+2=12$		
$12+2=14 \ldots$		
$18+2=20$		

Instance Theory

- Race between memory \& procedure
- $12+5=$?
- If solved before, remember " 17 "
- If not, calculate
- Needle Analogy
- When needles easy to find, search works
- When needles hard to find, make a new needle

Explains Characteristics

- Fast
- Retrieve old solutions
- (Don't compute anew)
- No Effect on Processing Capacity
- Retrieval of overlearned material
- Unconscious
- No processes intervene

Neisser; Simons

- Pick the white or black team
- Count the number of times their basketball is exchanged

Neisser; Simons

- Result:

- over half the observers do not see the person in the gorilla suit
- inattention blindness:
- Failure to see objects in the center of gaze due to allocation of attentional resources elsewhere
- Instead of a complete, detailed world, we only see a small part of it
- the part we are attending to!

Related Phenomena

Change-blindness

- Occurs when attention is broadly distributed over a visual scene
- Can happen even when subject knows there will be a change
- Reflects
- sparse nature of visual representation
- need for focal attention to perceive objects

Inattention-blindness

- Requires focused attention on an engaging task
- Does not happen when subject is aware that an anomalous event might occur
- Reflects
- role of top-down factors in perception
- need for focal attention to perceive objects

Research Questions
> Does conversing on a cell
phone interfere with driving?
> What are the sources of the interference?
$>$ How significant is the interference?

Why Do Cell Phones Cause Interference?

$>$ From earlier studies, no interference from:
$>$ Radio broadcasts (audio input)
> Books on tape \& recorded conversations (audio/verbal input)
> Simple shadowing (audio/verbal input, verbal output)
> Implies active engagement in conversation necessary
> Impairments from both hand-held and hands-free units
$>$ Implies central/ cognitive locus
> Inattention-blindness (Neisser, Simons)

Experiment 1a: Inattention-Blindness
> Test for evidence of cell-phone induced inattention blindness

- High-fidelity driving simulator
> Hands-free cell phone
> Naturalistic conversation with confederate
> Eye tracker
$>$ Two phases to the study:

> Phase 1: Single \& dual-task driving
> Phase 2: Recognition memory tests for objects encountered while driving

Recognition Memory Given Fixation

Experiment 1a: Summary

$>50 \%$ drop in recognition memory from single to dual-task, consistent with inattention blindness interpretation
$>$ What about items more relevant to safe driving?
> Do drivers divert attention from processing items of low task relevance (e.g., billboards), but protect high task relevance items (e.g., pedestrians)?

Experiment 1b: Effects of Traffic Relevance

Phase I: Single \& dual-task driving
$>$ Interstate driving (with traffic)
> Hands-free cell phone, naturalistic conversations
> Unique items placed in single \& dual-task scenarios
Phase II: Surprise 2AFC recognition memory test
> Single-task items (driving only)
$>$ Dual-task items (driving \& phone)
$>$ Control items (not seen while driving)

2AFC Recognition Memory Given

 Fixation(Corrected for Guessing)

Cell Phones: Summary

> Cell phone conversations create inattention blindness for traffic related events/scenes
$>$ Cell phone drivers look but fail to see up to half of the information in the driving environment
> No evidence that cell phone drivers protect more traffic relevant information
> Attention plays a critical role in seeing and remembering information in dynamic naturalistic environments

Selective Attention

- Visual attention needed for perception of objects (feature binding)
- Auditory attention needed for full processing of meaning
- Partial Selection Occurs Early
- Not Simple Physical Filter
- Attenuates unattended information
- Amplifies attended information
- Sensitive to:
- Past Experience
- Context
- Arousal
- Late selection can also occur but requires more central processing resources

Sensory Register/Sensory Store

- Sensory Receptors
- Sensory Register (a.k.a. sensory store)
- Iconic memory (vis)
- Echoic memory (aud)
- Sensory Trace

Function

- Maintain input as perceptual processes extract its meaning

Capacity

- Visual Report Technique

- Whole Report
- 3-6 (usually 4 or 5)
- People Complained!
- Partial Report
$-3 / 4$
$-3 \times 3=9$

Duration of Iconic Memory

- How long does info stay in iconic memory?
- Visual Report Technique
- Vary time between offset of visual display and onset of partial report cue
- Time when partial report advantage no longer apparent is upper limit on duration

Duration of Iconic Memory

- Visual Report w/Variable Delay

Sensory Register is Precategorical

- Visual Report Technique
- Array of Letters and Numbers
- Partial Report
- Tone indicates whether letters or numbers to be reported
- No partial report advantage $*$

What is the sensory register for?

- "Reading in a lightning storm." Haber
- Perceptual continuity
- Saccades
- 24-100 ms
- No visual input taken in during this time
- Phenomenological

Experience

- Continuous world

Sensory Register

- Capacity
- Complete
- Accuracy
- Veridical
- Duration
- Iconic: 1 second
- Echoic: 2-4 seconds
- Forgetting Mechanisms
- Rapid Decay
- Displacement by new information
- Pre-Categorical
- Advantage for size, color, brightness cues
- Not for "conceptual" cues, word vs. number

